适用于海水海砂混凝土的阻锈剂研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,海水海砂建材资源化趋势越来越明显,但海水海砂中的氯化物以及硫酸盐等会加快混凝土中钢筋锈蚀,对混凝土耐久性有负面影响,制约了海水海砂在混凝土中的应用。为了延长海水海砂混凝土结构的使用寿命,通过采用高效阻锈剂、多种技术措施协同作用降低海水海砂混凝土中的钢筋锈蚀速率是重要途径之一。目前,复合型阻锈剂已成为国外阻锈剂领域的研究热点,它具有高效、可靠、环保等优点,但国内研究多数是关于已有阻锈剂的性能测试分析,对阻锈剂的复配及作用机理的研究不多。加强复合阻锈剂组成优化和作用机理的研究对延长海水海砂混凝土结构的使用寿命具有重要意义。
     本文重点研究了单组份阻锈剂和复合型阻锈剂、养护条件、矿物掺合料、成型工艺对海水海砂砂浆和/或混凝土中钢筋锈蚀的影响,采用X射线衍射(XRD)、透射扫描电镜(TSEM)、X射线能谱分析(XEDS)、傅立叶变换拉曼光谱(FT-Raman)等方法分析水泥水化产物相组成、钢筋与混凝土交界面微观结构与组成、有机分子在钢筋表面吸附等,研究阻锈剂的作用机理。研究表明:
     ①单组份阻锈剂掺入海水海砂砂浆中,延缓了氯离子对钢筋的破坏作用,提高了钢筋钝化膜的稳定性,以自然海水作为浸泡液,经过30次浸烘循环后,钢筋锈积率和失重率明显减小,根据极化电位和钢筋锈蚀率判断试验的几种单组份阻锈剂缓蚀效果由强到弱排列为三乙醇胺(TEA)≈氨甲基丙醇(AMP)>单氟磷酸钠(MFP)>硝酸锂(LiNO3)≈氢氧化锂(LiOH)>二甲基乙醇胺(DMEA)>三乙氧基硅烷(TES)。
     ②复合型阻锈剂掺入海水海砂砂浆和/或混凝土中,可以显著降低钢筋的锈积率和失重率,提高砂浆或混凝土抵抗氯离子侵蚀的能力,分别以自然海水、3.5%的NaCl溶液、6.0%的NaCl溶液作为浸泡液,经过100次浸烘循环后,钢筋锈蚀率上升幅度很小,保持了稳定的缓蚀效果。A3阻锈剂的适宜掺量为1.4%~1.7%,A1阻锈剂的缓蚀效果与泰诺Mucis ad 19L/D阻锈剂相当。
     ③在海水海砂混凝土浸烘循环中,相比于3.5%和6.0%的NaCl溶液作为浸泡液,以自然海水作为浸泡液导致钢筋锈蚀率明显增加;偏高岭土和复合型阻锈剂同时掺入时,可以产生协同效应,缓蚀效果显著增强,偏高岭土掺量小于20%时,缓蚀效果随掺量增加而增强;在钢筋表面裹浆,并在裹浆层中掺入A3阻锈剂,缓蚀效果增强,裹浆层厚度小于7.5mm时,缓蚀效果随厚度增加而增强。
     ④阻锈剂A2掺入海水海砂砂浆中降低了砂浆的流动度和强度,阻锈剂A1和A3增加了砂浆的流动度,对砂浆强度无不利影响;阻锈剂A3掺入海水海砂混凝土中延缓了水泥的水化作用,主要抑制了C-S-H凝胶早期的形成和发展,增强了后期混凝土结构的密实性;阻锈剂A3可以通过有机物的吸附及密封分散作用、无机盐的化学反应沉淀作用等吸附在钢筋与混凝土交界面处,增强钢筋钝化膜的稳定性。
     ⑤醇胺化合物、表面活性剂、磷酸盐和硝酸盐这四种物质基于各自的阻锈机理,按照一定比例组成复合型阻锈剂时,可以产生较好的协同缓蚀作用,阻锈性能优于Mucis ad 19L/D泰诺迁移性阻锈剂,其适宜掺量为胶凝材料的1.4~1.7%。
In recent years, the current of seawater and sea sand be used as building materials is obvious, but chloride and sulphate included in them will accelerate corrosion rate of rebar in concrete, they have an adverse effect on durability of concrete, so, the application of seawater and sea sand in concrete be restricted.For prolonging the useful life for structure of concrete based on seawater and sea sands, reducing corrosion rate of rebar in concrete based on seawater and sea sands by using highly active corrosion inhibitor and synergistic reaction of different technical measures is one of important ways. At present, composite corrosion inhibitor has become a hot in field of corrosion inhibitor overseas, it has many advantages,such as highly active、reliable、environmental protection and so on, whereas, domestic scholar research on test analysis of corrosion inhibitor’s performance mainly, seldom study about compositional formulation and action mechanism of corrosion inhibitor, so, strengthening research about compositional formulation and mechanism of corrosion inhibitor have significance for prolonging the useful life for structure of concrete based on seawater and sea sands.
