部分粘结部分预应力CFRP筋混凝土梁受弯性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了解决钢筋的锈蚀问题,国内外学者通过研究发现,采用纤维增强塑料筋(FRP)代替钢筋应用的方法行之有效。纤维增强塑料筋(FRP筋)是采用多股连续纤维作为增强纤维,热固性树脂作为基体材料,通过胶合,挤拉固化成型的一种新型复合材料,具有轻质,高强,耐腐蚀,耐疲劳等很多优点,当用于普通混凝土结构时,由于其强度高而强性模量较低,会出现明显的超筋破坏,不安全又难以充分发挥材料性能,因此重点研究CFRP筋在部分预应力混凝土梁中的应用。
     此外,由于CFRP筋作为预应力筋的粘结方式的不同,使得CFRP筋部分粘结部分预应力梁与相对的CFRP筋全粘结,无粘结部分预应力梁的受弯性能也不尽相同.因此对CFRP筋部分粘结部分预应力混凝土梁受弯性能进行研究。
     本文在试验研究的基础上,对部分粘结部分预应力CFRP筋混凝土梁受弯性能进行了较为系统的研究,主要进行了以下几方面的工作:
     (1)通过六根部分粘结部分预应力CFRP筋混凝土梁在单调荷载下的受力全过程试验,对不同无粘结长度的预应力梁试件的受力过程、破坏形态、预应力筋极限应力、极限承载力、延性性能、变形性能等进行较为系统的分析研究。
     (2)通过系统查阅分析国内外相关CFRP筋部分粘结部分预应力混凝土梁试验研究成果,以及在本文试验研究和非线性有限元模拟分析基础上,对部分粘结部分预应力CFRP筋混凝土梁的正截面承载力(包括预应力筋的极限应力和混凝土梁的极限承载能力),梁的变形性能(包括梁短期刚度和裂缝宽度)进行研究,并给出预应力筋极限应力,梁极限承载力,挠度以及裂缝的设计建议。
     (3)通过系统查阅分析国内外相关CFRP筋部分粘结部分预应力混凝土梁试验研究成果,以及在本文试验研究和非线性有限元模拟分析基础上,对影响部分预应力部分粘结CFRP筋混凝土梁延性性能相关因素进行研究,其中包括无粘结长度,混凝土强度,有效预应力,预应力度,综合配筋指数以及受压区钢筋的配置等。试验表明,对配置CFRP筋的预应力混凝土梁,采用部分粘结形式,可显著改善梁的延性性能,但随着无粘结长度的增加对梁的延性性能的提高或者降低没有呈现显著而且统一的影响;综合配筋指数对梁延性性能是一个独立的影响参数,随着其值的降低梁变形延性指数升高,并得出综合配筋指数与变形延性指数之间的关系式;在一定范围内混凝土强度的提高,有效预应力的降低,预应力度的提高有利于梁延性性能的提高,反之则不利;认为考虑能量的延性性能指标对于评估试件梁的延性也是适宜的。
     (4)采用通用有限元软件ANSYS对部分粘结部分预应力CFRP筋混凝土梁在集中荷载作用下的受力性能进行了非线性有限元模拟,对建模方法,单元选取,材料本构关系的定义,求解方法等进行了详细的说明,最后与试验结果进行对比,得到有限元模型的可靠性,为理论分析提供依据。
To resolve the problem of rebar corrosion, after many years’study experts have found the application of fiber reinforced plastic(FRP) tendons proved to be the dependable measure in present time. fiber reinforced plastic (FRP) tendon, a new advanced composite material, is formed through pultrusion of epoxy-impregnated reinforced fibers. FRP tendons have many advantages such as lightweight, high strength, corrosive resistance, fatigue resistance, and so on. When used in concrete structure ,it is not very safe and do not make full use of materials strength result in over-reinforced failure .so we pay attention on the application of prestressing FRP tendon using in the partial-prestressed concrete structures.
