聚对苯二甲酸乙二酯/蒙脱土纳米复合材料的制备及结构性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚合物/层状硅酸盐纳米复合体系能大幅度提高材料的力学,耐热和气体阻隔等性能,有望成为制备高性能聚合物基复合材料的一种低成本,工艺简单的新方法。PET作为用量较大的一类通用塑料,如果能通过硅酸盐纳米复合大幅度提高其力学,耐热性能,结晶性能,将具有很大的实用价值和经济意义。因此PET/蒙脱土纳米复合材料的研究也备受关注。在PET/蒙脱土纳米复合材料的制备,结构和性能的表征等方面也有研究报道,而在熔融插层和分散机理,纳米复合材料的结构与性能及应用方面还缺乏深入研究。
     本文在文献综述的基础上,主要以改性蒙脱土,和PET为原料,采用双螺杆挤出机进行共混,用熔融插层法制备了PET/蒙脱土插层复合材料。系统地研究了PET离聚物/蒙脱土的结构性能,并进行了PET/蒙脱土的增韧研究,最后以再生PET为原料,制备纳米复合材料应用于工程塑料和纤维纺丝材料,取得了以下主要研究结果。
     1.采用水溶液阳离子交换法,制备了不同的有机胺改性蒙脱土,用WAXD,FT-IR,TGA表征了插层效果。实验结果表明,小分子有机胺对蒙脱土插层作用较弱,层间距增大不明显;长链有机胺对蒙脱土有较好的插层作用,烷基链越长,处理后蒙脱土的片层间距越大,且双烷基有机胺比单烷基有机胺更有利于插层结构形成:在所选有机处理剂中,双十八烷基二甲基氯化铵有机化蒙脱土插层效果最好,有机蒙脱土片层间距最大。
     2.采用聚合插层的方法制备了一系列SPET/蒙脱土纳米复合材料,比较了复合材料与纯SPET的热力学性能。结果表明,SIPM在2~8mol%范围内,随其含量的增加,逐渐改善了蒙脱土片层在SPET中分散;-SO_3Na与MMT片层的相互偶极作用使粘土层间距增大;硅酸盐对SPET的结晶具有异相成核作用,减弱了离子对的相互作用,大大提高了离子含量较高的SPET6M和SPET8M5的结晶性能;SPET/MMT纳米复合材料具有比纯SPET更好的热稳定性,这是由于蒙脱土本身的高热稳定性,以及其二维层状结构阻碍了聚合物分子链的分解,提高了热分解温度。
     3.研究了蒙脱土对PET结晶性能,热稳定性和力学性能的影响。结果表明,用熔融共混法可制备插层型PET/蒙脱土纳米复合材料,且当有机蒙脱土含量为1%时,有较好的插层效果;有机蒙脱土的加入改善了PET的结晶性能。蒙脱土在PET基体中起到了结晶成核剂的
The nanocomposites based on polymer and layered silicate exhibit superior mechanical properties, improved thermal properties, and reduced gas permeability, the nanocomposites of this kind has been recognized as one of the latest evolutionary steps of the polymer technology. The nanocomposites offer attractive potential for diversification and application of poly(ethylene terephthalate), a typical class of conventional polymeric materials, if its mechanical and thermal properties could be remarkably enhanced through compounding layered silicate such as montmorillonite. Therefore studies on PET/montmorillonite nanocomposites are very attractive. However the reported researching work were almost concentrated on the preparation and the characterizations of structure and properties of the nanocomposites, there are less deep research on melt intercalation and dispersion mechanism, nanocomposites application. In this dissertation , firstly the PET-MMT intercalated nanocomposites has been prepared by polymer melt intercalated method, PET and organically modified montmorillonite are blended in twin screw extruder. The structure and properties of SPET/MMT have also been systematically studied, finally the nanocomposites based on recycling PET are applied to engineering plastic and spinning fiber. The main results obtained are as follows:1.The organic ammonium modified MMT of different kinds has been prepared using cation exchange in water. The intercalation effect was characterized by WAXD,FT-IR and TGA. Experimental results showed that the cation ammonium of small molecule had weak influence on MMT intercalation;the interlayer spacing of silicate was not enlarged;organic cation of long chain was good for MMT to be intercalated, with the chain increasing the distance between layers get larger, furthermore compared with the monalkyl cation the dialkyl cation is more propitious to form intercalated structure.Among the cation chosen dioctradecyl dimethyl ammonium chloride is the best for intercalation, the interlayer spacing of MMT modified by this cation is the biggest.2. A series of SPET/MMT nanocomposites were prepared by polymerization intercalation, the property of pure SPET was compared with composites. The results indicated that with increasing the content of DMSIP in the SPET a better dispersion of the MMT layers in the SPET matrix was verified by WAXD, TEM and AFM. Through the comparative DSC studies, the silicates shows a heterogeneous nucleation effect on crystallization of SPET. Because of the dispersion of MMt layers and strong interaction between the SPET matrix and the MMT layers, the nanocomposites show better thermal stability than that of virgin SPET.
