体外微环境调控诱导人源性骨髓间充质干细胞向胰岛素分泌细胞分化及移植研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:The Study of Getting Insulin Producing Cells Both Morphologically and Functionally from Human Bone Marrow MSCs under Microenvironmental Manipulation in Vitro for Transplantation
  • 作者:谢秋萍
  • 论文级别:博士
  • 学科专业名称:外科学
  • 学位年度:2008
  • 导师:吴育连
  • 学科代码:100210
  • 学位授予单位:浙江大学
  • 论文提交日期:2008-04-01
摘要
[研究背景]
     糖尿病是严重危害人类健康的常见病和多发病。糖尿病的发病机制至今尚未完全阐明。普遍观点认为糖尿病人群中约5%-10%为1型糖尿病,主要病因是自身免疫紊乱导致的胰岛β细胞选择性破坏,呈胰岛素依赖性;2型糖尿病发病主要与外周胰岛素抵抗有关,晚期存在胰岛素相对不足,其中20%-30%也呈胰岛素依赖性。尽管外源性胰岛素使用控制血糖已经取得很大的进步,但由于其脉冲式的注入不能保持血糖动态平稳,导致大部分糖尿病患者最终会发生各种微血管并发症。功能β细胞移植(全胰移植或胰岛移植)成为治疗胰岛素依赖性糖尿病非常有前景的方法之一。然而,供体的严重缺乏及异体移植导致的免疫排斥反应严重阻碍了其广泛开展,我们希望能找到一种新的方法解决这些问题。
     2001年Lumelsky等及Assady分别报道可以将小鼠及人的胚胎干细胞诱导分化为能分泌胰岛素的细胞,由此诱导干细胞分化为新的功能胰岛细胞成为解决胰岛移植供体紧缺新的发展方向之一。但胚胎干细胞存在伦理学限制,同时资源有限,且移植后仍存在异体移植免疫排斥。
     成人骨髓间充质干细胞(BM-MSCs)具有多向分化潜能,可向内、中、外三胚层细胞分化,且来源取材方便,资源丰富,并可以实现自体移植,是糖尿病β细胞替代治疗的理想种子细胞。但目前对于BM-MSCs胰岛样分化研究还存在一定缺陷,1)大部分研究采用鼠BM-MSCs,且诱导细胞的胰岛素分泌量少,只有约正常胰岛的1/80,低于胚胎干细胞及神经干细胞诱导后的1/50的胰岛素释放量。2)对于人源性BM-MSCs,其胰岛样分化的研究较少,而且未进行体内的功能鉴定,胰岛素的分泌量及诱导效率均较低。
     本课题在上述实验的基础上,利用Percoll密度梯度离心结合贴壁筛选分离并培养扩增12株成人BM-MSCs,并进一步通过建立体外三步法微环境调控诱导BM-MSCs向胰岛样细胞分化。在研究过程中我们发现,1)采用Percoll密度梯度离心结合贴壁筛选法分离得到的细胞在体外可以稳定传代,形态学检测、流式细胞表型及分化能力鉴定均符合国际间充质干细胞特点,且没有明显成瘤性。2)我们意外发现,未诱导的BM-MSCs表达部分胰腺发育相关基因,并在传代后仍能保持特性,这部分研究未见国际报道,提示BM-MSCs存在胰岛前体细胞性质干细胞,具有胰岛样分化潜能。3)我们结合已有研究多次探索,建立了三步法微环境调控诱导方法,成人BM-MSCs在诱导后可以自发形成胰岛样结构,并且多个胰岛相关基因表达激活或增强,DTZ染色及免疫荧光均证实诱导后细胞表达胰岛素及其他内分泌激素,且电镜显示具有胰岛内分泌细胞超微结构。更重要的是,体外高糖刺激试验显示诱导后细胞释放胰岛素,且随着葡萄糖浓度升高而增加,23mM刺激下胰岛素释放量达正常胰岛的1/50,高于已有鼠BM-MSCs诱导后胰岛素释放量60%。而且最重要的是,诱导后细胞移植可以降低糖尿病鼠血糖,改善其糖尿病症状,增加体重,延长生存时间。本研究为人源性BM-MSCs诱导向胰岛素分泌细胞分化替代功能p细胞移植治疗糖尿病,缓解供体紧缺奠定了实验基础。
     第一部分:成人BM-MSCs的分离纯化培养及生物学特性鉴定
     目的:建立成人BM-MSCs体外分离、培养、扩增的有效方法,并探讨其部分生物学特性、分化潜能及成瘤性。
     方法:与血液科骨髓室联系,获取非白血病人骨髓2-3ml,肝素化后利用密度为1.073的Pereoll分离液密度梯度离心,吸取上、中层液体界面处的单个核细胞,结合间充质细胞贴壁生长的特点,通过更换培养液不断纯化分离BM-MSCs并扩增培养。通过倒置显微镜观察细胞的一般形态结构;建立生长曲线了解其生长特性;RT-PCR检测干细胞标志物Oct-4在1-4代成人BM-MSCs的表达;流式细胞学检测CD45,CD34,CD44,CD29,CD14,HLA-DR,CD105等表面分子标志的表达情况;采用含有胰岛素、地塞米松、Ham F12添加剂等的培养基孵育21天诱导成人BM-MSCs向脂肪细胞分化,油红染色鉴定其分化效率;采用PANC-1细胞为阳性对照,软琼脂克隆及裸鼠成瘤实验鉴定BM-MSCs的成瘤性。
     结果:原代接种48小时出现贴壁细胞,5-7天后细胞增殖速度明显增快,12-15天原代细胞汇合达80%-90%,原代及传代细胞形态学观察均成典型的成纤维样形态特征,旋涡状生长;传代培养细胞在5-8天时增殖速度最快,8-9天时达到平台期,单代细胞可扩增20-25倍。三个不同供体来源的1-4代BM-MSCs均表达干细胞标志Oct-4,且流式检测显示CD45、CD34、CD14、HLA-DR阴性,CD44、CD29和CD105阳性。经过特定方案诱导后,BM-MSCs细胞变圆,呈现脂肪油滴,油红染色成红色。体外软琼脂克隆BM-MSCs组未见明显克隆细胞团形成,体内裸鼠成瘤实验BM-MSCs也未形成移植瘤。
     第二部分:未诱导的成人BM-MSCs胰腺发育相关标记物表达研究
     目的:在mRNA及蛋白表达水平检测体外培养的未诱导的成人BM-MSCs胰腺发育相关基因表达情况,探索其胰岛样细胞分化潜能。
     方法:采用RT-PCR检测体外培养的未诱导的成人BM-MSCs胰腺发育相关基因ISL-1、Beta2/NeuroD、Nkx6.1、Glut2、PDX-1、Nestin、CK18和CK19在mRNA水平表达情况:Western Blot及免疫组化染色检测体外培养的未诱导的成人BM-MSCs胰腺发育相关基因Glut2、ISL-1、CK18及CK19在蛋白水平及细胞原位表达情况。
     结果:RT-PCR显示ISL-1,Beta2/NeuroD,Nkx6.1,Glut2,CK18及CK19均阳性,但PDX-1及Nestin阴性;而Western Blot检测CK18和CK19均阳性,但ISL-1及Glut2阴性;免疫组化显示大部分细胞CK18和CK19阳性,而只有小部分细胞ISL-1及Glut2阳性。
     第三部分:体外微环境调控诱导人BM-MSCs分化为胰岛素分泌细胞
     目的:建立体外三步法微环境调控诱导成人BM-MSCs向胰岛样细胞分化方案,鉴定分化后细胞胰岛相关基因表达及功能。
     方法:采用传代扩增3-5代的成人BM-MSCs,2-3×10~4个细胞/cm~2密度接种,先后利用高糖、碱性成纤维细胞生长因子(bFGF)、尼克酰胺(nicotinamide)、表皮生长因子(EGF)、exendin-4、B27和N2添加剂、肝细胞生长因子(HGF)、activin-A等多种细胞因子及营养因子建立三步法体外微环境调控方案诱导处理。倒置显微镜每日观察诱导后细胞形态的变化;并在每个诱导阶段末,提取诱导及RNA和蛋白检测其胰岛相关基因表达改变,以未诱导细胞细胞为对照;三阶段诱导结束后,双硫腙(Dithizone:DTZ)染色鉴定胰岛素分泌细胞形成情况:免疫荧光检测胰岛素、c肽及胰高血糖素在诱导后细胞中的表达情况;电镜观察细胞超微结构变化;体外高糖刺激实验测定诱导前、诱导中期及诱导末细胞胰岛素分泌能力及其对葡萄糖的应激反应情况。
     结果:未诱导细胞传代后仍呈成纤维样,第一阶段结束后细胞呈圆形或不规则形,且易汇聚成团,第二阶段诱导后,细胞逐渐增殖,少量细胞重现梭样形态,汇聚细胞团逐渐增大增多,三阶段诱导结束细胞团体积也较前明显增大,并出现较明显的边界,与胰岛结构相似。DTZ染色显示,诱导形成的细胞团可染成猩红色。RT-PCR及WesternBlot检测显示胰岛相关基因ISL-1、Glut2、PDX-1、Nestin及胰岛素、胰高血糖素在在诱导过程中表达逐渐增强或激活。免疫荧光显示诱导后部分细胞表达胰岛素、c肽及胰高血糖素。电镜检测显示诱导后细胞浆内存在含有圆形或长杆形包装颗粒的空泡状结构,并具有丰富的内质网及线粒体:体外高糖刺激实验显示诱导后的细胞具有胰岛素分泌能力,且分泌量随着葡萄糖浓度升高而增加;23mM高糖刺激下,胰岛素分泌量达到正常胰岛的1/50。
     第四部分:成人BM-MSCs诱导分化为胰岛素分泌细胞的体内研究
     目的:检测成人BM-MSCs体外诱导分化后的形成的胰岛素分泌细胞移植对纠正1型糖尿病鼠血糖波动的作用,探索其糖尿病治疗效果。
     方法:通过腹腔注射大剂量链脲佐菌素(STZ)诱导免疫缺陷裸鼠建立1型糖尿病模型,以制模后一周内两次血糖大于18mmol/l为成模标准。将成模鼠分两组:分别移植诱导后及未诱导成人BM-MSCs于模型鼠肾包膜下,移植细胞量约每只糖尿病鼠0.8-1×10~7细胞。并以未注射STZ诱导糖尿病的正常裸鼠移植PBS为空白对照,连续监测直至移植后30天。每五天通过剪鼠尾取血测空腹血糖,观察统计不同组移植前后血糖、体重变化及存活时间。于移植后2天及30天取移植物HE染色检测不同时间的状态;30天后取移植物胰岛素染色检测。
     结果:STZ诱导后裸鼠血糖明显升高,体重减轻,出现典型糖尿病状态,成模率达到80%;细胞移植后可见移植诱导后人BM-MSCs组模型鼠与未诱导人BM-MSCs组相比,血糖明显下降,体重上升,且生存时间明显延长,但未达到正常小鼠水平。HE染色可见移植物在肾包膜下呈小丘样细胞团块;移植后2天移植物HE染色可见细胞边界较模糊,有炎症细胞浸润,没有明显血供形成;移植后30天移植物,有明显血供,且细胞边界清晰。胰岛素染色见有少量细胞呈阳性。
     结论:
     1,采用Pereoll密度梯度离心结合贴壁筛选法,可以分离纯化人骨髓间充质干细胞,获得的细胞纯度高、扩增能力强,体外扩增12代以上可以维持其幼稚细胞形态特征。
     2,培养扩增的成人BM-MSCs干细胞标记物阳性,具有干细胞特性,具有脂肪分化能力,且未见成瘤性。
     3,体外培养的未诱导的成人BM-MSCs中部分细胞表达多个胰腺发育相关基因,提示其具有胰岛样细胞分化潜能;且扩增的BM-MSCs存在异质性,可能包含有部分细胞具有胰腺前体细胞的特性;
     4,成人BM-MSCs在体外通过三步法微环境调控诱导,可以分化为胰岛样细胞,具有胰岛类似的结构、超微结构,具有受葡萄糖调控的胰岛素分泌功能。
     5,诱导后成人BM-MSCs在体内可以有效调控血糖,减轻糖尿病症状,延长生存时间,对糖尿病有明显的治疗作用,提示骨髓间充质干细胞可成为功能B细胞替代细胞来源用于糖尿病治疗。
Background
     Diabetes mellitus (DM), which affects millions of people worldwide, is characterized by abnormally high levels of glucose in blood caused by either absolute (type 1 DM) or relative (type 2 DM) insulin deficiency due to the destruction of pancreaticβ-cells by T cells of the immune system or decreased insulin sensitivity respectively. In both types, an inadequate mass of functional islet cells is the major problem for the onset of hyperglycemia and the development of overt diabetes. Islet cell replacement is considered as the optimal treatment recently. However the deficiency of transplantable donor islets has historically hampered its further development.
     Lots of researchers have made great effort to expand pancreatic islets by stimulating endogenous regeneration of islets or generating islet-like cells from various sources of stem cells including embryonic stem cells (ESCs), multipotent stem cells within nonendocrine compartments of the pancreas, and various tissue precursor cells, such as hepatic oval cells, splenocytes. However even with these inspiring experimental advances, some obstacles, such as immune rejection, limited sources of stem cells from these organs, still remain.
     In the last decades, a new type of multipotent stem cells in adult bone marrow was reported. Bone marrow (BM) is a complex tissue containing two major stem cell types, hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs). Both of them are thought to be multipotent and can be induced to several cell types. Moreover BM-MSCs even can be induced to differentiate into ectodermal neural and epidermal-like cells and endodermal hepatic cells or maybe even other cell lineages from all three germ layers under appropriate experimental conditions. Comparing with other stem cells mentioned above, human BM-MSCs have several obvious advantages: it can be expanded in culture for many doublings, which provides a potentially unlimited source; it has a simple reliable and repeatable procedure to obtain, which makes autogenic transplantation come true and alleviates the major limitations of availability and allogenic rejection simultaneously. Most importantly, there is no need to consider the ethical problems, the major problem of ESCs. In the light of the actual worldwide diabetes epidemic, the generation of new insulin producing cells (IPCs) from human BM-MSCs would offer a particularly useful candidate for deficient donor islets.
     In the last 3 years, several studies have discussed the possibility of adult MSCs in BM to differentiate into IPCs with totally different induction protocols. However these articles mostly focus on murine or rat derived BM-MSCs, theβcell differentiation potential and characteristics of human BM-MSCs are poorly documented. Recently there have been three inspiring reports on human BM-MSCs expressing insulin under genetic modulation, and in the present study, we demonstrate that, under defined culture conditions, human BM-MSCs positive for the stem-cell marker Oct-4 express a series of pancreas developing markers including ISL-1, Beta2/NeuroD, Nkx6.1,Glut2, CK18 and CK19 without any induction, and can be induced to form islet-like aggregates morphologically. These aggregates can secrete insulin in a glucose related manner and express upregulated pancreatic developmental genes especially Nestin and PDX-1. Most importantly, after transplanted under the renal capsule of mice, the differentiated cells can decrease the blood glucose and rescue the diabetic mice.