     The effects of corrosion inhibitors (Composite corrosion inhibitor A1、A2、A3and Mucis ad 19L/D)、curing conditions、mineral admixture、moulding process on rebar corrosion in mortar and/or concrete based on seawater and sea sands were studied in this paper. Phase composition of cement hydratation product、microstructure and composition of the interface between rebar and concrete、polar molecule adsorbed in rebar surface were analyzed by way of X-ray diffraction(XRD)、Transmission scanning electron microscopy (TSEM)、X-ray energy dispersive spectroscopy (XEDS)、Fourier transform Raman spectrum(FT-Raman), discussed action mechanism of corrosion inhibitor. Research shows:
     ①Acceding single composition corrosion inhibitor to mortar based on seawater and sea sands can delay the damaging effects of Cl- on rebar, and improve the stability of rebar passive film, rusty accumulation rate and weight loss of rebar for samples soaked in seawater decreased obviously after 30 times soak-warm circulation, according to slope shifted to negative direction of polarization potential of rebar and corrosion rate of rebar, estimating several trial single composition corrosion inhibitors’corrosion inhibition ranked from strong to weak for TEA≈AMP>MFP>LiNO3≈LiOH>DMEA>TES.
     ②Acceding composite corrosion inhibitor to mortar and/or concrete based on seawater and sea sands can observably reduce rusty accumulation rate and weight loss of rebar, improve ability to resist chloride ion penetration of mortar and/or concrete, corrosion rate of rebar for samples soaked in seawater、3.5%NaCl solution、6.0%NaCl solution respectively increased weakly after 100 times soak-warm circulation, and remain stable corrosion inhibition over an extended period. Corrosion inhibition is best when acceding 1.4%~1.7% A3 corrosion inhibitor to mortar and/or concrete, A1 and Mucis ad 19L/D’corrosion inhibition is nearly.
     ③With regard to concrete based on seawater and sea sands, samples soaked in seawater lead rusty accumulation rate and weight loss of rebar increased dramatically, comparing with samples soaked in NaCl solution; Synergistic effect can be produced when acceding metakaolin and composite corrosion inhibitor at the same time, and corrosion inhibition enhanced obviously, corrosion inhibition was enhanced with the increase content when metakaolin content is less than 20%; Corrosion inhibition was enhanced when rebar being wrapped cement paste, and acceding A3 into cement paste, corrosion inhibition was enhanced with the increase thickness when cement paste thickness is less than 7.5mm.
     ④Acceding corrosion inhibitor A2 to mortar based on seawater and sea sands reduced mobility and intensity of mortar, corrosion inhibitor A1 and A3 increased mobility, without negative influence on strength of mortar; Corrosion inhibitor A3 delayed hydration of cement, mainly restrained forming and developing of C-S-H gel early, but enhanced compactibility of concrete structure later period; Corrosion inhibitor A3 can adsorb on interface between rebar and concrete by function of adsorption、airproofed、decentralization、chemical reaction deposition of inorganic salt and so on, thus it also improved stability of rebar passive film.