     Although, there are many differences between partial-prestressed concrete components with partial-prestressing CFRP tendons and common prestressed concrete components because of tensile stress-strain curve and low young’s modulus of FRP tendons, so does the difference between partial-bonded beam and full-bonded, unbonded ones. so make research on design calculation method and ductility property of the partial-prestressing and partial-bonded CFRP beams.
     Based on theory and experimental study foundation, has carried on the research to CFRP partial-prestressed partial-bonded concrete number in bending conditioning, the paper focused on following items:
     (1) six partial bonded concrete beams prestressed with CFRP tendons are tested under monotonic loads. The failure modes, ultimate stresses of prestressing tendons, ultimate load-carrying capacity, ductility, deformation and crack width of this kind of beams with varying unbonded length are systematically investigated.
     (2) based on the experiments of partial-prestressed partial-bonding concrete beam including CFRP at home and abroad and indignity model in the paper, study on the load-bearing capacity including ultimate stress and ultimate moment-resist capacity. and study on deform capacity including short-time rigid, deflection and width of crack. and offer some design advices.
     (3) study on influences factors on ductility property of CFRP partial-prestressed partial-bonded concrete beam including the facts such as unbonded length , concrete strength ,PPR, comprehensive reinforcing index, steel fixed in the compressed section and so on.
     (4) using commercial finite element software, ANSYS, nonlinear finite element simulation of partial-prestressed concrete beams with partial-bonded prestressing CFRP tendons is accomplished. modeling method, selecting element, defining constitutive relationship of materials and solution method that are elaborated on in this paper, and then reliability of methods as mentioned above is testified by comparing with experiment results.
引文
[1]ISIS Canada, 2000,“Reinforcing Concrete Structures with Fibre Rienforced Polymers”, ISIS-M04-00 Design Manual, Draft, Spring 2000.
    [2]Eriki, M-A. and Rizkalla, S.H. 1993”FRP Reinforcement for Concrete Structures: A Sample of International Production”, Concrete International, Vol.15,NO.6,June 1993, pp.48-53.
    [3]Rostasy, F.S.1993,”FRP Tensile Elements for Prestressed Concrete-State of the Art, Potentials and Limits”, Fiber-Reinforced-Plastic Reinforcement for Concrete Structures-International Symposium, SP-138, American Concrete Institute, edited by A. Nanni and C.W. Dolan, March28th-31th 1993,pp.347-365.
    [4]Hollaway, L.C. 1990,“Polymers and Polymer Composites in Construction”, Thomas Telford Lrd, London.
    [5]Schwartz, M.M. 1997,“Composite Materials, Volume 1: Properties, Nondestructive Testing, and Repair”, Prentice Hall PYR, Upper Saddle River, New Jersey, 415p.
    [6]Meier, U. 1992,“Carbon Fiber-Reinforced Polymers: Modern Materials in Bridge Engineering”, Structural Engineering International, Vol.2, No.1, February 1992, pp.7-12.
    [7]Taniguchi, H. Mutsuyoshi, H.,Kita, T. and Machida, A., 1993,“Ductile Behavior of Beams Using FRP as Tendons and Transverse Reinforcement”, Fiber-Reinforced-Plastic Reinforcement for Concrete Structures-International Symposium, SP-138, American Concrete Institute, edited by A. Nanni and C.W. Dolan, March 28th-31th 1993, pp.651-670.
    [8]Burgoyne, C.J. 1993,“Should FRP be Bonded to Concrete”, Fiber Reinforced Plastic Reinforcement for Concrete Structures-International Symposium, SP-138, American Concrete Institute, edited by A. Nanni and C.W. Dolan, March 28th-31th 1993,pp.367-379.
    [9]Grace, N.F. and Abdel-Sayed, G.1998a,“Ductility of Prestressed Bridges Using CFRP Strands”, Concrete Internaitonal, Vol.20, No.6, June 1998, pp.25-30.
