配置500级纵筋的框架中间层中节点抗震性能试验及设计方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前我国钢筋混凝土结构普遍应用的非预应力钢筋强度为300~400MPa,比发达国家低1~2个等级。为节约资源,实现我国经济可持续发展,尽快使我国钢筋混凝土结构用钢筋实现与国际接轨,在我国工程界中急需推广和应用更高强度的钢筋。目前国家863计划已经完成了500级钢筋的研制开发,我国各大主要钢厂已经能够生产这种钢筋。为将该类钢筋尽快纳入工程建设标准中,需要对配有500级钢筋的各类钢筋混凝土构件的受力及抗震性能进行检验。
     本文通过按照《混凝土结构设计规范》(GB50010-2002)设计的五个梁柱钢筋均为500级钢筋的接近足尺寸的中间层中节点的低周交变加载试验,着重分析研究了在现有的规范设计条件下,使用高强度等级钢筋的情况下节点组合体的综合抗震性能,并结合本研究团队已经完成的七个配置500级钢筋的中间层中节点和多个配置普通钢筋的中间层中节点的低周交变加载试验,对比分析了贯穿节点段梁筋的粘结退化规律和节点的耗能性能。本文所针对的具体问题以及主要结论如下:
     ①完成了一系列梁筋为500级钢筋且贯穿长度为20倍钢筋直径的高剪压比、中剪压比试件,组合体在节点剪切失效时所达到的位移延性均大于3小于4,表现出较差的综合抗震性能,但是组合体在节点剪切失效时所达到的层间位移角在0.04~0.06之间,明显大于普通配筋的试件的节点失效时的层间位移角0.038~0.043;
     ②对试验实测结果的整理分析可知,按照规范限制条件设计的梁筋贯穿段为20倍钢筋直径的试件,贯穿节点段梁筋的粘结性能较差,和已完成的梁筋贯穿段为25倍的试件相比,同剪压比条件下,节点混凝土损伤严重,斜向压溃的进程更快,滞回线的耗能能力要差一些。
     ③因500级钢筋的屈服应变比普通钢筋要大很多,所以构件的屈服位移相对较大,组合体所能达到的位移延性系数相对较小。
     ④根据本研究团队已经完成的12个配置500级钢筋的中间层中节点和21个配置普通钢筋的中间层中节点梁柱组合体试验,分析了在钢筋强度、混凝土强度和剪压比以及贯穿中间层中节点梁筋相对长度等因素的影响下贯穿节点段梁筋的粘结退化规律,提出了受钢筋强度、混凝土强度和剪压比等参数影响的贯穿节点梁筋相对长度hc d的建议公式。
The range of non-prestressed reinforcement strength widely used in reinforced concrete structures in China currently is 300~400MPa,which is lower than that of developed countries 1~2 grade. In order to conserve resources, realize the sustainable economic development and consistent with the international practice as soon as possible, China urgently needs to promote application of higher strength steel. At present, the development of 500MPa reinforcement has been completed during the state’s 863 plan. Many large-scale steel factory in China have ability to manufacture this steel. In order to incorporate it into the standard of engineering construction as soon as possible, loading mechanism and seismic performance of different type of specimens reinforced with 500 MPa steel is needed to verify.
     Results from five full-scale interior beam-column joint specimens which beam’s and column’s longitudinal reinforcing bar is 500MPa are presented in this thesis. These joint specimens are designed according to Code for Design of Concrete Structures (GB50010-2002) and tested under reversed cyclic loading. The objects of the experiments were to study the seismic performance of the joints with high-strength steel designed according to code that is carried out nowadays, comparing with seven interior beam-column joints with 500MPa reinforcing bar and a series of interior beam-column joints with ordinary-strength reinforcing bar those were carried out by the author’s group, the law of the bond deterioration of beam bars through the joints and hysteretic dissipated energy of joints are studied. The details concerned and corresponding main results are as following:
     ①A series of interior beam-column joint specimens with 500MPa reinforcing bar、hc d = 20 These joint specimens work with high axial load ratio and high shear-compression ratio.
     The relation of displacement ductility factor3 <ΔΔy< 4 when specimens failed, observed worse seismic performance, but the story drift when specimens failed were between 0.04~0.05, obversly bigger than specimens with ordinary-strength reinforcing bar.