    3. The effects of MMT on crystallizability, thermal stability and mechanical properties of the composite were studies. The intercalated nanocomposites were prepared by melt intercalation. When containing 1% organo-MMT, the MMT was intercalated quite well. The addition of MMT improved the crystallization of PET, and it was found that MMT acted as a nucleating agent in PET, and the crystallization temperature and crystallization rate of PET could be obviously increased. TGA results indicated that MMT layered structure could prevent the movement and volatilization of small molecule resulted from PET decomposing, which could prevent the further decomposition. Consequently, the heat decomposing temperature of PET could be increased, the hot resistance was improved. Incorporation of MMT obviously increased the tensile strength of the PET matrix. The mechanical tests also showed that the comprehensive mechanical property of the composites could be increased by the adding of MMT at the ratio of 1 wt%.4. The multi component nanocomposites of superior toughness were prepared by the elastomer introduced into PET/MMT system. The results of WAXD, TEM and AFM indicated that the "exfoliated" and "intercalated" nanocomposites of PET/MMT/elastomer were obtained. With addition of elastomer, impact toughness of the nanocomposites were greatly improved;SEM micrographs of impact fracture surfaces of nanocomposites show ethylene-glycidyl methacrylate copolymer as a compatibilizer improved the compatibility between PET and elastomer. Crystallization behavior of the composites with different compositions was compared by DSC, indicating that compatibilizer and MMT dispersed in matrix improved the crystallizability of nanocomposites.5. The rheological behavior of these composites was investigated by capillary rheometer. The results showed that all samples exhibit a shear-thinnig behavior, when shear rate increases the viscosity of the melt blends decreases;the viscosity of the melt blends increases with the increase of elastomer content, the introduction of MMT greatly decreased the viscosity of the melt blends. The flow activation energy of PET/elastomer increases as the shear rate increases;after MMT addition the activation energy of composites reduced with shear rate increases. The no-Newtonian index is complicated in three-phase system.6. Based on MMT and PET multi-component engineering plastic was prepared by melt blend. The effect of each component on property of composites was studied. The nucleating system comprised of surlyn and talc powder has evident nucleating effect, so the mould temperature can
    be kept in range of 80-100 °C.Glass fiber in matrix influences the composite property greatly, the composite of 30% glass fiber has a excellent integrative property. The elastomer (MABS) and ethylene-glycidyl methacrylate compatibilizer are compatible to other components, which improve mechanical properties. The MMT addition of l%-3% is suitable, the silicate layers can disperse at nanometer, the comprehensive property of nanocomposites is optimal.7. The spinnability of the nanocomposites by melt intercalation was compared with the fiber by intercalation polymerization. Spinnable nanocomposites can be prepared by two intercalation methods. Except that oil uptake is different, the spinning process of PET/MMT and rPET/MMT is close to pure PET. At the same draw ratio after MMT addition the modulus of the fibers from intercalation polymerization and melt intercalation was promoted. For the same sample as draw ratio increases the tensile strength and Youngs modulus of fiber were improved. At the same preparation condition MMT modified PET fiber has higher modulus and lower contraction ratio. MMT introduction into fiber greatly improved the dying ability, the MMT modified fiber can be dyed by dispersion dye in boiling water at atmosphere. For the same sample dying uptake drops with draw ratio increasing, the fiber made by nonacomposites containing MMT and SIPM has a fastest dying rate.
引文
1.王德禧,李蕴能,李兰,孟丽萍.世界塑料新材料发展概况(2).塑料,2000,29(2):1-3.
    2.王德禧,何黎虹.纳米粘土母粒的应用研究.塑料2000,29(3:11-14.
    3.王旭,黄锐,濮阳楠.聚合物基纳米复合材料的研究进展.塑料2000,29(4):25—30.
    4. Suprakas Sinha, Masami Okamoto. Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog. Polym. Sci., 2003, 28: 1539-1641.
    5. Akane Okada, Masaya Kawasui. Synthesis and Characterization of a Nylon 6-Clay Hybrid. Poly. Prepr., 1987, 28: 447-448.