    [10] Grace, N.F. and Abdel-Sayed, G.1998b,“Behavior of Externally Draped CFRP Tendons in Prestressed Concrete Bridges”, PCI Journal, Vol.43, No.5, September/ October 1998, pp.88-101.
    [11]Naaman, A.E. and Jeong, S.M., 1995,“Structural Ductility of Concrete Beams Prestressed with FRP Tendons”, Non-Metallic(FRP) Reinforcement for Concrete Structures, Proceeding of the Second International RILEM Symposium(FRPRCS-2), Edited by L. Taerwe, E&FN Spon, Ghent, Belguim, August 23th -25th 2995, pp. 379-386.
    [12]Kakizawa, T., Ohno,S. and Yonezawa, T.,1993,“Flexural Behavior and Energy Absorption of Carbon FRP Reinforced Concrete Beams”, Fiber-Reinforced-Plastic Reinforcement for Concrete Structures-International Symposium, SP-138, American Concrete Institute, edited by A. Nanni and C.W.Dolan, March 28th-31th 1993,pp.585-598.
    [13]Ariyawardena, N. and Ghali, A.,1999,“Analysis of Concrete Structures with External Prestressing”, Annual Conference of the Canadian Society for Civil Engineering, Regina, Sasatchewan, June 2th-5th 1999,pp.415-421.
    [14]Jaeger, L.G., Tadros, G. and Mufti, A.A.,1995“Balanced Section, Ductility and Deformation in Concrete with FRP Reinforcement”, CAD/CAM- The Nova Scotia CAD/CAM Centre, Research Report No.2-1995, May 1995,29p.
    [15]Vijay, P.V.,Kumar, S.V. and GangaRao, H.V.S.,1996“Shear and Dcutility Behavior of Concrete Beams Reinforced with GFRP Rebars”, Advanced Composite Materials in Bridges andStructures- 2th International Conference, The Canadian Society for Civil Engineering, Edited by M.M.EI-Badry, Montreal, August 11th -14th, pp.217-226.
    [16]张鹏.FRP筋混凝土梁受力性能的试验研究及理论分析.
    [17] X.W.Zou,韩小雷,季静.芳纶纤维增强塑料预应力高强混凝土梁弯曲特性及延性探讨.建筑结构,2002,Vol.32(10):53-55
    [18]方志、杨剑.CFRP筋混凝土T梁受力性能试验研究.建筑结构学报.2005,26(9) :66-73.
    [19]中华人民共和国原城乡建设环境保护部主编.混凝土结构设计规范GBJ 10-89.北京:中国建筑工业出版社,1990.
    [20]ACI318-99.Building code requirements for reinforced concrete and commentary[S]. ACI Committee 318, American Concrete Institute, Detroit, 1999.391 p.
    [21]公路钢筋混凝土及预应力混凝土桥涵设计规范.JTG D 62-2004.
    [22]孙尧州,预应力混凝土简支梁的挠度与刚度研究.2006.
    [23]Benmokrane B, Chaallal O, Masmoudi R. Flexural response of concrete beams reinforced with FRP reinforcing bars[J].ACI Struct J 1996:93(1):46-55.
    [24]ISIS Canada: Design Manual 3. Reinforcing concrete structures with fiber reinforced polymers. The Canada Network of Centers of Excellence on Intelligent Sensing for Innovative Structures, University of Manitoba, Winnipeg, Manitoba, Canada, September2001.
    [25]Toutanji H A and Saafi M. Flexural Behavior of Concrete Beams Reinforced with Glass Fiber-Reinforced Polymer (GFRP) Bars[J]. ACI Structural Jorunal.2000, Vol.97(5):712-719.
    [26]高丹盈.玻璃纤维聚合物筋混凝土梁裂缝和挠度的特点及计算方法.水利学报.2001,8:53-58.
    [27]杨剑. CFRP预应力筋超高性能混凝土梁受力性能研究.2007.