     The 1st part: Isolation and cultivation of human BM-MSCs and biological features of the derived cells
     Objective: To establish a method for isolation, cultivation and expansion of adult human BM-MSCs, and study their biological features and potential to form carcinoma
     Method: 2-3 ml of heparinized adult bone marrow from nonleukemia persons were washed with PBS, and purified by Percoll gradient. Mononuclear cells at the Percoll interface were collected and seeded in expansion medium consisted of DMEM-LG supplemented with 10% fetal bovine serum and 1% penicillin/streptomycin. The BM-MSCs were purified by their adhesiveness. The changes of cell's morphology were observed by phase contrast microscopy every day, and their expansion fashion at passage 3 was revealed by growth curve. Their expressions of stem cell marker Oct-4 were examined by RT-PCR, and cell surface markers were detected by Flow Cytometry. Their differentiation potential was examined by adipose induction, and their potential to form carcinoma were detected by soft agar colony formation assay and in vivo carcinoma formation assay in athymic nu/nu mice.
     Result: Both primary and passage human BM-MSCs showed typically fibroblast- like morphology and had maintined highly proliferative capacity. The cells expressed mRNA of Oct-4, were negative for CD45, CD34, CD14, HLA-DR, and positive for D44, CD29, CD105. The cells showed adipose differentiation after 21 days' induction and no potential to form carcinoma both soft agar colony formation assay and in vivo carcinoma formation assay in athymic nu/nu mice.
     The 2nd part: Expression of pancreas developing markers on undifferentiated human BM-MSCs
     Objective: To detect the expression of pancreas developing markers on undifferentiated human BM-MSCs in both mRNA and protein level. To reveal their potential to differentiate into insulin producing cells.
     Method: The mRNA expressions of pancreas developing markers including ISL-1、Beta2/NeuroD、Nkx6.1、Glut2、PDX-1、Nestin、CK18 and CK19 were detected by RT-PCR. The protein expressions of Glut2、ISL-1、CK18 and CK19 were further examined by Western Blot and immunocytochemistry.
     Result: Undifferentiated human BM-MSCs were positive for mRNA of ISL-1, Beta2/NeuroD, Nkx6.1, Glut2, CK18 and CK19. Western Blot showed that derived cells expressed CK18 and CK19, but did not express ISL-1 and Glut2. Immunocytochemistry confirmed most cells were positive for CK18 and CK19, and a small portion of cells were positive for ISL-1 and Glut2.
     The 3rd part: Differentiation of human BM-MSCs to insulin producing cells under microenvironmental manipulation in vitro.
     Objective: To found a three-stage induction protocol by microenvironmental manipulation to induce human BM-MSCs to differentiate into insulin producing cells in vitro. To reveal the possibility of human BM-MSCs to differentiate into islet-like cells without gene manipulation.
     Method: Human BM-MSCs at passage 3-5 were reseeded at a destiny of 2-3×10~4 cells per cm~2, and were treated sequentially by three-stage induction protocol composed of high glucose, bFGF, nicotinamide, EGF, exendin-4, B27, N2, HGF and activin-A et al. The changes of cell's morphology were observed by phase contrast microscopy every day. The mRNA and protein expression profiles of islet related markers were examined by RT-PCR and Western Blot respectively at the end of every induction stage. After three-stage induction, DTZ staining and immunocytochemistry were carried out to examine the insulin expression. Electronic microscopy was used to show the ultrastructure characteristics of differentiated cells and in vitro glucose stimulation was carried out for cells without induction, cells at the end of the second stage and cells after the entire induction.
     Results: Induced human BM-MSCs were found to form typical islet-like aggregates and ultrastructure characteristics of matureβcells were proved by electronic microscopy. They were also activated or upregulated to express multiple genes related to pancreaticβcell development and function (PDX-1, Nestin, pax-6, Glut2, ISL-1 and insulin). Insulin c-peptide and glucagon production were identified by immunocytochemistry. Insulin expression was further confirmed by DTZ staining and in vitro glucose stimulation which certified as a glucose related manner.
     The 4th part: Transplantation of insulin producing cells differentiated from human BM-MSCs can control diabetes of STZ induced diabetic nude mice.
     Objective: To investigate the in vivo effect of insulin producing cells differentiated from human BM-MSCs by microenvironmental manipulation on diabetes controls in nude mice
     Method: The diabetic nude mice were achieved by STZ (220 mg/kg) injection as blood glucose level was higher than 18mmol/l. Treated and nontreated human BM-MSCs were transplanted under the renal capsule of diabetic nude mice respectively. Blood glucose levels, weight and survival time were monitored for 30 days after transplantation. The graft status was examined by HE staining 2 days after transplantation and at the end of the observation period. Immunocytochemistry was carried out to detect the insulin expression.
     Result: Xenotransplantation of insulin producing cells from human BM-MSCs can decrease the hyperglycemia and prolong the survival time of STZ induced diabetic nude mice.
     Conclusion:
     1. Human BM-MSCs can be isolated and purified by Percoll gradient combined with adhesiveness selection. Derived cells can be cultured stably for 12 passages and expanded quickly.
     2. Expanded human BM-MSCs have the stem cell characteristics. They are positive for stem cell marker- Oct-4, and have the potential to differentiate to adipose cells.
     3. Expanded human BM-MSCs expresse several pancreas developing markers, indicating that they have the potential to differentiate into insulin producing cells.
     4. Human BM-MSCs can be induced into insulin producing cells in vitro by microenvironmental manipulation with a three-stage protocol. Differentiated cells have islet-like morphology and function.
     5. Differentiated cells transplantation can control diabetes of STZ induce nude mice, indicating human BM-MSCs can be another source of functionalβcells for diabetes treatment.
引文
1. Wild S, Roglic G, Green A, Sicree R, King H: Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 27:1047-1053,2004
    2.徐刚,袁敏生,钱荣立:胰岛细胞移植的现状与前景.中国糖尿病杂志 9:49-53,2001
    3.糖尿病傅:见:叶任高,主编内科学第五版.北京:人民卫生出版社,2000;798.820
    4. Epidemiology of Diabetes Interventions and Complications (EDIC). Design, implementation, and preliminary results of a long-term follow-up of the Diabetes Control and Complications Trialcohort. Diabetes Care 22:99-111,1999
    5. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group. Lancet 352:837-853,1998
    6. Ryan EA, Lakey JR, Paty BW, Imes S, Korbutt GS, Kneteman NM, Bigam D, Rajotte RV, Shapiro AM: Successful islet transplantation: continued insulin reserve provides long-term glycemic control. Diabetes 51:2148-2157,2002
    7. Gautier JF, Beressi JP, Leblanc H, Vexiau P, Passa P: Are the implications of the Diabetes Control and Complications Trial (DCCT) feasible in daily clinical practice? Diabetes Metab 22:415-419,1996