    6. Arimitsu Usuki, Akihiko Koiwai, Yoshitsugu Kojima, et al. Interaction of Nylon 6-Clay Surface and Mechanical Properties of Nylon 6-Clay Hybrid. Journal of Applied Polymer Science, 1995 (55), 31: 119-123
    7. Dabrowski F, Bourbigot S, Delbel R, Bras Ml. Kinetic molding of the thermal degradation of polyamide-6 nanocomposite. Eur. Polym. J., 2000, 36: 273-284
    8. Reichert P, Kressler J, Thomann R, Mulhaupt R, et al. Nanocomposites based on a synthetic layer silicate and polyamide-12. Acta. Polym., 1998, 49: 116-123
    9. Hoffman B, Kressler J, Stoppelmann G, Friedrich C, Kim F M. Rheology of nanocomposites based on layered silicate and polyamide-12. Colloid. Polym. Sci., 2000, 278: 629-636
    10. Giza E, Ito H, Kikutani T, Okui N. Structural control of polyamide 6/clay nanocomposites fibers in-line drawing process, J. Polym. Eng., 2000, 20: 403-425
    11. Nair S V, Goettler L A, Lysek B A. Toughness of nanoscale and multiscale polyamide-6, 6 composites. Polym. Eng. & Sci., 2002, 42: 1872-1882
    12. Liu X, Wu Q, Zhang Q, Mo Z. Phase transition in polyamide-66/montmorillonite nanocomposites on annealing. J. Polym. Sci., part B: Polym. Phys., 2003, 44: 6367
    13. Messersmith P B, Giannelis E P. Polymer-layered silicate nanocomposites: in-situ interculatire polymerization of ε-caprolactone in layered silicates. Chem. Mater., 1993, 5: 1064-1066
    14. Lan T, Kaviratna P D, Pinnavaia T J. On the nature of polyimide-clay hybrid composites. Chem. Mater., 1994, 6: 573-575
    15. Yano K, Usuki A, Okada A. Synthesis and properties of polyimide-clay hybrid films. J Polym. Sci., part A: Polym. Chem., 1997, 35: 2289-2294
    16. Tyan H L, Wei K H, Hsieh T E. Mechanical properties of clay-polyimide (BTDA-ODA) nanocomposites via ODA-modified organoclay. J. Polym Sci., part B: Polym. Phys., 2000, 38: 2873-2878
    17. Yano K, Usuki A, Okada A. Polyimide/montmorillonite hybrid. Polym. Prepr. (201ACS), 1991, 32: 65-66
    18. Gu A, Chang F C. A novel preparation of polyimide/clay hybrid films with low coefficient of thermal expansion. J. Appl. Polym. Sci., 2001, 79: 289-294
    19. Gu A, Kuo S W, Chang F C. Syntheses and properties of PI/clay hybrids. J. Appl. Polym. Sci., 2001, 79: 1902-1910
    20. Park C I, Park O O, Lim J G, Kim H J. The fabrication of syndiotactic polystyrene organophilic clay nanocomposites and their properties. Polymer, 2001, 42: 7465-7475
    21. Akelah A, Moet M. Polymer-clay nanocomposites: free radical grafting of polystyrene on to organophilic montmorillonite interlayers. J. Mater. Sci., 1996, 31: 3589-3596
    22. Sikka M, Cerini L N, Ghosh S S, Niney K I. Meltintercalation of polystyrene in layered silicates. J. Polym. Sci.: part B: Polym. Phys., 1996, 34: 1443-1449
    23. Laus M, Camerani M, Lelli M, Sparnacci K, Sandrolini F, et al. Hybrid nanocomposites based on polystyrene and a reactive orgaphilic clay. J. Mater. Sci., 1998, 33: 2883-2888
    24. Doh J G, Cho I. Synthesis and properties of polystyrene-organoammonium montmorillonite hybrid. Polym. Bull., 1998, 41: 511-518
    25. Hasegawa N, Okamoto H, Kawasumi M, Usuki a. Preparation and mechanical properties of polystyrene/clay hybrid. J. Appl. Polym. Sci., 1999, 74: 3359-3364