     ②According to the analysis of tests data, specimens which the relative length of beam bars crossing joint hc d = 20 that is the restrictive condition of code, bond performance of specimens is worse, And compared to the relative length of beam bars crossing joint hc d = 25, Under the same shear-compression conditions, the damage of joint’s concrete is more serious, the process of diagonal crushing is more quick, hysteretic dissipated energy is worse.
     ③Because of the yield strain of 500MPa is much bigger than that of ordinary-strength reinforcing bar. So the yield displacement of specimens is bigeer, the displacement ductility factor of assemblage is smaller.
     ④With the tests of 12 interior beam-column joint specimens with 500MPa reinforcing bar and 21 interior beam-column joint specimens with ordinary-strength reinforcing bar that have been completed by author’s research team, the law of bond deterioration of beam bars crossing the joints,which is influenced by reinforced bar strength、concrete strength、shear-compression ratio and the relative length of beam bars crossing the joint,is analyzed. The propositional formula of the relative length of beam bars crossing joint hc/d, which is influenced by reinforcement strength、concrete strength and shear-compression ratio, is presented.
引文
[1] ACI 318-08. Building Code Requirements for Structural Concrete and Commentry[S]. American Concrete Institute. Farmington Hills. Michigan. USA. 2008.
    [2] CSA Standard A 23.3-04 Design of Concrete Structures,[S] Canadian Standards Association, Dec, 2004
    [3] NZS3101. New Zealand Standard Code of Practice for the Design of Concrete Structures[S]. Standard Association of New Zealand. New Zealand. 1995
    [4] European Prestandard,Eurocode 8, Design provision for earthquake resistance of Structure[S]. European Committee for Standardization.Feb.1995
    [5] GB50010-2002.混凝土结构设计规范[S].北京:中国建筑工业出版社,2002.
    [6] GB50010-2001.建筑抗震设计规范[S].北京:中国建筑工业出版社,2001.
    [7] K.Kitayama,S.Lee,S.Otani and H.Aoyama,Behavior of high-strength R/C beam-column joints[R], Earthquakee Engineering,Tenth World Conference 1992 Balkema, Rotterdam.ISBN9054 100605,P.3151~3156
    [8] Fujii.S. and Morita.s.,Comparison between Interior and Exterior RC Beam-Column Joints Behabior,Design of Beam-Column Joints for Seismic Resistance[C],SP-123,American Concrete Institute,Detroit,1991,P.145~165
    [9] Joh.O.,Goto.Y. and Shibata.T.,Influence of Transverse Joint and Beam Reinforcement and Relocation of Plastic Hinge Region on Beam-Column Joint Stiffness Deterioration,Design of Beam-Column Joints for Seismic Resistance[C],SP-123,American Concrete Institute, Detroit, 1991, P.187~223
    [10] Sugano.S.,Nagashima.T.,Kimura.H. and Ichikawa.A.,Behavior of Beam-Column Joints Using High-Strength Materials,Design of Beam-Column Joints for Seismic Resistance[C], SP-123, American Concrete Institute,Detriot,1991,P.359~377
    [11] Koji Oka and Hitoshi Shiohara,Test of high-strength concrete interior beam-column joint subassemblages[C],Earthquake Engineering,Tenth World Conference 1992 Balkema, Rotterdam.ISBN9054100605,P.3211~3217
    [12] Hitoshi Shiohara,Analysis of Joint Shear Failure of High-Strength Reinforced Concrete Interior Beam-Column Joint[C],Departement of Architecture,School of Engineering The University of Tokyo,7-3-1 Hongo,Bunkyo-ku,Tokyo 113 Japan
    [13] H.Noguchi and T.Kashiwazaki,Experimental studies on shear performance of RC interior column-beam joints with high-strength materials[C],Earthquake Engineering,Tenth WorldConference 1992 Balkema , Rotterdam.ISBN9054100605,P.3163~3168
    [14] Masaru Teraoka,Kazuya Hayashi and Satoshi Sasaki, Behavior of Interior Beam-and-Column Subassemblages in an RC Frame[C],Journal of Fujita Technical Research Institute,No.9 1998,P.9~23
    [15] AIJ Structural Design Guidelines for Reinforced Concrete Buildings(1994)[S],Architectural Institute of Japan
    [16] AIJ Dsign Guidelines for Earthquake Resistant Reinforced Concrete Buildings Based on Ultimate Strength Concept[S]. Architectural Institute of Japan. 1990
    [17] Hiroyuki Aoyama. Design of Mordern Highrise Reinforced Concrete Structures.张川译.现代高层钢筋混凝土结构设计[M].重庆:重庆大学出版社. 2006.