     ⑤It can produce good cooperativity corrosion inhibition when corrosion inhibitor being made up of alcohol amine compound、surfactant、phosphate、nitrate based on different mechanism of corrosion inhibition, further more, it have a better corrosion inhibition than Mucis ad 19L/D, the proper poraver of it is 1.4~1.7wt.% for cementing material.
引文
[1]洪定海.沿海地区钢筋混凝土用海砂问题及对策[J].混凝土,2003,2:17-19.
    [2]潘琳,周琦,何朋祥.海工钢筋混凝土结构的防护[J].水运工程,2005,4:13-17.
    [3]左晓宝,孙伟.硫酸盐侵蚀下的混凝土损伤破坏全过程[J].硅酸盐学报,2009,37:1063-1067.
    [4]洪乃丰.水环境腐蚀与混凝土的耐久性[J].腐蚀与防护,2006,27:174-178.
    [5]武毅,徐建伟,迟培云.耐海水腐蚀混凝土的配制技术研究[J].混凝土,2007,10:12-15.
    [6]许亚文,符超.岛礁建筑物耐久性综合治理初探[J].施工技术,2006,35:177-200.
    [7] T.A.Soylev.Corrosion inhibitors for steel in concrete:State-of-the-art report[J].Construction and Building Materials,2008,22:609-622.
    [8] V.Saraswathy,H.Won Song.Improving the durability of concrete by using inhibitors[J].Building and Environment,2007,42:464-472.
    [9]任七华.海洋环境下抗腐蚀材料开发与性能研究[D].杭州:浙江大学材料学院,2006.
    [10]吴建华,赵永韬.钢筋混凝士的腐蚀监测/检测[J].腐蚀与防护,2003,10:2-4.
    [11] Thierry Chaussadent,Veronique Pujol,Fabienne Farcas.Effectiveness conditions of sodium monofluorophosphate as a corrosion inhibitor for concrete reinforcements[J].Cement and Concrete Research,2006,36:556-561.
    [12] V.T.Ngala,C.L.Page.Investigations of an ethanolamine-based corrosion inhibitor system for surface treatment of reinforced concrete[J].Materials and Corrosion,2004,55:511-520.
    [13] Daisuke Sugiyama.Chemical alteration of calcium silicate hydrate (C-S-H) in sodium chloride solution[J].Cement and Concrete Research,2008,81:6-12.
    [14]洪乃丰.钢筋阻锈剂的发展与应用[J].工业建筑,2005,35:68-70.
    [15]马新伟,邙静,范征宇.钢筋阻锈剂的新发展[J].低温建筑技术,2004,6:7-9.
    [16]洪乃丰.钢筋阻锈剂的应用和长期有效性[J].冶金建筑,1993,23:42-45.
    [17]周华林,望树岑,胡达和.一种新型渗透、迁移、复合型钢筋阻锈剂[J].公路,2002,1:97-102.
    [18]徐永模.迁移性阻锈剂-钢筋混凝土阻锈剂的新发展[J].硅酸盐学报,2002,30:94-101.
    [19]汤涛,雷俊,祝剑剑.一种新型钢筋阻锈剂的阻锈性能[J].腐蚀与防护,2007,28:642-646.
    [20]仲晓林,王建成.复合型混凝土防腐阻锈剂的性能研究[J].混凝土,2008,5:61-63.
    [21]王胜先,林薇薇,吴科如.新型阻锈剂对钢筋混凝土阻锈作用的研究[J].建筑材料学报,2000,3:310-315.
    [22]杜荣归,林昌健.氯离子对钢筋腐蚀机理的影响及其研究进展[J].材料保护,2006,39:45-50.
    [23]迟培云,袁建成,杨崎.高性能钢筋阻锈剂的研究与应用[J].混凝土,2005,1:52-55.
    [24] Anees U.Malik,Ismail Andijani,Fahd Al-Moaili.Studies on the performance of migratorycorrosion inhibitors in protection of rebar concrete in Gulf seawater environment[J].Cement and Concrete Composites,2004,26:235-242.