    8. Sutherland DE: Current status of beta-cell replacement therapy (pancreas and islet transplantation) for treatment of diabetes mellitus. Transplant Proc 35:1625-1627,2003
    9. Bottino R, Trucco M, Balamurugan AN, Stand TE: Pancreas and islet cell transplantation. Best Pract Res Clin Gastroenterol 16:457-474,2002
    10. Nanji SA, Shapiro AM: Advances in pancreatic islet transplantation in humans. Diabetes Obes Metab 8:15-25,2006
    11. Bottino R, Balamurugan AN, Giannoukakis N, Trucco M: Islet/pancreas transplantation: challenges for pediatrics. Pediatr Diabetes 3:210-223,2002
    12. Najarian JS, Sutherland DE, Matas AJ, Steffes MW, Simmons RL, Goetz FC: Human islet transplantation: a preliminary report. Transplant Proc 9:233-236,1977
    13. Warnock GL, Kneteman NM, Ryan EA, Rabinovitch A, Rajotte RV: Long-term follow-up after transplantation of insulin-producing pancreatic islets into patients with type 1 (insulin-dependent) diabetes mellitus. Diabetologia 35:89-95,1992
    14. Shapiro AM, Lakey JR, Ryan EA, Korbutt GS, Toth E, Warnock GL, Kneteman NM, Rajotte RV: Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med 343:230-238,2000
    15. Merani S, Shapiro AM: Current status of pancreatic islet transplantation. Clin Sci (Land) 110:611-625,2006
    16. O'Gorman D, Kin T, Murdoch T, Richer B, McGhee-Wilson D, Ryan EA, Shapiro JA, Lakey JR: The standardization of pancreatic donors for islet isolations. Transplantation 80:801-806, 2005
    17. LaPorte RE, Dearwater SR, Chang YF, Songer TJ, Aaron DJ, Anderson RL, Olsen T: Efficiency and accuracy of disease monitoring systems: application of capture-recapture methods to injury monitoring. Am J Epidemiol 142:1069-1077,1995
    18. Lin SS, Hanaway MJ, Gonzalez-Stawinski GV, Lau CL, Parker W, Davis RD, Byrne GW, Diamond LE, Logan JS, Platt JL: The role of anti-GalaIphal-3GaI antibodies in acute vascular rejection and accommodation of xenografts. Transplantation 70:1667-1674,2000
    19. Kirchhof N, Shibata S, Wijkstrom M, Kulick DM, Salerno CT, Clemmings SM, Heremans Y, Galili U, Sutherland DE, Dalmasso AP, Hering BJ: Reversal of diabetes in non-immunosuppressed rhesus macaques by intraportal porcine islet xenografts precedes acute cellular rejection. Xenotransplantation 11:396-407,2004
    20. Hamelmann W, Gray DW, Cairns TD, Qzasa T, Ferguson DJ, Cahill A, Welsh KI, Morris PJ: Immediate destruction of xenogeneic islets in a primate model. Transplantation 58:1109-1114,1994
    21. Hering BJ, Wijkstrom M, Graham ML, Hardstedt M, Aasheim TC, Jie T, Ansite JD, Nakano M, Cheng J, Li W, Moran K, Christians U, Finnegan C, Mills CD, Sutherland DE, Bansal-Pakala P, Murtaugh MP, Kirchhof N, Schuurman HJ: Prolonged diabetes reversal after intraportal xenotransplantation of wild-type porcine islets in immunosuppressed nonhuman primates. NatMed 12:301-303,2006
    22. McCurry KR, Kooyman DL, Alvarado CG, Cotterell AH, Martin MJ, Logan JS, Platt JL: Human complement regulatory proteins protect swine-to-primate cardiac xenografts from humoral injury. NatMed 1:423-427,1995
    23. Martina Y, Marcucci KT, Cherqui S, Szabo A, Drysdale T, Srinivisan U, Wilson CA, Patience C, Salomon DR: Mice transgenic for a human porcine endogenous retrovirus receptor are susceptible to productive viral infection. J Virol 80:3135-3146,2006
    24. Badet L, Titus TT, McShane P, Chang LW, Song Z, Ferguson DJ, Gray DW: Transplantation of mouse pancreatic islets into primates—in vivo and in vitro evaluation. Transplantation 72:1867-1874,2001
    25. Narang AS, Mahato RI: Biological and biomaterial approaches for improved islet transplantation. Pharmacol Rev 58:194-243,2006
    26. Narushima M, Kobayashi N, Okitsu T, Tanaka Y, Li SA, Chen Y, Miki A, Tanaka K, Nakaji S, Takei K, Gutierrez AS, Rivas-Carrillo JD, Navarro-Alvarez N, Jun HS, Westerman KA, Noguchi H, Lakey JR, Leboulch P, Tanaka N, Yoon JW: A human beta-cell line for transplantation therapy to control type 1 diabetes. Nat Biotechnol 23:1274-1282,2005
    27. Wagers AJ, Weissman IL: Plasticity of adult stem cells. Cell 116:639-648,2004
    28. Lumelsky N, Blondel O, Laeng P, Velasco I, Ravin R, McKay R: Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science 292:1389-1394,2001
    29. Assady S, Maor G, Amit M, Itskovitz-EIdor J, Skorecki KL, Tzukerman M: Insulin production by human embryonic stem cells. Diabetes 50:1691-1697,2001
    30. Leon-Quinto T, Jones J, Skoudy A, Burcin M, Soria B: In vitro directed differentiation of mouse embryonic stem cells into insulin-producing cells. Diabetologia 47:1442-1451,2004
    31. Lester LB, Kuo HC, Andrews L, Nauert B, Wolf DP: Directed differentiation of rhesus monkey ES cells into pancreatic cell phenotypes. Reprod Biol Endocrinol 2:42,2004
    32. Segev H, Fishman B, Ziskind A, Shulman M, Itskovitz-EIdor J: Differentiation of human embryonic stem cells into insulin-producing clusters. Stem Cells 22:265-274,2004
    33. Newman MB, Misiuta I, Willing AE, Zigova T, Karl RC, Borlongan CV, Sanberg PR: Tumongenicity issues of embryonic carcinoma-derived stem cells: relevance to surgical trials using NT2 and hNT neural cells. Stem Cells Dev 14:29-43,2005
    34. Song KH, Ko SH, Ann YB, Yoo SJ, Chin HM, Kaneto H, Yoon KH, Cha BY, Lee KW, Son HY: In vitro transdifferentiation of adult pancreatic acinar cells into insulin-expressing cells. Biochem Biophys Res Commun 316:1094-1100,2004
    35. Kojima H, Fujimiya M, Matsumura K, Younan P, Imaeda H, Maeda M, Chan L: NeuroD-betacellulin gene therapy induces islet neogenesis in the liver and reverses diabetes in mice.Nat Med 9:596-603,2003.
    36. Yoshida S, Kajimoto Y, Yasuda T, Watada H, Fujitani Y, Kosaka H, Gotow T, Miyatsuka T, Umayahara Y, Yamasaki Y, Hori M: PDX-1 induces differentiation of intestinal epithelioid IEC-6 into insulin-producing cells. Diabetes 51:2505-2513,2002
    37. Hori Y, Gu X, Xie X, Kim SK: Differentiation of insulin-producing cells from human neural progenitor cells. PLoS Med 2:e103,2005
    38. Shi CM, Cheng TM: Differentiation of dermis-derived multipotent cells into insulin-producing pancreatic cells in vitro. World J Gastroenterol 10:2550-2552,2004
    39. Wang X, Willenbring H, Akkari Y, Torimaru Y, Foster M, Al-Dhalimy M, Lagasse E, Finegold M, Olson S, Grompe M: Cell fusion is the principal source of bone-marrow-derived hepatocytes. Nature 422:897-901,2003
    40. Ferrari G, Cusella-De Angelis G, Coletta M, Paolucci E, Stornaiuolo A, Cossu G, Mavilio F: Muscle regeneration by bone marrow-derived myogenic progenitors. Science 279:1528-1530,1998
    41. Pereira RF, Halford KW, O'Hara MD, Leeper DB, Sokolov BP, Pollard MD, Bagasra O, Prockop DJ: Cultured adherent cells from marrow can serve as long-lasting precursor cells for bone, cartilage, and lung in irradiated mice. Proc Natl Acad Sci USA 92:4857-4861,1995
    42. Krause DS, Theise ND, Collector MI, Henegariu O, Hwang S, Gardner R, Neutzel S, Sharkis SJ: Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell 105:369-377,2001
    43. Woodbury D, Schwarz EJ, Prockop DJ, Black IB: Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res 61:364-370,2000
    44. Sanchez-Ramos J, Song S, Cardozo-Pelaez F, Hazzi C, Stedeford T, Willing A, Freeman TB, Saporta S, Janssen W, Patel N, Cooper DR, Sanberg PR: Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp Neurol 164:247-256,2000
    45. Chun-mao H, Su-yi W, Ping-ping L, Hang-hui C: Human bone marrow-derived mesenchymal stem cells differentiate into epidermal-like cells in vitro. Differentiation 75:292-298, 2007
    46. Jahr H, Bretzel RG: Insulin-positive cells in vitro generated from rat bone marrow stromal cells. Transplant Proc 35:2140-2141,2003
    