    [28]American Concrete Institute 440.State-of-the-Art Report on Fiber Reinforced Plastic (FRP) Reinforcement for Concrete Structural Structures (ACI440R-96).Michigan: Farmingtons Hills, 1996,1-25.
    [29]Tanigaki M. Nomura S, Okarmoto T, et al. Flexural Behavior of Partially Prestressed Concrete Beams Reinforced with Braided Aramid Fiber Rods. Transaction of the Japan Concrete Institute, 1989(11):215-222.
    [30]Faza S, GangaRao H. Bending Response of Beams Reinforced with FRP Rebars for Varying Concrete Strengths. In: Advanced Composte Materials in Civil Engineering Structure , ASCE, New York,1991,262-27.
    [31]Zia P, Grag R, Hanes K. Flexural and Shear Behavior of Concrete beams Reinforced With Continuous Carbon Fiber Fabric. Concrete International ,1992,14(2):48-52.
    [32]Benmolrane B, Chaallal O, Masmoudi R. Flexural Response of Concrete beams Reinforced with FRP Reinforcing Bars. ACI Structural Journal,1996,93(1):46-55.
    [33]Abdelrahman A A , Rizkalla H. Serviceability of Concrete Beams Prestressed by Carbon-Fiber-Reinforced-Plastic Bars. ACI Structural Journal ,1997,94(4):447-457.
    [34]Mckay K S, Erki M A. Aramid Tendons in Prestressed Concrete Application. In: Advanced Composite Materials in Civil Engineering Structures, Proceeding of the Specially Conference, ASCE, Las Vegas,1991,221-230.
    [35]Patrick Zou. Long-Term Deflection and cracking Behavior of Concrete Beams Prestressed with Carbon Fiber-Reinforced Polymer tendons. ASCE Journal of comosites for Construction,2003,7(3):187-193.
    [36]Al-Mayha A, Soudki K, Plumtree A. Experimental and Analytical Investigation of Stainless Steel Anchor for CFRP Prestressing Tendons. PCI Journal,2001,46(2):88-100.
    [37]Mahmoud M, Reda T, Nigel G. Shrive. New Concrete Anchor for Carbon Fiber Reinforced Polymer Post-Tensioning Tendons-Part1: State-of-the-Art Review/ Design. ACI Structural Journal, 2003,100(1):86-95.
    [38]ACI Committee 440.Guide for Test Methods for Fiber Reinforced Polymers for Reinforcing and Strengthening Concrete Structures,(ACI 440.3R-04). Michigan: Farmingtons Hills, 2004,1-86.
    [39]Japan Society of Civil Engineers. Recommendation for Design and Construction of Concrete Structures Using Continuous Fiber Reinforcing Materials, Research Committee on Continuous Fiber Reinforcing Materials. Tokyo: Japan Society for Civil Engineering,1997,1-83.
    [40]Canadian Standards Association. Canadian Highway Bridge Design Code(S6-96). Toronto: Canadian Standards Association,1996,60-94.
    [41]Canadian Standards Association. Canadian Highway Bridge Design Code(S6-00).Toronto: Canadian Standards Associatin,2000,73-110.
    [42]Canadian Standards Association. Design and Construction of Building Components with Fiber Reinforced Polymers(S806-00). Toronto: Canadian Standards Association,2000,1-120.
    [43]American Concrete Institute440.Guide for the Design and Construction of concrete Reinforced with FRP Bars(ACI440.1R-01).Michigan: Farmingtons Hill,2001,1-78.
    [44]American Concrete Institute440. Guide for Prestressed Concrete Structure with FRP tendons(ACI440.1R-03).Michigan: Farmingtons Hills,2003,1-153.
    [45] Eurocrete Modification to Ns3473 When Using FRP Reinforcement. Norway,1998,1-45.
    [46]FIP Task Group 9.3. FRP Reinforcement for Concrete Structures. Federation Internationale de Beton,1999,1-97.