    [25]葛燕,朱锡旭,朱雅仙,李岩.混凝土中钢筋的腐蚀与阴极保护[M].北京:化学工业出版社,2007.9.
    [26]刘军,董必钦,邢锋.海砂氯离子与水泥胶体结合的模拟试验与结合机理[J].硅酸盐学报,2009,37:862-868.
    [27]杨建森.氯盐对混凝土中钢筋的腐蚀机理与防腐技术[J].混凝土,2001,7:52-56.
    [28] G.K.Glass,N.M.Hassianein,N.R.Buenfeld.Neural network modeling of chloride binging[J].Mag Concrete Research,1997,49:323-335.
    [29] Jerzy Zemajtis. Modeling the time to corrosion initiation for concretes with mineral admixtures and/or corrosion inhibitors in chloride-laden environments[D].Blacksburg.Virginia:Virginia Polytechnic Institute and State University,1998.
    [30]孟振亚,刘加平,刘建忠.氯离子浓度对混凝土电通量试验中测试指标的影响[J].混凝土,2008,12:27-31.
    [31] W.Morris,M.Vazquez.A migrating corrosion inhibitor evaluated in concrete containing various contents of admixed chlorides[J].Cement and Concrete Research,2002,32:259-267.
    [32]金祖权,孙伟,赵铁军,李秋义.在不同溶液中混凝土对氯离子的固化程度[J].硅酸盐学报,2009,37:1068-1074.
    [33] Page C L,Ngala V T,Page MM.Corrosion inhibitors in concrete repair systems[J]. Mag Concrete Research,2000,52:25-37.
    [34]王建华,肖佳,赵金辉.水泥基材料的硫酸盐侵蚀[J].腐蚀与防护,2009,30:432-437.
    [35]刘秉京.混凝土结构耐久性设计[M].北京:人民交通出版社,2007.2:159-164.
    [36]祁艳军.迁移复合型混凝土钢筋阻锈剂性能研究[D].北京:北京建筑工程学院,2008.
    [37]张伟平,张誉,刘亚芹.混凝土中钢筋锈蚀的电化学检测方法[J].工业建筑,1998,28:21-25.
    [38]曹青,谭克锋,袁伟.水泥基材料氯离子固化能力的研究[J].武汉理工大学学报.2009,31:24-28.
    [39] G.Batis,A.Routoulas,E.Rakanta.Effects of migrating inhibitors on corrosion of reinforcing steel covered with repair mortar[J].Cement and Concrete Composites,2003,25:109-115.
    [40] Lorenzo Fedrizzi,Francesca Azzolini,Pier Luigi Bonora.The use of migrating corrosion inhibitors to repair motorways concrete structures contaminated by chlorides[J].Cement and Concrete Research,2005,35:551-561.
    [41]王嵬,张大全,张万友.国内外混凝土钢筋阻锈剂研究进展[J].腐蚀与防护,2006,27:369-373.
    [42] M.Manna.Effect of steel substrate for phosphate treatment:An option to simulate TMT rebar surface[J].Corrosion Science,2009,51:451-457.
    [43] Neal S.Berke,Maria C.Hicks.Predicting long-term durability of steel reinforced concrete withcalcium nitrite corrosion inhibitor[J].Cement and Concrete Composites,2004,26:191-198.
    [44] L.Holloway,K.Nairn.Concentration monitoring and performance of a migratory corrosion inhibitor in steel-reinforced concrete[J].Cement and Concrete research,2004,34:1435-1440.
    [45]柳俊哲,冯奇,李玉顺.亚硝酸盐对混凝土中钢筋的阻锈效果[J].硅酸盐学报,2004,32:854-858.
    [46]唐修生,黄国泓.复合型钢筋阻锈剂试验研究[J].新型建筑材料,2008,1:60-63.
    [47]佘海龙.阻锈剂对碳化引起的钢筋腐蚀的阻锈效果研究[D].北京:中国建筑材料科学研究院,2003.
    [48]曹青,谭克锋,袁伟.矿物掺合料对水泥基材料氯离子固化能力影响的研究[J].四川建筑科学研究.2009,35:189-193.