    1. Weissman IL, Baltimore D: Disappearing stem cells, disappearing science. Science 292:601, 2001
    
    2. Evans MJ, Kaufman MH: Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154-156,1981
    
    3. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM: Embryonic stem cell lines derived from human blastocysts. Science 282:1145-1147,1998
    
    4. Preston SL, Alison MR, Forbes SJ, Direkze NC, Poulsom R, Wright NA: The new stem cell biology: something for everyone. Mol Pathol 56:86-96,2003
    
    5. Poulsom R, Alison MR, Forbes SJ, Wright NA: Adult stem cell plasticity. J Pathol 197:441-456, 2002
    
    6. Morshead CM, Benveniste P, Iscove NN, van der Kooy D: Hematopoietic competence is a rare property of neural stem cells that may depend on genetic and epigenetic alterations. Nat Med 8:268-273,2002
    
    7. Kawada H, Ogawa M: Bone marrow origin of hematopoietic progenitors and stem cells in murine muscle. Blood 98:2008-2013,2001
    
    8. Suzuki A, Zheng YW, Kaneko S, Onodera M, Fukao K, Nakauchi H, Taniguchi H: Clonal identification and characterization of self-renewing pluripotent stem cells in the developing liver. J CellBiol 156:173-184,2002
    
    9. Ferrari G, Cusella-De Angelis G, Coletta M, Paolucci E, Stornaiuolo A, Cossu G, Mavilio F: Muscle regeneration by bone marrow-derived myogenic progenitors. Science 279:1528-1530, 1998
    
    10. Pereira RF, Halford KW, O'Hara MD, Leeper DB, Sokolov BP, Pollard MD, Bagasra O, Prockop DJ: Cultured adherent cells from marrow can serve as long-lasting precursor cells for bone, cartilage, and lung in irradiated mice. Proc Natl Acad Sci USA 92:4857-4861,1995
    
    11. Krause DS, Theise ND, Collector MI, Henegariu O, Hwang S, Gardner R, Neutzel S, Sharkis SJ: Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell 105:369-377,2001
    
    12. Barry F, Boynton RE, Liu B, Murphy JM: Chondrogenic differentiation of mesenchymal stem cells from bone marrow: differentiation-dependent gene expression of matrix components. Exp Cell Res 268:189-200,2001
    13. Muraglia A, Cancedda R, Quarto R: Clonal mesenchymal progenitors from human bone marrow differentiate in vitro according to a hierarchical model. J Cell Sci 113 ( Pt 7): 1161 -1166, 2000
    14. Digirolamo CM, Stokes D, Colter D, Phinney DG, Class R, Prockop DJ: Propagation and senescence of human marrow stromal cells in culture: a simple colony-forming assay identifies samples with the greatest potential to propagate and differentiate. Br J Haematol 107:275-281, 1999
    15. Woodbury D, Schwarz EJ, Prockop DJ, Black IB: Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res 61:364-370,2000
    16. Sanchez-Ramos J, Song S, Cardozo-Pelaez F, Hazzi C, Stedeford T, Willing A, Freeman TB, Saporta S, Janssen W, Patel N, Cooper DR, Sanberg PR: Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp Neurol 164:247-256,2000
    17. Lee KD, Kuo TK, Whang-Peng J, Chung YF, Lin CT, Chou SH, Chen JR, Chen YP, Lee OK: In vitro hepatic differentiation of human mesenchymal stem cells. Hepatology 40:1275-1284, 2004
    18. Wang SY, Han CM, Lai PP, Cen HH: [Study on differatiation of human mesenchymal stem cells into epidermal cells]. Zhonghua Shao Shang Za Zhi 23:66-68, 2007
    19. Barry FP, Murphy JM: Mesenchymal stem cells: clinical applications and biological characterization. Int J Biochem Cell Biol 36:568-584,2004
    20. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR: Multilineage potential of adult human mesenchymal stem cells. Science 284:143-147,1999
    21. Sekiya I, Larson BL, Smith JR, Pochampally R, Cui JG, Prockop DJ: Expansion of human adult stem cells from bone marrow stroma: conditions that maximize the yields of early progenitors and evaluate their quality. Stem Cells 20:530-541,2002
    22. Colter DC, Sekiya I, Prockop DJ: Identification of a subpopulation of rapidly self-renewing and multipotential adult stem cells in colonies of human marrow stromal cells. Proc Natl Acad Sci USA 98:7841-7845,2001
    23. Moriscot C, de Fraipont F, Richard MJ, Marchand M, Savatier P, Bosco D, Favrot M, Benhamou PY: Human bone marrow mesenchymal stem cells can express insulin and key transcription factors of the endocrine pancreas developmental pathway upon genetic and/or microenvironmental manipulation in vitro. Stem Cells 23:594-603,2005
    24. Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, Reyes M, Lenvik T, Lund T, Blackstad M, Du J, Aldrich S, Lisberg A, Low WC, Largaespada DA, Verfaillie CM: Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418:41-49, 2002
    25. Lodie TA, Blickarz CE, Devarakonda TJ, He C, Dash AB, Clarke J, Gleneck K, Shihabuddin L, Tubo R: Systematic analysis of reportedly distinct populations of multipotent bone marrow-derived stem cells reveals a lack of distinction. Tissue Eng 8:739-751, 2002
    26. Banfi A, Muraglia A, Dozin B, Mastrogiacomo M, Cancedda R, Quarto R: Proliferation kinetics and differentiation potential of ex vivo expanded human bone marrow stromal cells: Implications for their use in cell therapy. Exp Hematol 28:707-715,2000
    27. Stenderup K, Justesen J, Clausen C, Kassem M: Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells. Bone 33:919-926,2003
    28. Mareschi K, Ferrero I, Rustichelli D, Aschero S, Gammaitoni L, Aglietta M, Madon E, Fagioli F: Expansion of mesenchymal stem cells isolated from pediatric and adult donor bone marrow. J Cell Biochem 97:744-754,2006
    29. De Ugarte DA, Morizono K, Elbarbary A, Alfonso Z, Zuk PA, Zhu M, Dragoo JL, Ashjian P, Thomas B, Benhaim P, Chen I, Fraser J, Hedrick MH: Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs 174:101-109,2003
    30. D'Ippolito G, Diabira S, Howard GA, Menei P, Roos BA, Schiller PC: Marrow-isolated adult multilineage inducible (MIAMI) cells, a unique population of postnatal young and old human cells with extensive expansion and differentiation potential. J Cell Sci 117:2971-2981,2004
    31. Pochampally RR, Smith JR, Ylostalo J, Prockop DJ: Serum deprivation of human marrow stromal cells (hMSCs) selects for a subpopulation of early progenitor cells with enhanced expression of OCT-4 and other embryonic genes. Blood 103:1647-1652,2004
    32. Draper JS, Smith K, Gokhale P, Moore HD, Maltby E, Johnson J, Meisner L, Zwaka TP, Thomson JA, Andrews PW: Recurrent gain of chromosomes 17q and 12 in cultured human embryonic stem cells. Nat Biotechnol 22:53-54,2004
    33. Vaca P, Martin F, Vegara-Meseguer JM, Rovira JM, Bema G, Soria B: Induction of differentiation of embryonic stem cells into insulin-secreting cells by fetal soluble factors. Stem Cells 24:258-265,2006
    