    26. Wang Z, Massam J, Pinnavaia T J. Epoxy-clay nanocomposites. In: Pinnavaia T J, Beall G W, editors. Polymer-clay nanocomposites. New York: Wiley, 2000, p127-149
    27. Lee D C, Jang J W. Characterization of epoxy-clay hybrid composite prepared hyemulsion polymerization. J. Appl. Polym. Sci., 1998, 68: 1997-2005
    28. Zilg C, Mulhaupt R, Finter J. Morphology and toughness/stiffness balance of nanocomposites based upon anhydride-cured epoxy resins and layered silicates. Macromol. Chem. Phys., 1999, 200: 661-670
    29. Kornmann X, Lindberg H, Berglund L A. Synthesis of epoxy-clay nanocomposites: influence of the nature of the clay on structure. Polymer, 2001, 42: 1303-1310
    30. Jiankun L, Yucai K, Zongneng Q, Xiao-su Y. Study on intercalation and exfoliation behavior of organo clays in epoxy resin. J. Polym. Sci., part B: Polym. Phys., 2001, 39: 115-120
    31. Chin I J, Albrecht T, Kim H C, Wang J. On exfoliation of montmorillonite in epoxy. Polymer, 2001, 42: 5947-5952
    32. S. Wang, Q. Li, Z. Qi. Study on silicone rubber/montmorillonite hybrid composites, key Engineering Materials, 1998, 137: 87-93
    33. A. Okada, K. Fukumor, A. Usuki, et al. Rubber-clay hybrid-synthesis and properties. Polymer Preprints, 1991, 32 (3): 540-541
    34. A. Akelah, N. Salah, A. Hiltner, E. Baer, A. Moet. Preparation and characterization of butadieneacrylontrile/montmorillonite nanocomposite. Polymer Preprints, 1994, 35 (2): 739-740
    35. Y. Kojima, K. Fukumor, A. Usuki, A. Okada, T. Kurachi. Gas permeabilities in rubber-clay hybrid. Journal of Materials Science Letters, 1993, 12: 889-890
    36. Shelly D, Burnside, Emmanuel, P. Giannelis. Synthesis and properties of new poly (Dimethylsiloxane) nanocomposites. Chem. Mater., 1995, 7 (9): 1597-1630
    37. A. Akelah, N. Salah EI-Deen, et al. Organophilic rubber-montmorillonite nanocomposites. Materials Letters, 1995, 22 (1, 2): 97-102
    38. YJ Liu, JL Schindler, DC Degroot, et al. Synthesis, structure and reactionof poly (ethylene oxide)/V_2O_5 intercalative nanocomposites. Chem. Mater., 1996, 8 (2): 525-534
    39. John P. Lemmon, Jinghe Wu, Christopher Oriakhi, et al. Preparation of nanocomposites containing poly (Ethylene oxide) and layered solids. Electrochimica Acta, 1995, 40 (13, 14): 2245-2249
    40. Shan Wong, Richard A. Vaia, Emmanuel P. Giannelis, David B. Zax. Dynamics in a poly (ethylene oxide) based nanocomposite polymer electrolyte probed by solid state NMR. Solid State Ionics, 1996, 86-88: 547-557
    41. Nobuo Ogata, Sugia Kawakge, Takshi ogihara. Poly (vinylalcohol) clay and poly (ethylene oxide) clay blends preparaed using water as solvent. Journal of Applied Polymer Science, 1997, 42 (23, 24): 3513-3518
    42. Shan Wong and David B. Zax. What do NMR linewidths tell us? Dynamics of alkali cations in apeo-based nanocomposite polymer electrolyte. Electrochimica Acta, 1997, 42 (23, 24): 3513-3518
    43. Nobuo. Ogata, Sugio Kuwakge and Takashi Ogihara. Structure and thermal/machamical properties of poly (ethylene oxide) clay mineral blends. Polymer, 1997, 38 (20): 5115-5118
    44. Blumstein A, Malhotra S L, Watterson A C. Polymerization of monolayers, V. Tacticity of the insertion poly (methylmethacrylate). J. Polym. Sci., part A-2: Polym. Phys., 1970, 8, 1599-1615