    [49]房娟娟.新型钢筋混凝土阻锈剂的性能研究[D].济南:山东建筑大学材料加工工程学院,2009.
    [50]杜荣归,胡融刚,胡仁.若干无机缓蚀剂对混凝土中钢筋的阻锈作用[J].2001,40:908-914.
    [51]洪定海,王定选,黄俊友.电迁移型阻锈剂[J].东南大学学报:自然科学版,2006,36:154-160.
    [52] V.T.Ngala,C.L.Page.Corrosion inhibitor systems for remedial treatment of reinforced concrete. Part 1:calcium nitrite[J].Corrosion Science,2002,44:2073-2087.
    [53] V.T.Ngala,C.L.Page.Corrosion inhibitor systems for remedial treatment of reinforced concrete:Part 2:sodium monofluorophosphate[J].Corrosion Science,2003,45:1523-1537.
    [54] C.Andrade,C.Alonso,M.Acha.Preliminary testing of Na2PO3F as a curative corrosion inhibitor for steel reinforcements in concrete[J].Cement and Concrete Research,1992,22:869-881.
    [55]封孝信,阚欣荣.新型钢筋阻锈剂的作用机理[J].河北理工大学学报:自然科学版,2009,31:90-94.
    [56] Ali Hassanzadeh.Validity of dynamic electrochemical impedance spectra of some amine corrosion inhibitors in petroleum/water corrosive mixtures by Kramers–Kronig transformation[J].Corrosion Science,2007,49:1895-1906.
    [57] G.Batis,P.Pantazopoulou,A.Routoulas.Corrosion protection investigation of reinforcement by inorganic coating in the presence of alkanolamine-based inhibitor[J].Cement and Concrete Composites 2003,25:371-377.
    [58] Konstantinos D.Demadis,Stella D.Katarachia.Crystal growth and characterization of organic–inorganic hybrid networks and their inhibiting effect on metallic corrosion[J].Inorganic Chemistry Communications,2005,8:254-258.
    [59]封孝信,阚欣荣,魏庆敏.新型钢筋阻锈剂的合成及其阻锈性能的研究[J].混凝土与水泥制品,2006,1:8-10.
    [60]李遵云,屠柳青,张国志,夏卫华.新型钢筋阻锈剂的阻锈性能研究[J].混凝土,2008,12: 54-57.
    [61]祝烨然,李克亮,王冬,温金宝.阻锈剂及硅粉、阻锈剂联合应用对防止钢筋锈蚀效果的研究[J].混凝土,2006,2:49-54.
    [62]杜荣归,王周成,黄若双.LD-2型复合缓蚀剂对海水介质混凝土中钢筋阻锈作用研究[J].电化学,2001,7:494-501.
    [63]赵冰,杜荣归,林昌健.三种有机缓蚀剂对钢筋阻锈作用的电化学研究[J].电化学,2005,11:382-387.
    [64]陈立庄,高延敏,缪文桦.有机缓蚀剂和金属作用的机理[J].金属腐蚀控制,2005,19:25-28.
    [65]刘峥,刘二喜,王国瑞.醇胺类化合物对混凝土钢筋的阻锈作用研究[J].全面腐蚀控制,2007,21:15-20.
    [66]张天胜,张浩,高红.缓蚀剂[M].第二版.北京:化学工业出版社.2008.1:200-203.
    [67]刘志勇,缪昌文,周伟玲,刘加平.迁移性阻锈剂对混凝土结构耐久性的保持和提升作用[J].硅酸盐学报,2008,36:1494-1499.
    [68] W.Morris,A.Vico,M.Vazquez.The performance of a migrating corrosion inhibitor suitable for reinforced concrete[J].Journal of Applied Electrochemistry,2003,33:1183-1189.
    [69] Maeder.Volatile corrosion inhibitor film formation on carbon steel surface and its inhibition effect on the atmospheric corrosion of carbon steel[J].Application Surface Science,2006,253:1343-1348.
    [70] Gaidis.J.M.Chemistry of corrosion inhibitor[J].Cem Concr Com,2004,26(3):181-189.