    
    1. Weissman IL: Translating stem and progenitor cell biology to the clinic: barriers and opportunities. Science 287:1442-1446, 2000
    
    2. Ebert R, Ulmer M, Zeck S, Meissner-Weigl J, Schneider D, Stopper H, Schupp N, Kassem M, Jakob F: Selenium supplementation restores the antioxidative capacity and prevents cell damage in bone marrow stromal cells in vitro. Stem Cells 24:1226-1235, 2006
    
    3. Poulsom R, Alison MR, Forbes SJ, Wright NA: Adult stem cell plasticity. J Pathol 197:441-456, 2002
    4. Morshead CM, Benveniste P, Iscove NN, van der Kooy D: Hematopoietic competence is a rare property of neural stem cells that may depend on genetic and epigenetic alterations. Nat Med 8:268-273, 2002
    5. Kawada H, Ogawa M: Bone marrow origin of hematopoietic progenitors and stem cells in murine muscle. Blood 98:2008-2013,2001
    6. Suzuki A, Zheng YW, Kaneko S, Onodera M, Fukao K, Nakauchi H, Taniguchi H: Clonal identification and characterization of self-renewing pluripotent stem cells in the developing liver. J Cell Biol 156:173-184,2002
    7. Verfaillie C: Stem cell plasticity. Hematology 10 Suppl 1:293-296,2005
    8. Choi KS, Shin JS, Lee JJ, Kim YS, Kim SB, Kim CW: In vitro trans-differentiation of rat mesenchymal cells into insulin-producing cells by rat pancreatic extract. Biochem Biophys Res Commun 330:1299-1305, 2005
    9. Ianus A, Holz GG, Theise ND, Hussain MA: In vivo derivation of glucose-competent pancreatic endocrine cells from bone marrow without evidence of cell fusion. J Clin Invest 111:843-850, 2003
    10. Tayaramma T, Ma B, Rohde M, Mayer H: Chromatin-remodeling factors allow differentiation of bone marrow cells into insulin-producing cells. Stem Cells 24:2858-2867,2006
    11. Bonner-Weir S, SharmaA: Pancreatic stem cells. J Pathol 197:519-526,2002
    12. Gu G, Dubauskaite J, Melton DA: Direct evidence for the pancreatic lineage: NGN3+ cells are islet progenitors and are distinct from duct progenitors. Development 129:2447-2457,2002
    13. Schwitzgebel VM, Scheel DW, Conners JR, Kalamaras J, Lee JE, Anderson DJ, Sussel L, Johnson JD, German MS: Expression of neurogenin3 reveals an islet cell precursor population in the pancreas. Development 127:3533-3542,2000
    14. Herrera PL: Defining the cell lineages of the islets of Langerhans using transgenic mice. Int J Dev Biol 46:97-103,2002
    15. Soria B: In-vitro differentiation of pancreatic beta-cells. Differentiation 68:205-219, 2001
    16. Lumelsky N, Blondel O, Laeng P, Velasco I, Ravin R, McKay R: Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science 292:1389-1394,2001
    17. Li Y, Zhang R, Qiao H, Zhang H, Wang Y, Yuan H, Liu Q, Liu D, Chen L, Pei X: Generation of insulin-producing cells from PDX-1 gene-modified human mesenchymal stem cells. J Cell Physiol 211:36-44,2007
    18. Pessina A, Eletti B, Croera C, Savalli N, Diodovich C, Gribaldo L: Pancreas developing markers expressed on human mononucleated umbilical cord blood cells. Biochem Biophys Res Commun 323:315-322,2004
    19. D'Ippolito G, Diabira S, Howard GA, Menei P, Roos BA, Schiller PC: Marrow-isolated adult
    ??multilineage inducible (MIAMI) cells, a unique population of postnatal young and old human cells with extensive expansion and differentiation potential. J Cell Sci 117:2971-2981,2004
    
    20. Moriscot C, de Fraipont F, Richard MJ, Marchand M, Savatier P, Bosco D, Favrot M, Benhamou PY: Human bone marrow mesenchymal stem cells can express insulin and key transcription factors of the endocrine pancreas developmental pathway upon genetic and/or microenvironmental manipulation in vitro. Stem Cells 23:594-603,2005
    
    21. Zulewski H, Abraham EJ, Gerlach MJ, Daniel PB, Moritz W, Muller B, Vallejo M, Thomas MK, Habener JF: Multipotential nestin-positive stem cells isolated from adult pancreatic islets differentiate ex vivo into pancreatic endocrine, exocrine, and hepatic phenotypes. Diabetes 50:521-533,2001
    
    22. Hunziker E, Stein M: Nestin-expressing cells in the pancreatic islets of Langerhans. Biochem Biophys Res Commun 271:116-119, 2000
    
    23. Kandeel F, Smith CV, Todorov I, Mullen Y: Advances in islet cell biology: from stem cell differentiation to clinical transplantation: conference report. Pancreas 27:e63-78,2003
    
    24. Wang RN, Kloppel G, Bouwens L: Duct- to islet-cell differentiation and islet growth in the pancreas of duct-ligated adult rats. Diabetologia 38:1405-1411,1995
    
    25. Tyrberg B, Ustinov J, Otonkoski T, Andersson A: Stimulated endocrine cell proliferation and differentiation in transplanted human pancreatic islets: effects of the ob gene and compensatory growth of the implantation organ. Diabetes 50:301-307,2001
    
    26. Trivedi N, Hollister-Lock J, Lopez-Avalos MD, O'Neil JJ, Keegan M, Bonner-Weir S, Weir GC: Increase in beta-cell mass in transplanted porcine neonatal pancreatic cell clusters is due to proliferation of beta-cells and differentiation of duct cells. Endocrinology 142:2115-2122,2001
    
    27. Dutta S, Gannon M, Peers B, Wright C, Bonner-Weir S, Montminy M: PDX:PBX complexes are required for normal proliferation of pancreatic cells during development. Proc Natl Acad Sci U S A 98:1065-1070,2001
    
    28. Docherty K: Growth and development of the islets of Langerhans: implications for the treatment of diabetes mellitus. Curr Opin Pharmacol 1:641-650,2001
    
    29. Zhou J, Wang X, Pineyro MA, Egan JM: Glucagon-like peptide 1 and exendin-4 convert pancreatic AR42J cells into glucagon- and insulin-producing cells. Diabetes 48:2358-2366,1999
    
    30. Palgi J, Stumpf E, Otonkoski T: Transcription factor expression and hormone production in pancreatic AR42J cells. Mol Cell Endocrinol 165:41-49,2000
    
    31. Miyagawa J, Hanafusa O, Sasada R, Yamamoto K, Igarashi K, Yamamori K, Seno M, Tada H, Nammo T, Li M, Yamagata K, Nakajima H, Namba M, Kuwajima M, Matsuzawa Y: Immunohistochemical localization of betacellulin, a new member of the EGF family, in normal human pancreas and islet tumor cells. Endocr J 46:755-764, 1999
    