    45. Lee DC, Jang LW. Preparation and characterization of PMMA-clay composite by emulsion polymerization. J. Appl. Polym. Sci., 1996, 61: 1117-1122
    46. chen G, Chen X, Lin Z, Ye W, Yao K. Preparation and properties of PMMA/clay nanocomposite. J. Mater. Sci. Lett., 1999, 18: 1761-1763
    47. Tabtiany A, Lumlong S, Venables R A. Influence of preparation characteristics PMMA/clay composites. Eur. Polym, J., 2000, 36: 2559-2568
    48. Tabtiany A, Lumlong S, Venables R A. The effects of shear and thermal history upon the microstructure of solution polymerized poly (methyl/methacrylate)/clay composites. Polym. Plast. Technol. Engng., 2000, 39: 293-303
    49. Bandyopadhyay S, Giarmelis E P. Thermal and thermomechanical properties of PMMA nanocomposites. Polym. Mater. Sci. Engng., 2000, 82: 208-209
    50. Vivek Mehrotra and Emmanuel P. Giannelis. Metal-insulator molecular mutilayers of electroactive polymers: intercalation of polyaniline in mica-type layered silicates. Solids State communications, 1991, 77 (2): 155-158
    51. Mercouri G, Kanatzidis, rabin Bissessur, D. C. Degroot, J. L. schindler, and C. R. Kannewurf. New intercalation compounds of conjugated polymers, Encapsulation of polyaniline in MoS_2. Chem. Mater., 1993, 5 (5): 595-596
    52. Hiroshi Inoue, Hiroshi Yoneyama. Electropolymerization of aniline intercalated in montmorillonite. J. Electroanal. Chem., 1987, 233: 291-294
    53. Kurokawa Y., Yasuda H., Oya A. Preparation of nanocomposites of polypropylene and smectite. J. Mater. Sci. Lea., 1996, 15:1481-1487
    54. Furuichi N, Kurokawa Y, Fujita K, Oya A, Yasuda H, Kiso M. Preparation and properties of polypropylene reinforced by smectite. J. Mater. Sci., 1996, 31: 4307-4310
    55. Kurokawa Y, Yasuda H, Kashiwagi M, Oya A. Structure and properties of a montmorillonite/propylene nanocomposite. J. Mater. Sci. Lett., 1997, 16: 1670-1672
    56. Kato M, Usuki A, Okada A. Synthesis of polypropylene oligomer-clay intercalation. J. Appl. Polym. Sci., 1997, 66: 1781-1785
    57. Usuki A, Kato M, Okada A, Kurauchi T. Synthesis of polypropylene-clay hybrid. J. Appl. Polym. Sci., 1997, 63: 137-138
    58. Hambir S, Bulakh N, Kodgire P, Kalgaonkar R, Jog J P. PP/clay nanocomposites: a study of crystallization and dynamic mechanical behavior. J. Polym. Sci., part B: Polym. Phys., 2001, 39: 446-450
    59. Choi HJ, Kim JH, Kim H. Mechanical spectroscopy studies on biodegradable synthetic and biosynthetic aliphatic polyesters. Macromol. Symp., 1997, 119: 149-155
    60. Lee SR, Park HM, Lim HL, Kang T, Li X, Cho WJ, Ha CS. Microstructure;tensile properties, and biodegradability of aliphatic polyester/clay nanocomposites. Polymer, 2002, 43: 2495-2500
    61. Lepoittevin B, Pantoustier N, Alerander M, Calberg C, Jerome R, Dubois P. Polyester layered silicate nanohybrids by controlled grafting polymerization. J. Mater. Chem., 2002, 12: 3528-3532
    62. Bharadwai RK, Mehrabi AR, Hamilton C, Murga MF, Chavira A, Thompson AK. Structure-property relationships in cross-linked polyester-clay nanocomposites. Polymer, 2002, 43: 3699-3705