    [47]薛伟辰.现代预应力结构设计[M].北京:中国建筑工业出版社,2003
    [48]陶学康.后张预应力混凝土设计手册.北京:中国建筑工业出版社,1993
    [49]杜拱辰.现代预应力混凝土结构.北京:建筑工业出版社,2002
    [50]李国平.预应力混凝土结构设计原理.北京:人民交通出版社,1999
    [51]中华人民共和国国家标准,《混凝土结构试验方法标准》(GB50152-92)
    [52] ACI Committee 440.State-of-the-art report on fiber reinforced plastic(FRP) reinforcement for concrete structures.1996.(1):1~68
    [53]混凝土结构设计规范[S].中华人民共和国国家标准,中国建筑工业出版社,2003
    [54]无粘结预应力混凝土结构技术规程[S].中华人民共和国国家标准,中国建筑工业出版社,2004
    [55] Natalle Sami Rizkalla, 2000,“Partial Bonding and Partial Prsetressing using stainless steel reinforcement for members Prestressed with FRP”.
    [56]预应力混凝土结构设计与施工手册.
    [57]无粘结预应力混凝土结构技术规程.JGJ/T92-93.
    [58]Natalie Sami Rizkalla. Partial Bonding and Partial Prestressed using Stainless Steel Reinforcement for Members Prestressed With FRP.
    [59]中华人民共和国原城乡建设环境保护部主编.混凝土结构设计规范GBJ 10-89.北京:中国建筑工业出版社,1990.
    [60]ACI318-99.Building code requirements for reinforced concrete and commentary[S]. ACI Committee 318, American Concrete Institute, Detroit, 1999.391 p.
    [61]公路钢筋混凝土及预应力混凝土桥涵设计规范.JTG D 62-2004.
    [62]孙尧州,预应力混凝土简支梁的挠度与刚度研究.2006.
    [63]Benmokrane B, Chaallal O, Masmoudi R. Flexural response of concrete beams reinforced with FRP reinforcing bars[J].ACI Struct J 1996:93(1):46-55.
    [64]ISIS Canada: Design Manual 3. Reinforcing concrete structures with fiber reinforced polymers. The Canada Network of Centers of Excellence on Intelligent Sensing for Innovative Structures, University of Manitoba, Winnipeg, Manitoba, Canada, September2001.
    [65]Toutanji H A and Saafi M. Flexural Behavior of Concrete Beams Reinforced with Glass Fiber-Reinforced Polymer (GFRP) Bars[J]. ACI Structural Jorunal.2000, Vol.97(5):712-719.
    [66]高丹盈.玻璃纤维聚合物筋混凝土梁裂缝和挠度的特点及计算方法.水利学报.2001,8:53-58
    [67]杨剑. CFRP预应力筋超高性能混凝土梁受力性能研究.2007.
    [68]过镇海.钢筋混凝土原理.北京:清华大学出版社,1999.
    [69]水工混凝土结构设计规范.SL/T191-96.
    [70]杜拱辰.现在预应力混凝土结构.1988.
    [71]Commentary on Building Code Requirements for Reinforced Concrete, ACI 318-77, American Concrete Institute, Detroit, 1977.
    [72]Deflections of Concrete Structures, ACI Special Publication SP-43, American Concrete Insittute, Detroit,1974.
    [73]“Deflection of Continuous Concrete Beams,”ACI Committee 435, ACI Journal, Vol.70, No.12, December 1973, pp.781-787.
    [74] R. F. Warner &K. A. Faulkes , Prestressed Concrete, Pitman Australia, 1979.
    [75] R. F. Warner, B.V. Rangan, A.S.Hall. Reinforced Concrete , Pitman Publishing, Melborne, 1976.
    [76]余天起.预应力CFRP筋混凝土梁延性性能试验研究.2006.
    [77]Dorian Peng Tung.Deformability and Ductility of Partially-Prestressed Concrete Beams containing CFRP/Stainless Steel Reinforcements.