    [18]葛洪亮.配置HRB500钢筋的框架中间层中间节点抗震性能试验研究[D].重庆大学.2007
    [19]王信君.配有500MPa级钢筋的中间层端节点抗震性能试验研究[D].重庆大学.2007
    [20]冯长征.配置HRB500钢筋的框架顶层端节点抗震性能试验研究[D].重庆大学.2007
    [21]傅剑平.钢筋混凝土框架节点抗震性能设计方法研究[D].重庆大学博士学位论文. 2002:
    [22]朱爱萍.高轴压比高剪压比框架矩形及圆形柱中间层中节点抗震性能试验研究[D].重庆大学.2005
    [23]刘晓.抗震框架中间层中节点梁筋粘结退化性能试验研究[D].重庆大学.2006
    [24] C.W.French,J.P.Moehle,白绍良译,抗震梁柱节点设计[C],SP—123,ACI,1991
    [25] Fib (CEB-FIP).白绍良译.控制非弹性反应的钢筋混凝土结构抗震设计(设计原理)[R].重庆大学土木工程学院.2003.
    [26] ACI-ASCE Committee 352, Recmmendations for Design of Beam-Column Joints in Monolithic Reinforced Concrete Structures[S],2002
    [27] Neil M.Hawkins,Daniel A.Kuchma, Simplified Shear Design of Structural Concrete Members[R]. NCHRP REPORT 549, 2005
    [28] Shigeru Hakuto,Robert Park,and Hiroshi Tanaka, Seismic Load Tests on Interior and Exterior Beam-Column Joints with Substandard Reinforcing Details[R]. ACI Structural Journal, January- February 2000,P.11- 25
    [29] T.Paulay,R.Park,and M.J.N.Priestley,Reinforced Concrete Beam-Column Joints under Seismic Actions[R],ACI Journal,Proceeding Vol.75,No.11,Nov.1978,P585~593
    [30] T.Paulay and R.Park,Joints in Reinforced Concrete Frames Designed for Earthquake[R],Resistance Department of Civil Engineering,University of Canterbury,Christchurch,New Zealand,June 1984
    [31] Roberto T. Leon, Member, Interior Joints with Variable Anchorage Lengths[S], Journal of Structural Engineering ASCE, 1989.9
    [32] Hitoshi Shiohara, Member, New Model for Shear Failure of RC Interior Beam-Column Connections[J], Journal of Structural Engineering, 2001.2
    [33] Shigeru Hakuto, Robert Park, Hitoshi Tanaka, Effect of Deterioration of Bond of Beam Bars Passing through Interior Beam-Column Joints on Flexural Strength and Ductility[J], ACI Structural Journal, 1999 9~10
    [34] GBJ10-89.混凝土结构设计规范[S].北京:中国建筑工业出版社,1989.
    [35]吕西林,郭子雄,王亚勇,RC框架梁柱组合体抗震性能试验研究[J],建筑结构学报,2001(2),第26卷第1期
    [36]刘立新,谢丽丽,于秋波. 500MPa级钢筋混凝土构件的受力性能及工程应用研究[J].建筑结构. 2006,01(36)(S1).
    [37]郑州大学.首钢总公司.中国建筑科学研究院等. 500MPa级钢筋混凝土构件受力性能及工程应用研究阶段报告[R].郑州大学. 2006.
    [38]谢丽丽,刘立新,于秋波等. HRB500级钢筋在试点工程中的应用及分析[R].郑州大学. 2006.
    [39]天津大学建筑工程学院.使用500MPa钢筋的混凝土梁基本性能试验研究报告[R].郑州大学. 2006
    [40]傅剑平,游渊,白绍良,钢筋混凝钢土抗震框架节点传力机构分析[J],重庆建筑大学学报,1996.18(2),P43~52
    [41]青山博之,钢筋混凝土梁柱节点的争论结果(由新西兰人引出的一场争论的背景情况)[R],Japan Concrete Institute,Concrete Journal,1992.9
    [42]汤华,钢筋混凝土框架节点技术规程常规节点部分背景材料[Z],1995.5

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700