    63. Lim ST, Hyun YH, Choi HJ, John MS. Synthetic biodegradable aliphatic polyester/montmorillonite nanocomposites. Chem. Mater., 2002, 14: 1839-1844
    64.李强,赵竹第,欧玉春,漆宗能,王佛松.尼龙6/蒙脱土纳米复合材料的结晶行为.高分子学报,1997(2):188-193
    65.柯毓才,王玲,漆宗能.混合条件对环氧有机土纳米复合材料插层剥离行为及性能的影响.序分子学报,2000(6):768-772
    66.刘晓辉,范家起,李强,朱晓光,漆宗能.聚丙烯/蒙脱土纳米复合材料.高分子学报,2000(5):563-567
    67.景肃,孟娟,弓红,罗道友,漆宗能.PBT/粘土纳米复合材料的制备和性能表征.塑料工作,2000,28(2):45-47
    68.马继盛,张世民,漆宗能,胡优良,张树范.插层聚合聚丙烯—蒙脱土纳米复合材料的微 观结构形态.高等学校化学学报,2002,23(4):734-738
    69.呼微等.熔融法制备聚氧化乙烯蒙脱土杂化材料及其结晶行为.应用化学,2000,17(2):177-179
    70.姜翠红等.一种液晶共聚酯粘土纳米复合材料的制备及其相转变温度.高分子学报,1999(6):765-768
    71.徐国财,张立德.纳米复合材料北京化学工业出版社,2002,p210-212
    72.陈光明,李强等.聚合物/层状硅酸盐纳米复合材料研究进展.高分子通报,1999,(4):1-4
    73.李春生、周春晖,等.聚合物/蒙脱土纳米复合材料的研究进展.化工生产与技术,2002,9(4): 22-26
    74. Vaia R A, Giannelis E P. Lattic model of polymer melt intercalation in organically-modified silicates [J]. Macromolecules, 1997, 30: 7993-7999
    75. Vaia R A, Jandt K D, Kramer E J, et al. Kinetics of polymer melt intercalation [J]. Macromolecules, 1995, 28: 8080-8085
    76. Z Gao, Wxie, Jm Hu, et al. J Therm. Anal. Calorim., 2001, 64: 467-472
    77.顾群,吴大诚,易国祯等.聚醚酯/蒙脱土复合材料的结晶动力学和结晶形态.高等学校化学学报,1999,20:324-329
    78.漆宗能,张国耀,易国祯等.聚对苯二甲酸乙二酯/蒙脱土纳米复合材料的制备和性能.高分子学报,1999,(3):309-314
    79.金小芳,王平等,纺织科学研究,2000,(4):6-11
    80. Yanychuan KE, Zhibin Yang, Chuanfeng Zhu. Investigation of properties, nanostructure and distribution in controlled polyester polymerization with layered silicate. Jourmal of Applied Polymer Science, 2002, 85: 2677-2691
    81. Zhang GZ, Shichi T, Tong ZW, Takagi K. Chem. Lett., 2002 (3): 410-415
    82. Zhang GZ, Shichi T, Takagi K. PET-clay hybrids with improved tensile strength. Materials Letters, 2003, 57: 1858-1862
    83. Maoquan Y, Xiangjiang P, Chaoying W. Investigation of melt-intercalated PET-Clay nanocomposites. Polymer & polymer composites, 2004, 12: 619-625
    84. Cher H. Davis, Lon J. Mathias, et al. Effects of melt-processing conditions on the quality of poly (ethylene terephthalate) montmorillonite clay nanocomposites. Journal of Polymer Science part B: Polymer Physics, 2002, 40: 2661-2666
    85. Yusuke I, Yoshinari I, Hiroshi T. Properties of poly (ethylene terephthalate)/layered silicate nanocomposites prepared by two-step polymerization procedure. Polymer Journal, 2003, 35: 230-235
    86. A. Sanchez-Solis, I. Romero-Ibarra, et al. Mechanical and rheological studies on polyethylene terephthalate-montmorillonite nanocomposites. Polymer engineering and science, 2004, 44: 1094-1102
    87. A. Pegoretti, J. Kolarik, et al. Recycled poly (ethylene terephthalate)/layered silicate nanocomposites: morphology and tensile mechanical properties. Polymer 2004, 45: 2751-2759
    88.陈彦,徐懋,李育英等.高分子学报,1999,(1):7-14
    89.徐锦龙,李乃祥等.PET/有机蒙脱土纳米复合材料等温结晶动力学过程研究.高分子材料科学于工程,2002,18(6):149-152
    90.俞强,林明德等.江苏石油化工学院学报,1999,11(1):21-26
    91.白晓丽,等.用DSC评价PET/粘土纳米复合材料的结晶性能.郑州大学学报(工学版),2002,23(9):91-93
    92.李宏涛,宋晓秋.吉林工学学报,2002,23(2):1-3
    93. Pendse S, Ranade A, D'Souza N. Effect of montmorillonite layered silicate (MLS) on crystallization growth rate in semi-crystalline PET nanocomposites. Annual Technical Conference-ANTEC, Conference Proceedings ANTEC 2004-Annual Technical Conference Proceedings, Volume 2: Materials v 2 2004.