    [71] Morris.The effect of a new generation surface-applied organic inhibitor on concrete properties[J].Cem Concr Com,2007,29(5):357-364.
    [72] Thierry Chaussdent.Effect of corrosion inhibiting admixtures on concrete properties[J].Constr Build Mater,2004,18(4):483-489.
    [73] O.Copuroglu.Molecular simulation quantum chemical calculations and electrochemical studies for inhibition of mild steel by triazoles[J].Electrochim Acta,2008,53:3484-3492.
    [74] G.Batis.Aminoalcohol based mixed corrosion inhibitor[J]. Cem Concr Com,2004,26:209-216.
    [75]封孝信.新型钢筋阻锈剂的合成及其阻锈性能的研究[J].混凝土与水泥制品,2006,1:8-10.
    [76]王振军,何廷树.缓凝剂作用机理及对水泥混凝土性能影响[J].公路,2006.9:149-154.
    [77]廖玉云,吴笑梅,樊粤明.醇胺类助磨剂对硅酸盐水泥水化及胶砂强度影响的研究[J].水泥,2009,7:8-14.
    [78]蒋伏广,陆柱.钼酸锂与苯并三氮唑对碳钢在溴化锂溶液中缓蚀作用的协同效应[J].华东理工大学学报,2004,4(30):153-157.
    [79] H.E.Jamil,M.F.Montemor,R.Boulif,A.Shriri,M.G.S.Ferreira.An electrochemical and analytical approach to the inhibition mechanism of an amino-alcohol-based corrosion inhibitor for reinforced concrete[J].Electrochimica Acta,2003,48:3509-3518.
    [80]梅来宝,卢都友,邓敏,唐明述.LiOH抑制碱-硅酸反应膨胀及其应用研究[J].硅酸盐学报,2005,33:609-615.
    [81]张大全,张万友,周国定.单氟磷酸钠在混凝土模拟孔隙液中的缓蚀特性[J].腐蚀与防护,2007,28:55-58.
    [82] C.Alonso C,Andrade C.Effect of nitrite as a corrosion inhibitor in contaminated and chloride-free carbonated mortars[J].ACI Mater,2000,87:130-37.
    [83] Elisabete A.Pereira,Marina F.M.Tavares.Determination of volatile corrosion inhibitors by capillary electrophoresis[J].Journal of Chromatography A,2004,1051:303-308.
    [84] Wilson A.P.Calvo,Paulo R.Rela,Francisco E.Springer.A small size continuous run industrial gamma irradiator[J].Radiation Physics and Chemistry,2004,71:561-563.
    [85]马保国,张平均.矿物掺合料对海洋混凝土抗氯离子渗透的研究[J].石家庄铁道学院学报,2004(1):6-9.
    [86] M.M.Osman,R.A.El-Ghazawy,A.M.Al-Sabagh.Corrosion inhibitor of some surfactants derived from maleic-oleic acid adduct on mild steel in 1 M H2SO4[J].Materials Chemistry and Physics,2003,80:55-62.
    [87] D.M.Roy,P.Arjunan.Effect of silica fume,metakaolin,and low-calcium fly ash on chemical resistance of concrete[J].Cement and Concrete Research 2001,(31):1809-1813.
    [88] O.Copuroglu,A.L.A. Fraaij,J.M.Bijen.Effect of sodium monofluorophosphate treatment on microstructure and frost salt scaling durability of slag cement paste[J].Cement and Concrete Research,2006,36:1475-1482.
    [89]张大同.扫描电镜与能谱仪分析技术[M].广州:华南理工大学出版社,2008:68-74.
    [90]王凯,马保国,龙世宗.酸雨侵蚀下水泥石物相组成变化的微观分析[J].硅酸盐学报,2009,37:880-885.
    [91]张洪滔,李永鑫,董刚,陈益民.海水对修补混凝土界面层微观结构的影响[J].电子显微学报,2006,25:173-174.
    [92]杨序纲,吴琪琳.拉曼光谱的分析与应用[M].北京:国防工业出版社,2008:154-182.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700