    32. Thor S, Ericson J, Brannstrom T, Edlund T: The homeodomain LIM protein Isl-1 is expressed in subsets of neurons and endocrine cells in the adult rat. Neuron 7:881-889, 1991
    33. Dong J, Asa SL, Drucker DJ: Islet cell and extrapancreatic expression of the LIM domain homeobox gene isl-1. Mol Endocrinol 5:1633-1641,1991
    34. Tanizawa Y, Riggs AC, Dagogo-Jack S, Vaxillaire M, Froguel P, Liu L, Donis-Keller H, Permutt MA: Isolation of the human LIM/homeodomain gene islet-1 and identification of a simple sequence repeat polymorphism [corrected]. Diabetes 43:935-941,1994
    35. Barat-Houari M, Clement K, Vatin V, Dina C, Bonhomme G, Vasseur F, Guy-Grand B, Froguel P: Positional candidate gene analysis of Lim domain homeobox gene (Isl-1) on chromosome 5q11 -q13 in a French morbidly obese population suggests indication for association with type 2 diabetes. Diabetes 51:1640-1643,2002
    36. Karlsson O, Thor S, Norberg T, Ohlsson H, Edlund T: Insulin gene enhancer binding protein Isl-1 is a member of a novel class of proteins containing both a homeo- and a Cys-His domain. Nature 344:879-882,1990
    37. Huang H, Tang X: Phenotypic determination and characterization of nestin-positive precursors derived from human fetal pancreas. Lab Invest 83:539-547,2003
    38. Eberhardt M, Salmon P, von Mach MA, Hengstler JG, Brulport M, Linscheid P, Seboek D, Oberholzer J, Barbero A, Martin I, Muller B, Trono D, Zulewski H: Multipotential nestin and Isl-1 positive mesenchymal stem cells isolated from human pancreatic islets. Biochem Biophys Res Commun 345:1167-1176,2006
    39. Naya FJ, Huang HP, Qiu Y, Mutoh H, DeMayo FJ, Leiter AB, Tsai MJ: Diabetes, defective pancreatic morphogenesis, and abnormal enteroendocrine differentiation in BETA2/neuroD-deficient mice. Genes Dev 11:2323-2334,1997
    40. Gasa R, Mrejen C, Lynn FC, Skewes-Cox P, Sanchez L, Yang KY, Lin CH, Gomis R, German MS: Induction of pancreatic islet cell differentiation by the neurogenin-neuroD cascade. Differentiation, 2007
    41. Yatoh S, Akashi T, Chan PP, Kaneto H, Sharma A, Bonner-Weir S, Weir GC: NeuroD and reaggregation induce beta-cell specific gene expression in cultured hepatocytes. Diabetes Metab Res Rev 23:239-249, 2007
    42. Rudnick A, Ling TY, Odagiri H, Rutter WJ, German MS: Pancreatic beta cells express a diverse set of homeobox genes. Proc NatlAcadSci USA 91:12203-12207,1994
    43. Leon-Quinto T, Jones J, Skoudy A, Burcin M, Soria B: In vitro directed differentiation of mouse embryonic stem cells into insulin-producing cells. Diabetologia 47:1442-1451,2004
    44. Peters J, Jurgensen A, Kloppel G: Ontogeny, differentiation and growth of the endocrine pancreas. Virchows Arch 436:527-538, 2000
    45. Pang K, Mukonoweshuro C, Wong GG: Beta cells arise from glucose transporter type 2 (Glut2)-expressing epithelial cells of the developing rat pancreas. Proc Natl Acad Sci U S A 91:9559-9563,1994
    46. Gmyr V, Kerr-Conte J, Belaich S, Vandewalle B, Leteurtre E, Vantyghem MC, Lecomte-Houcke M, Proye C, Lefebvre J, Pattou F: Adult human cytokeratin 19-positive cells reexpress insulin promoter factor 1 in vitro: further evidence for pluripotent pancreatic stem cells in humans. Diabetes 49:1671-1680,2000
    47. Gao R, Ustinov J, Pulkkinen MA, Lundin K, Korsgren O, Otonkoski T: Characterization of endocrine progenitor cells and critical factors for their differentiation in human adult pancreatic cell culture. Diabetes 52:2007-2015,2003
    48. Blyszczuk P, Asbrand C, Rozzo A, Kania G, St-Onge L, Rupnik M, Wobus AM: Embryonic stem cells differentiate into insulin-producing cells without selection of nestin-expressing cells. Int JDev Biol 48:1095-1104,2004
    49. Kim SK, MacDonald RJ: Signaling and transcriptional control of pancreatic organogenesis. Curr Opin Genet Dev 12:540-547,2002
    
    
    1. Krause DS, Theise ND, Collector MI, Henegariu O, Hwang S, Gardner R, Neutzel S, Sharkis SJ: Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell 105:369-377, 2001
    
    2. Lee KD, Kuo TK, Whang-Peng J, Chung YF, Lin CT, Chou SH, Chen JR, Chen YP, Lee OK: In vitro hepatic differentiation of human mesenchymal stem cells. Hepatology 40:1275-1284,2004
    
    3. Chun-mao H, Su-yi W, Ping-ping L, Hang-hui C: Human bone marrow-derived mesenchymal stem cells differentiate into epidermal-like cells in vitro. Differentiation 75:292-298,2007
    
    4. Ianus A, Holz GG, Theise ND, Hussain MA: In vivo derivation of glucose-competent pancreatic endocrine cells from bone marrow without evidence of cell fusion. J Clin Invest 111:843-850, 2003
    
    5. Choi JB, Uchino H, Azuma K, Iwashita N, Tanaka Y, Mochizuki H, Migita M, Shimada T, Kawamori R, Watada H: Little evidence of transdifferentiation of bone marrow-derived cells into pancreatic beta cells. Diabetologia 46:1366-1374,2003
    
    6. Mathews V, Hanson PT, Ford E, Fujita J, Polonsky KS, Graubert TA: Recruitment of bone marrow-derived endothelial cells to sites of pancreatic beta-cell injury. Diabetes 53:91-98,2004
    
    7. Tang DQ, Cao LZ, Burkhardt BR, Xia CQ, Litherland SA, Atkinson MA, Yang LJ: In vivo and in vitro characterization of insulin-producing cells obtained from murine bone marrow. Diabetes 53:1721-1732,2004
    
    8. Oh SH, Muzzonigro TM, Bae SH, LaPlante JM, Hatch HM, Petersen BE: Adult bone marrow-derived cells trans-differentiating into insulin-producing cells for the treatment of type I diabetes. Lab Invest 84:607-617,2004
    
    9. Choi KS, Shin JS, Lee JJ, Kim YS, Kim SB, Kim CW: In vitro trans-differentiation of rat mesenchymal cells into insulin-producing cells by rat pancreatic extract. Biochem Biophys Res Commun 330:1299-1305, 2005
    
    10. Lumelsky N, Blondel O, Laeng P, Velasco I, Ravin R, McKay R: Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science 292:1389-1394,2001
    
    11. Jahr H, Bretzel RG: Insulin-positive cells in vitro generated from rat bone marrow stromal cells. Transplant Proc 35:2140-2141,2003
    
    12. Lu Y, Wang Z, Zhu M: Human bone marrow mesenchymal stem cells transfected with human insulin genes can secrete insulin stably. Ann Clin Lab Sci 36:127-136, 2006
    
    13. Sun Y, Chen L, Hou XG, Hou WK, Dong JJ, Sun L, Tang KX, Wang B, Song J, Li H, Wang KX: Differentiation of bone marrow-derived mesenchymal stem cells from diabetic patients into insulin-producing cells in vitro. Chin MedJ (Engl) 120:771-776,2007
    
    14. Hansson M, Tonning A, Frandsen U, Petri A, Rajagopal J, Englund MC, Heller RS, Hakansson J, Fleckner J, Skold HN, Melton D, Semb H, Serup P: Artifactual insulin release from differentiated embryonic stem cells. Diabetes 53:2603-2609, 2004
    
    15. Rajagopal J, Anderson WJ, Kume S, Martinez OI, Melton DA: Insulin staining of ES cell progeny from insulin uptake. Science 299:363,2003
    
    16. Kim JH, Park SN, Suh H: Generation of insulin-producing human mesenchymal stem cells using recombinant adeno-associated virus. Yonsei Med J 48:109-119,2007
    
    17. Li Y, Zhang R, Qiao H, Zhang H, Wang Y, Yuan H, Liu Q, Liu D, Chen L, Pei X: Generation of insulin-producing cells from PDX-1 gene-modified human mesenchymal stem cells. J CellPhysiol 211:36-44,2007
    
    18. Shiroi A, Ueda S, Ouji Y, Saito K, Moriya K, Sugie Y, Fukui H, Ishizaka S, Yoshikawa M: Differentiation of embryonic stem cells into insulin-producing cells promoted by Nkx2.2 gene transfer. World J Gastroenterol 11:4161-4166,2005
    
    19. Shiroi A, Yoshikawa M, Yokota H, Fukui H, Ishizaka S, Tatsumi K, Takahashi Y: Identification of insulin-producing cells derived from embryonic stem cells by zinc-chelating dithizone. Stem Cells 20:284-292, 2002
    
    20. Dean SK, Yulyana Y, Williams G, Sidhu KS, Tuch BE: Differentiation of encapsulated embryonic stem cells after transplantation. Transplantation 82:1175-1184,2006
    
    21. Wang J, Song LJ, Gerber DA, Fair JH, Rice L, LaPaglia M, Andreoni KA: A model utilizing adult murine stem cells for creation of personalized islets for transplantation. Transplant Proc 36:1188-1190,2004
    
    22. Deutsch G, Jung J, Zheng M, Lora J, Zaret KS: A bipotential precursor population for pancreas and liver within the embryonic endoderm. Development 128:871-881, 2001
    
    23. D'Ippolito G, Diabira S, Howard GA, Menei P, Roos BA, Schiller PC: Marrow-isolated adult multilineage inducible (MIAMI) cells, a unique population of postnatal young and old human cells with extensive expansion and differentiation potential. J Cell Sci 117:2971-2981,2004
    
    24. Ramiya VK, Maraist M, Arfors KE, Schatz DA, Peck AB, Cornelius JG: Reversal of insulin-dependent diabetes using islets generated in vitro from pancreatic stem cells. Nat Med 6:278-282, 2000
    
    25. Drucker DJ: Biological actions and therapeutic potential of the glucagon-like peptides. Gastroenterology 122:531-544,2002
    