    94. Wan T, Chen L, Chua Y C. Crystalline morphology and isothermal crystallization kinetics of poly (ethylene terephthalate)/clay nanocomposites. Journal of Applied Polymer Science, 2004, 94: 1381-1388
    95.张忠安等.PET/蒙脱土纳米复合材料的流变性能.合成树脂及塑料,2003,220(3):32-35
    96.D. w.范克雷维伦.聚合物的性质.元译译,北京:科学出版杜,1981,p304-308
    97.蔡亮珍等.改性蒙脱土对PEI吹塑瓶阻隔性的影响.程塑料应用,2002,30(5):5-8
    98.漆宗能,柯扬船.一种聚酯厂层状硅酸盐纳米复合材料及其制备方法.中国,CN97104055.9.1997
    99. Maoquan Yuan, Xiangjiang Pan, et al. Investigation of Melt-intercalated PET-Clay Nanocomposites. Polymers & Polymer composites, 2004, 12: 619-625
    100. Kramer E. Adv. Polym. Sci., 1983, 53: 1
    101. Donald A, Kramer E. J. Polym. Sci. Phys. Ed., 1982, 20: 899
    102. Donald A, Kramer E, Bubeck R. J. Polym. Sci. Phys. Ed., 1982, 20: 1129
    103. Verhuelpen-Heymans N. Polymer, 1979, 20: 356
    104. Bucknall C, Smith R. Polymer, 1965, 6: 437
    105. Whitney W. J. AppLPhys., 1963, 34: 3633
    106. Kramer E. J. Macromol. Sci. Phys. 1974, 10: 191
    107. Donald A, Kramer E. J. Mater. Sci., 1982, 17: 1871
    108. Bucknall C. "In polymer blend" (Eds. D. Paul and S. Newman), Academic Press, Vol. 2, Chapt. 14
    109. Silberberg J, Han C. J. Appl. Polym. Sci, 1987, 22: 599
    110. Bucknall C. Toughened Plastics. Applied Science Publishers Ltd (1977)
    111. Souheng Wu. Polymer, 1985, 26: 1855
    112. Merz E, Claver C, Baer M. J. Polym. Sci., 1956, 6: 437
    113. R L Markham. Introduction to compatibilisation of polymer blends. Advances in polymer technology, 1990, 10: 231-236
    114. A Pawlak, W G Perkins, F L Massey, et al. Mechanical properties of poly (ethylene terephthalate) modified with functionalized polymers. J.Appl. Polym. Sci., 1999, 73: 203-219
    115. V Tanrattanakul, W G Perkins, et al. Fracture mechanisms of poly (ethylene terephthalate) and blends with styrene-butadiene-styrene elastomers. Journal of materials science, 1997, 32: 4749-4758
    116. Zhong-Zhen Yu, Ming-Shu Yang. Toughening of recycled poly (ethylene terephthalate) with a maleic anhydride grafted SEBS triblock copolymer. J. Appl. Polym. Sci, 2004, 93: 1462-1472
    117. Wendy Loyens, Gabriel Groeninckx. Ultimate mechanical properties of rubber toughened semicrystalline PET at room temperature. Polymer, 2002, 43: 5679-5691
    118. Wendy Loyens, Gabriel Groeninckx. Deformation mechanism in rubber toughened semicrystalline polyethylene terephthalate. Polymer, 2003, 44: 4929-4941
    119. Jin-Gyu Park, Dong-Hyun Kim, Kyung-Do Sub. Blends of polyethylene terephthalate with EPDM through reactive mixing, J. Appl. Polym. Sci., 2000, 78: 2227-2233
    120. Pei Lian Ma, Basil D. Favis.Effect of dynamic vulcanization on the microstructure and performance of polyethylene terephthalate/elastomer blends. Polymer engineering science, 2002, 42: 1976-1986
    121. L. Nicolais, E. Amendola, et al. Reactive blending for improving interracial behavior. Composite interfaces, 1997, 4: 269-286
    122. KP Chaudhari, D D Kale. Impact modification of waste PET by polyolefinic elastomer. Polymer international, 2003, 52: 290-298
    123. Kumar S, Uchida T, Dang T. Polymer/carbon nano fiber composite fibers. International Sarape Technical Conference Sample 2004, Long Beach, CA, United States
    124. Lee HJ, Oh SJ, Choi JY. In situ synthesis of poly (ethylene terephthalate) (PET) in ethylene glycol containing terephthalic acid and functionalized multiwalled carbon nanotubes (MWNTs) as an approach to MWNT/PET nanocomposites. Chemistry of Materials, 2005, 17 (20): 5057-5064
    125. Chungui Zhao, Guanjun Hu, Justice R. Synthesis and characterization of multi-walled carbon nanotubes reinforced polyamide 6 via in situ polymerization. Polymer, 2005, 46: 5125-32
    126. Manchado MAL, Valentini L, Biagiotti J, Kenny JM. Thermal and mechanical properties of single-walled carbon nano tubes-polypropylene composites prepared by melt processing. Carbon, 2005, 43 (7): 1499-1505
    127. Siochi Emilie J, Working Dennis C, Park Cheol. Melt processing of SWCNT-polyimide nanocomposite fibers. Composites Part B: Engineering, 2004, 35: 39-446
    128. Hoa Lam, Titchenal N, Naguib N. Electrospinning of carbon nanotube reinforced nanocomposite fibrils and yams. Mechanical Properties of Nanostructured Materials and Nanocomposites Symposium (Mater. Res. Soc. Symposium Proceedings Vol. 791): 353-8, 2004