    [78]Naaman, A.E.,Harajli, M.H. and Wight, J.K.,1986.“Analysis of Ductility in Partially Prestressed Concrete Flexural Members,”PCI Journal, Vol.31, No.3, May-June 1986,pp.64-83.
    [79]Cohn, M.Z. and Bartlett, M.,1986“Nonlinear Flexural Response of Partially Prestressed Concrete Sections”, Journal of the Structure Division, ASCE,Vol.108, No.ST12, December 1982, pp.2747-2765.
    [80]Abdelrahman.A.A., 1995.“Serviceability of Concrete Beams Prestressed by Fibre Reinforced Plastic Tendons”, Ph.D. Thesis.Department of Civil and Geological Engineering– Structural Engineering Division. University of Manitoba. Winnipeg. Manitoba. Canada.October 1995.
    [81]Taniguchi, H., Mutsuyoshi, H., Kita, T. and Machida, A.,1993.“Ductile Behavior of Beams Using FRP as Tendons and Transverse Reinforcement”, Fiber-Reinforced-Plastic Reinforcement for Concrete Structures-International Symposium, ACI, SP-138,1993,pp. 651-670.
    [82]taniguchi H,Mutsuyoshi H,Kita T and Machida A.Ductile behaviour of beams suing FRP as tendons and transverse reinforcement[J].American concrete institute,1993,SP-138:585-598
    [83]Grace, N.F. and Sayed, G.A.,1998.“Behavior of Ezternally Draped CFRP Tendons in Prestressed Concrete Bridges”, PCI Journal,Vol.43, No.5, September-October 1998, pp.88-101.
    [84]Kakizawa, T. and Ohho, S., 1993.“Flexural Behavior and Energy Absorption of Carbon FRP Reinforced Concrete Beams”, Fiber-Reinforced-Plastic Reinforcement for Concrete Structures-International Symposium, ACI, SP-138,1993,PP.585-598.
    [85]Jaeger, L.G., Mufti, A.A. and Tadros, G.,1997.“The Concept of the Overall Performance Factor in Rectangular-Section Reinforced Concrete Beams”,Nonmetallic(FRP) Reinforcement for Concrete Structures, Proceedings of the third International Symposium, Japan Concrete Institute, Vol.2, Japan, October 1997, pp. 551-558.
    [86]Vijay, P.V. and GangaRao, H.V.S.,2001.“Bending Behavior and Deformability of Glass Fiber-Reinforced Ploymer Reinforced Concrete Members”, ACI Structural Journal, Vol.98, No.6, November-December 2001,pp.834-842.
    [87]陈辉.GFRP筋与钢筋混合配筋混凝土受弯构件的试验研究与理论分析.2005
    [88]孟履祥.纤维塑料筋部分预应力混凝土梁受弯性能研究.2005.
    [89]李国.ANSYS在土木工程中的应用.2007.
    [90]吕西林,金国芳,吴晓涵.钢筋混凝土结构非线性有限元理论与应用[M].上海:同济大学出版社,1997.5.
    [91]江见鲸,陆新征,叶列平.混凝土结构有限元分析[M].北京:清华大学出版,2005.3
    [92]沈聚敏,王传志,江见鲸.钢筋混凝土有限元与析壳极限分析[M].北京:清华大学出版社,1993.11。
    [93]陈进,黄薇.水工钢筋混凝土结构试验和理论[M].武汉:长江出版社,2005.1.
    [94]郝文化.ANSYS土木工程应用实例[M].北京:中国水利水电出版社,2005.1.
    [95]陆新征,江见鲸.用ANSYS Solid65单元分析混凝土组合构件复杂应力.建筑结构,2003,33(6):22-24.
    [96]M. Brun, J. M. Reynounard, L. Jezequel. A simple shear wall model taking into account stiffness degradation. Engineering Structures, 2003,25:1-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700