    26. Knudsen LB, Pridal L: Glucagon-like peptide-1-(9-36) amide is a major metabolite of glucagon-like peptide-1-(7-36) amide after in vivo administration to dogs, and it acts as an antagonist on the pancreatic receptor. Eur J Pharmacol 318:429-435,1996
    27. Wang R, Li J, Yashpal N, Gao N: Nestin expression and clonal analysis of islet-derived epithelial monolayers: insight into nestin-expressing cell heterogeneity and differentiation potential. J Endocrinol 184:329-339, 2005
    28. Sudre B, Broqua P, White RB, Ashworth D, Evans DM, Haigh R, Junien JL, Aubert ML: Chronic inhibition of circulating dipeptidyl peptidase IV by FE 999011 delays the occurrence of diabetes in male zucker diabetic fatty rats. Diabetes 51:1461-1469, 2002
    29. Yue F, Cui L, Johkura K, Ogiwara N, Sasaki K: Glucagon-like peptide-1 differentiation of primate embryonic stem cells into insulin-producing cells. Tissue Eng 12:2105-2116,2006
    30. Yang L, Li S, Hatch H, Ahrens K, Cornelius JG, Petersen BE, Peck AB: In vitro trans-differentiation of adult hepatic stem cells into pancreatic endocrine hormone-producing cells. Proc NatlAcadSci USA 99:8078-8083,2002
    31. Otonkoski T, Beattie GM, Mally MI, Ricordi C, Hayek A: Nicotinamide is a potent inducer of endocrine differentiation in cultured human fetal pancreatic cells. J Clin Invest 92:1459-1466, 1993
    32. Ohgawara H, Kawamura M, Honda M, Karibe S, Iwasaki N, Tasaka Y, Omori Y: Reversal of glucose insensitivity of pancreatic B-cells due to prolonged exposure to high glucose in culture: effect of nicotinamide on pancreatic B-cells. Tohoku J Exp Med 169:159-166,1993
    33. Kim SK, Hebrok M, Melton DA: Notochord to endoderm signaling is required for pancreas development. Development 124:4243-4252,1997
    34. Zulewski H, Abraham EJ, Gerlach MJ, Daniel PB, Moritz W, Muller B, Vallejo M, Thomas MK, Habener JF: Multipotential nestin-positive stem cells isolated from adult pancreatic islets differentiate ex vivo into pancreatic endocrine, exocrine, and hepatic phenotypes. Diabetes 50:521-533,2001
    35. Kandeel F, Smith CV, Todorov I, Mullen Y: Advances in islet cell biology: from stem cell differentiation to clinical transplantation: conference report. Pancreas 27:e63-78,2003
    36. Selander L, Edlund H: Nestin is expressed in mesenchymal and not epithelial cells of the developing mouse pancreas. Mech Dev 113:189-192,2002
    37. Gao R, Ustinov J, Pulkkinen MA, Lundin K, Korsgren O, Otonkoski T: Characterization of endocrine progenitor cells and critical factors for their differentiation in human adult pancreatic cell culture. Diabetes 52:2007-2015,2003
    38. Blyszczuk P, Asbrand C, Rozzo A, Kama G, St-Onge L, Rupnik M, Wobus AM: Embryonic stem cells differentiate into insulin-producing cells without selection of nestin-expressing cells. Int J Dev Biol 48:1095-1104,2004
    
    
    1. Shapiro AM, Lakey JR, Ryan EA, Korbutt GS, Toth E, Warnock GL, Kneteman NM, Rajotte RV: Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med 343:230-238,2000
    
    2. Ianus A, Holz GG, Theise ND, Hussain MA: In vivo derivation of glucose-competent pancreatic endocrine cells from bone marrow without evidence of cell fusion. J Clin Invest 111:843-850, 2003
    
    3. Choi JB, Uchino H, Azuma K, Iwashita N, Tanaka Y, Mochizuki H, Migita M, Shimada T, Kawamori R, Watada H: Little evidence of transdifferentiation of bone marrow-derived cells into pancreatic beta cells. Diabetologia 46:1366-1374,2003
    
    4. Lechner A, Yang YG, Blacken RA, Wang L, Nolan AL, Habener JF: No evidence for significant transdifferentiation of bone marrow into pancreatic beta-cells in vivo. Diabetes 53:616-623,2004
    
    5. Taneera J, Rosengren A, Renstrom E, Nygren JM, Serup P, Rorsman P, Jacobsen SE: Failure of transplanted bone marrow cells to adopt a pancreatic beta-cell fate. Diabetes 55:290-296,2006
    
    6. Sun Y, Chen L, Hou XG, Hou WK, Dong JJ, Sun L, Tang KX, Wang B, Song J, Li H, Wang KX: Differentiation of bone marrow-derived mesenchymal stem cells from diabetic patients into insulin-producing cells in vitro. Chin Med J(Engl) 120:771-776,2007
    
    7. Lumelsky N, Blondel O, Laeng P, Velasco I, Ravin R, McKay R: Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science 292:1389-1394,2001
    
    8. Hori Y, Gu X, Xie X, Kim SK: Differentiation of insulin-producing cells from human neural progenitor cells. PLoS Med 2:e103,2005
    
    9. Tang DQ, Cao LZ, Burkhardt BR, Xia CQ, Litherland SA, Atkinson MA, Yang LJ: In vivo and in vitro characterization of insulin-producing cells obtained from murine bone marrow. Diabetes 53:1721-1732,2004
    
    10. Oh SH, Muzzonigro TM, Bae SH, LaPlante JM, Hatch HM, Petersen BE: Adult bone marrow-derived cells trans-differentiating into insulin-producing cells for the treatment of type I diabetes. Lab Invest 84:607-617,2004
    
    11. Lu Y, Wang Z, Zhu M: Human bone marrow mesenchymal stem cells transfected with human insulin genes can secrete insulin stably. Ann Clin Lab Sci 36:127-136, 2006
    
    12. Li Y, Zhang R, Qiao H, Zhang H, Wang Y, Yuan H, Liu Q, Liu D, Chen L, Pei X: Generation of insulin-producing cells from PDX-1 gene-modified human mesenchymal stem cells. J Cell Physiol 211:36-44, 2007
    
    13. Reyes M, Dudek A, Jahagirdar B, Koodie L, Marker PH, Verfaillie CM: Origin of endothelial progenitors in human postnatal bone marrow. J Clin Invest 109:337-346, 2002
    
    14. Kanazawa Y: [Animal models of diabetes mellitus: an overview]. Nippon Rinsho 56 Suppl 3:683-687, 1998
    
    15.张钧田:现代药理学实验方法[M].北京:.北京医科大学中国协和医科大学联合出版社,1998.981-988
    
    16. Krause DS, Theise ND, Collector MI, Henegariu O, Hwang S, Gardner R, Neutzel S, Sharkis SJ: Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell 105:369-377,2001
    
    17. Hasegawa Y, Ogihara T, Yamada T, Ishigaki Y, Imai J, Uno K, Gao J, Kaneko K, Ishihara H, Sasano H, Nakauchi H, Oka Y, Katagiri H: Bone marrow (BM) transplantation promotes beta-cell regeneration after acute injury through BM cell mobilization. Endocrinology 148:2006-2015,2007
    
    18. Hess D, Li L, Martin M, Sakano S, Hill D, Strutt B, Thyssen S, Gray DA, Bhatia M: Bone marrow-derived stem cells initiate pancreatic regeneration. Nat Biotechnol 21:763-770,2003
    
    19. Liu M, Han ZC: Mesenchymal stem cells: Biology and clinical potential in Type 1 Diabetes Therapy. J Cell Mol Med, 2008
    
    20. Jonas JC, Sharma A, Hasenkamp W, Ilkova H, Patane G, Laybutt R, Bonner-Weir S, Weir GC: Chronic hyperglycemia triggers loss of pancreatic beta cell differentiation in an animal model of diabetes. J Biol Chem 274:14112-14121,1999
    
    21. Carlsson PO, Palm F, Mattsson G: Low revascularization of experimentally transplanted human pancreatic islets. J Clin Endocrinol Metab 87:5418-5423, 2002
    
    1. Shapiro AM, Lakey JR, Ryan EA, Korbutt GS, Toth E, Warnock GL, Kneteman NM, Rajotte RV: Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med 343:230-238,2000
    
    2. Lumelsky N, Blondel O, Laeng P, Velasco I, Ravin R, McKay R: Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science 292:1389-1394,2001
    
    3. Assady S, Maor G, Amit M, Itskovitz-Eldor J, Skorecki KL, Tzukerman M: Insulin production by human embryonic stem cells. Diabetes 50:1691-1697,2001
    
    4. Jiang Y, Vaessen B, Lenvik T, Blackstad M, Reyes M, Verfaillie CM: Multipotent progenitor cells can be isolated from postnatal murine bone marrow, muscle, and brain. Exp Hematol 30:896-904,2002
    