    129. Mlynarcikoa Zita, Kaempfer Dirk, Thomann Ralf. Syndiotactic poly (propylene)/organoclay nanocomposite fibers: Influence of the nano-filler and the compatibilizer on the fiber properties. Polymers for Advanced Technologies, 2005, 16: 362-369
    130. Joshi M, Shaw A, Butola BS. Studies on composite filaments from nanoclay reinforced polypropylene. Fibers andPolymers, 2004, 5 (1): 59-67
    131. Zhang XQ, Yang MS, Zhao Y, Zhang SM. Polypropylene/montmorillonite composites and their application in hybrid fiber preparation by melt-spinning. Journal of Applied Polymer Science, 2004, 92 (1): 552-558
    132. Mlynarcikova Z, Kaempfer D, Thomann R. Syndiotactic poly (propylene)/organoclay nanocomposite fibers: influence of the nano-filler and the compatibilizer on the fiber properties. Polymers for Advanced Technologies, 2005, 16 (5): 362-369
    133. Rong JF, Jing ZH, Li HQ, Sheng M. A polyethylene nanocomposite prepared via in-situ polymerization. Macromolecular Rapid Communications, 2001, 22 (5): 329-334
    134. Mlynarcikova Zita, Borsig Eberhard, Legen Jaroslav. Influence of the composition of polypropylene/organoclay nanocomposite fibers on their tensile strength. Journal of Macromolecular Science-Pure and Applied Chemistry, 2005, 42: 543-554
    135. Chen Guangming, Shen Deyan, Feng Meng. An attenuated total reflection FT-IR spectroscopic study of polyamide 6/clay nanocomposite fibers. Macromolecular Rapid Communications, 2004, v 25: 1121-1124
    136. Ibanes C, David L, De Boissieu M. Structure and mechanical behavior of nylon-6 fibers filled with organic and mineral nanoparticles. I. Microstructure of spun and drawn fibers. Journal of Polymer Science Part B: Polymer Physics, 2004, 42 (21): 3876-3892
    137. Giza Emil, Ito Hiroshi, Kikutani Takeshi. Fiber structure formation in high-speed melt spinning of polyamide 6/clay hybrid nanocomposite. Journal of Macromolecular Science-Physics, 2000, v39 (B) n4: 545-559
    138. McCord Marian G, Matthews Suzanne R. Extrusion and Analysis of Nylon/Montmorillonite Nanocomposite Filaments. Journal of Advanced Materials, 2004, v36 n1: 44-56
    139. Ergungor Z, Cakmak M, Batur C. Effect of processing conditions on the development of morphology in clay nanoparticle filled nylon 6 fibers. Invited Lectures and Selected Contributions from the Conference. Flow-Induced Crystallization of Polymers Impact on Processing and Manufacturing Properties: 259-76, 2002
    140. KwanHan Yoon, Polk M B, Min B G. Structure and property study of nylon-6/clay nanocomposite fiber. Polymer International, 2004, vol. 53, no. 12: 2072-8
    141. Weizhen Xiao, Huimin Yu, Keqing Han, Muhuo Yu. Study on PET Fiber Modified by Nanomaterials: Improvement of Dimensional Thermal Stability of PETFiber by Forming PET/MMT Nanocomposites. Journal of Applied Polymer Science, 2005, 96: 2247-2252
    142. Chang, Jin-Hae;Sung, Jong Kim. Polyester nanocomposite fibers: Comparison of their properties with poly (ethylene terephthalate) and poly (trimethylene terephthalate) (Ⅱ). Polymer Bulletin, 2004. 52: 289-296
    143. Jin-Hae Changa, Sung Jong Kima, Yong Lak Joob, et al. Poly (ethylene terephthalate) nanocomposites by in situ interlayer polymerization: the thermo-mechanical properties and morphology of the hybrid fibers. Polymer, 2004, 45: 919-926
    144. Jin-Hae Chang, Mu Kyung Mun, Ihn Chong Lee. Poly (ethylene terephthalate) Nanocomposite Fibers by InSitu Polymerization: The Thermomechanical Properties and Morphology. Journal of Applied Polymer Science, 2005, 98: 2009-2016
    145. Guo-Hu Guan, Chun-Cheng Li, Dong Zhang. Spinning and Properties of Poly (Ethylene Terephthalate)/Organomontmorillonite Nanocomposite Fibers. Journal of Applied Polymer Science, 2005, 95: 1443-1447
    146. Chang JH, An YU, Kim SJ, Im S. Poly (butylene terephthalate)/organoclay nanocomposites prepared by in situ interlayer polymerization and its fiber (Ⅱ). Polymer, 2003, 44 (19): 5655-5661
    147. Chang JH, An YU, Ryu SC, Giannelis EP Synthesis of poly (butylene terephthalate) nanocomposite by in-situ interlayer polymerization and characterization of its fiber (Ⅰ). Polymer Bulletin, 2003, 51 (1): 69-75

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700