    5. Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH: Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13:4279-4295,2002
    6. De Ugarte DA, Morizono K, Elbarbary A, Alfonso Z, Zuk PA, Zhu M, Dragoo JL, Ashjian P, Thomas B, Benhaim P, Chen I, Fraser J, Hedrick MH: Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs 174:101-109, 2003
    7. Tropel P, Noel D, Platet N, Legrand P, Benabid AL, Berger F: Isolation and characterisation of mesenchymal stem cells from adult mouse bone marrow. Exp Cell Res 295:395-406,2004
    8. Sanchez-Ramos JR: Neural cells derived from adult bone marrow and umbilical cord blood. J Neurosci Res 69:880-893,2002
    9. Gojo S, Gojo N, Takeda Y, Mori T, Abe H, Kyo S, Hata J, Umezawa A: In vivo cardiovasculogenesis by direct injection of isolated adult mesenchymal stem cells. Exp Cell Res 288:51-59,2003
    10. Miyazaki M, Akiyama I, Sakaguchi M, Nakashima E, Okada M, Kataoka K, Huh NH: Improved conditions to induce hepatocytes from rat bone marrow cells in culture. Biochem Biophys Res Commun 298:24-30, 2002
    11. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR: Multilineage potential of adult human mesenchymal stem cells. Science 284:143-147,1999
    12. McBride C, Gaupp D, Phinney DG: Quantifying levels of transplanted murine and human mesenchymal stem cells in vivo by real-time PCR. Cytotherapy 5:7-18,2003
    13. Krause DS, Theise ND, Collector MI, Henegariu O, Hwang S, Gardner R, Neutzel S, Sharkis SJ: Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell 105:369-377, 2001
    14. Colter DC, Sekiya I, Prockop DJ: Identification of a subpopulation of rapidly self-renewing and multipotential adult stem cells in colonies of human marrow stromal cells. Proc Natl Acad Sci USA 98:7841-7845,2001
    15. Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, Reyes M, Lenvik T, Lund T, Blackstad M, Du J, Aldrich S, Lisberg A, Low WC, Largaespada DA, Verfaillie CM: Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418:41-49,2002
    16. Lodie TA, Blickarz CE, Devarakonda TJ, He C, Dash AB, Clarke J, Gleneck K, Shihabuddin L, Tubo R: Systematic analysis of reportedly distinct populations of multipotent bone marrow-derived stem cells reveals a lack of distinction. Tissue Eng 8:739-751, 2002
    17. Majumdar MK, Keane-Moore M, Buyaner D, Hardy WB, Moorman MA, McIntosh KR, Mosca JD: Characterization and functionality of cell surface molecules on human mesenchymal stem cells. J Biomed Sci 10:228-241, 2003
    18. Timper K, Seboek D, Eberhardt M, Linscheid P, Christ-Crain M, Keller U, Muller B, Zulewski H: Human adipose tissue-derived mesenchymal stem cells differentiate into insulin, somatostatin, and glucagon expressing cells. Biochem Biophys Res Commun 341:1135-1140,2006
    19. Choi KS, Shin JS, Lee JJ, Kim YS, Kim SB, Kim CW: In vitro trans-differentiation of rat mesenchymal cells into insulin-producing cells by rat pancreatic extract. Biochem Biophys Res Commun 330:1299-1305, 2005
    
    20. Moriscot C, de Fraipont F, Richard MJ, Marchand M, Savatier P, Bosco D, Favrot M, Benhamou PY: Human bone marrow mesenchymal stem cells can express insulin and key transcription factors of the endocrine pancreas developmental pathway upon genetic and/or microenvironmental manipulation in vitro. Stem Cells 23:594-603,2005
    21. Ianus A, Holz GG, Theise ND, Hussain MA: In vivo derivation of glucose-competent pancreatic endocrine cells from bone marrow without evidence of cell fusion. J Clin Invest 111:843-850,2003
    22. Mathews V, Hanson PT, Ford E, Fujita J, Polonsky KS, Graubert TA: Recruitment of bone marrow-derived endothelial cells to sites of pancreatic beta-cell injury. Diabetes 53:91-98, 2004
    23. Tang DQ, Cao LZ, Burkhardt BR, Xia CQ, Litherland SA, Atkinson MA, Yang LJ: In vivo and in vitro characterization of insulin-producing cells obtained from murine bone marrow. Diabetes 53:1721-1732,2004
    24. Oh SH, Muzzonigro TM, Bae SH, LaPlante JM, Hatch HM, Petersen BE: Adult bone marrow-derived cells trans-differentiating into insulin-producing cells for the treatment of type I diabetes. Lab Invest 84:607-617,2004
    25. Tayaramma T, Ma B, Rohde M, Mayer H: Chromatin-remodeling factors allow differentiation of bone marrow cells into insulin-producing cells. Stem Cells 24:2858-2867,2006
    26. Chen LB, Jiang XB, Yang L: Differentiation of rat marrow mesenchymal stem cells into pancreatic islet beta-cells. World J Gastroenterol 10:3016-3020,2004
    27. Wu XH, Liu CP, Xu KF, Mao XD, Zhu J, Jiang JJ, Cui D, Zhang M, Xu Y, Liu C: Reversal of hyperglycemia in diabetic rats by portal vein transplantation of islet-like cells generated from bone marrow mesenchymal stem cells. World J Gastroenterol 13:3342-3349,2007
    28. D'Ippolito G, Diabira S, Howard GA, Menei P, Roos BA, Schiller PC: Marrow-isolated adult multilineage inducible (MIAMI) cells, a unique population of postnatal young and old human cells with extensive expansion and differentiation potential. J Cell Sci 117:2971-2981,2004
    29. Li Y, Zhang R, Qiao H, Zhang H, Wang Y, Yuan H, Liu Q, Liu D, Chen L, Pei X: Generation of insulin-producing cells from PDX-1 gene-modified human mesenchymal stem cells. J Cell Physiol 211:36-44, 2007
    30. Karnieli O, Izhar-Prato Y, Bulvik S, Efrat S: Generation of insulin-producing cells from human bone marrow mesenchymal stem cells by genetic manipulation. Stem Cells 25:2837-2844,2007
    31. Sun Y, Chen L, Hou XG, Hou WK, Dong JJ, Sun L, Tang KX, Wang B, Song J, Li H, Wang KX: Differentiation of bone marrow-derived mesenchymal stem cells from diabetic patients into insulin-producing cells in vitro. Chin Med J(Engl) 120:771-776, 2007
    32. Zulewski H, Abraham EJ, Gerlach MJ, Daniel PB, Moritz W, Muller B, Vallejo M, Thomas MK, Habener JF: Multipotential nestin-positive stem cells isolated from adult pancreatic islets differentiate ex vivo into pancreatic endocrine, exocrine, and hepatic phenotypes. Diabetes 50:521-533, 2001
    
    
    33. Niki T, Pekny M, Hellemans K, Bleser PD, Berg KV, Vaeyens F, Quartier E, Schuit F, Geerts A: Class VI intermediate filament protein nestin is induced during activation of rat hepatic stellate cells. Hepatology 29:520-527,1999
    
    34. Selander L, Edlund H: Nestin is expressed in mesenchymal and not epithelial cells of the developing mouse pancreas. Mech Dev 113:189-192,2002
    
    35. Lechner A, Leech CA, Abraham EJ, Nolan AL, Habener JF: Nestin-positive progenitor cells derived from adult human pancreatic islets of Langerhans contain side population (SP) cells defined by expression of the ABCG2 (BCRP1) ATP-binding cassette transporter. Biochem Biophys Res Commun 293:670-674,2002
    
    36. Zhang L, Hong TP, Hu J, Liu YN, Wu YH, Li LS: Nestin-positive progenitor cells isolated from human fetal pancreas have phenotypic markers identical to mesenchymal stem cells. World J Gastroenterol 11:2906-2911,2005
    
    37. Yang L, Li S, Hatch H, Ahrens K, Cornelius JG, Petersen BE, Peck AB: In vitro trans-differentiation of adult hepatic stem cells into pancreatic endocrine hormone-producing cells. Proc Natl Acad Sci USA 99:8078-8083,2002
    
    38. Deutsch G, Jung J, Zheng M, Lora J, Zaret KS: A bipotential precursor population for pancreas and liver within the embryonic endoderm. Development 128:871-881, 2001
    
    39. Drucker DJ: Biological actions and therapeutic potential of the glucagon-like peptides. Gastroenterology 122:531-544, 2002
    
    40. Knudsen LB, Pridal L: Glucagon-like peptide-1-(9-36) amide is a major metabolite of glucagon-like peptide-1-(7-36) amide after in vivo administration to dogs, and it acts as an antagonist on the pancreatic receptor. Eur J Pharmacol 318:429-435,1996
    
    41. Wang R, Li J, Yashpal N, Gao N: Nestin expression and clonal analysis of islet-derived epithelial monolayers: insight into nestin-expressing cell heterogeneity and differentiation potential. J Endocrinol 184:329-339,2005
    
    42. Sudre B, Broqua P, White RB, Ashworth D, Evans DM, Haigh R, Junien JL, Aubert ML: Chronic inhibition of circulating dipeptidyl peptidase IV by FE 999011 delays the occurrence of diabetes in male zucker diabetic fatty rats. Diabetes 51:1461-1469,2002
    
    43. Yue F, Cui L, Johkura K, Ogiwara N, Sasaki K: Glucagon-like peptide-1 differentiation of primate embryonic stem cells into insulin-producing cells. Tissue Eng 12:2105-2116,2006
    
    44. Kim SK, Hebrok M, Melton DA: Notochord to endoderm signaling is required for pancreas development. Development 124:4243-4252,1997
    
    45. Otonkoski T, Beattie GM, Mally MI, Ricordi C, Hayek A: Nicotinamide is a potent inducer of endocrine differentiation in cultured human fetal pancreatic cells. J Clin Invest 92:1459-1466, 1993
    
    46. Ohgawara H, Kawamura M, Honda M, Karibe S, Iwasaki N, Tasaka Y, Omori Y: Reversal of glucose insensitivity of pancreatic B-cells due to prolonged exposure to high glucose in culture: effect of nicotinamide on pancreatic B-cells. Tohoku J Exp Med 169:159-166,1993
    47. Ramiya VK, Maraist M, Arfors KE, Schatz DA, Peck AB, Cornelius JG: Reversal of insulin-dependent diabetes using islets generated in vitro from pancreatic stem cells. Nat Med 6:278-282, 2000
    
    48. Jiang W, Shi Y, Zhao D, Chen S, Yong J, Zhang J, Qing T, Sun X, Zhang P, Ding M, Li D, Deng H: In vitro derivation of functional insulin-producing cells from human embryonic stem cells. Cell Res 17:333-344, 2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700