人脐带间充质干细胞生物学特性及治疗大鼠骨质疏松的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的:
     1.建立从人脐带中分离间充质干细胞(MSC)、体外传代培养的方法。
     2.研究其在体外的生物学特性及表型特征,并对其体外向脂肪细胞和成骨细胞定向分化进行研究。
     3.尾静脉注射移植MSC,评价其对大鼠骨质疏松(OP)的治疗效果。
     材料和方法:
     1.用组织块培养法或酶消化法分离人间充质干细胞。
     2.流式细胞术(FCM)检测细胞表面标志;观察细胞的形态学特性;MTT法检测细胞增殖能力并绘制生长曲线,描述体外培养的hUC-MSCs的生物学特性。
     3.应用诱导因子诱导hUC-MSCs定向分化为脂肪细胞和成骨细胞,并通过组织化学染色的方法对分化后的细胞进行鉴定。
     4.hUC-MSCs对大鼠OP的治疗作用:采用SD大鼠,按体重随机分为4组:A组正常组、B组模型组、C组实验组和D组仙灵骨葆组,除A组灌胃CMC-Na,其余各组均连续14天灌胃RA;同时C组静脉注射hUC-MSCs,D组灌胃仙灵骨葆;21天后行血清学指标检测、生物力学性能和骨微观结构观察。
     结果:
     1.用组织块培养法或酶消化法均能在14-20天内获得具有MSC特征的hUC-MSCs;体外实验证实,hUC-MSCs能被诱导分化为脂肪细胞和成骨细胞。
     2.hUC-MSCs对大鼠骨质疏松的治疗作用
     (1)血清生化指标检测结果显示,C组大鼠血清Ca2+、ALP和StrACP水平均显著低于B组(p<0.05或p<0.01),但血清Pi水平无显著性差异;组(p<0.05或p<0.01),但血清Pi水平无显著性差异;
     (2)右侧股骨骨密度(BMD)测定显示,C组BMD明显高于B组(p<0.05);
     (3)右侧股骨生物力学测定发现C组最大载荷、弹性载荷、刚度和最大挠度均显著大于B组(p<0.05或p<0.01)。
     (4)左侧股骨扫描电镜观察结果显示C组与B组相比,骨胶原纤维排列呈束状,走向一致,排列规则、紧密,恢复到与A组骨胶原纤维相近形态和排列。
     结论:
     1.成功建立从人脐带中分离培养和扩增MSC经济、简单的方法,分离的细胞具有hUC-MSCs的基本生物学特性和多向分化的潜能;
     2.RA复制的OP模型为高转换型,较好的模拟了人原发性OP;
     3.hUC-MSCs能明显降低OP大鼠的血清Ca2+、ALP及StrACP水平,从而抑制骨吸收,减少骨量的丢失;改善OP大鼠的股骨组织形态结构、增加骨密度,增强股骨生物力学性能;
     4.hUC-MSCs对OP的修复作用,可能与抑制骨吸收、促进骨的形成,调整二者间的偶联平衡,从而改善骨的重建有关。
OBJECTIVE:
     1. To establish the methods of isolation and expansion of human umbilical cord derived mesenchymal stem cells (hUC-MSCs).
     2. Studying the biological characteristics of hUC-MSCs and its capacity of adipogenic and osteogenic induction in vitro.
     3. To find out the feasibility of healing the osteoporosis (OP) rats by transplanting the hUC-MSCs by intravenous injection.
     METHOD:
     1. Obtain the term infant umbilical cord samples and apply the enzymatic or the tissue culture method to separate and purify hUC-MSCs.
     2. Detecct the cell surface markers by flow cytometry; Observe the morphology; Describe the growth curve with MTT method, describe the biological characteristics of hUC-MSCs in vitro.
     3. Induce the hUC-MSCs differentiation into adipocytes and osteoblasts and detect the induced cells by histochemistry staining.
     4. The treatment of hUC-MSCs on RA induced rats:the female SD rats were randomly divided into four groups (control group (A), model control group (B), hUC-MSCs transplantation group (C) and Xianling Gubao group (D).Except A group administrated with 0.5%CMC-Na, other groups administrated with RA.At the same time, Xianling Gubao and hUC-MSCs were administrated; C group were adiministrated with 2X 106 hUC-MSCs A and B group were administrated with distilled water. The serum biochemical indicators, biomechanics characteristics were measured and microstructure of bone were also observed.
     RESULTS:
     1. We can get 80%fusion hUC-MSCs during 14-20 days both by tissue culture and enzymatic methods The proliferation became faster after passage and the cells after passage three(P3) presented a homogeneous population of spindle fibroblast-like cells. More than 90%of P3 cells expressed the CD44, CD29, CD 105, but the CD28, CD31, CD34, CD45, CD40, CD86 and HLA-DR were negative.80% of the cells were in G0/G1. The assays in vitro demonstrated the P3 cells exhibited osteogenic and adipogenic cells differentiation potential.
     2. Effect of hUC-MSCs on RA simulated OP rats:
     (1). In bone biochemical measurement of the serum:The serum Ca2+, ALP and StrACP of C group were significantly higher than B group (p<0.05 or p<0.01); but no found significant difference between D and B group.
     (2). In BMD measurements of the right femur group C were significantly higher than in group B (p<0.05);
     (3). In right femoral shaft three-point bending test, the max load,the elastic load, the rigidity and max deformation of group C were significantly higher than in group B (p< 0.05 orp<0.01);
     (4). In SEM observation, collagenous fiber with regular arrangement in group A; collagen fibers displaced by absorption laeuna in group B; Collagenous fibers were much more regular in group C.
     CONCLUSION:
     1. The hUC-MSCs were obtained from the human umbilical cord by tissue or enzymic method; the cells shared the same characteristics MSC. The hUC-MSCs were multipotential cells.
     2. Bone formation and bone mass decreased, bone microstructure destructive in RA administrated rats. RA simulated OP were a high turnover OP. The rats OP model were successfully established.
     3. The hUC-MSCs reduced the serum Ca2+, ALP and StrACP level of OP rats, improved the femur microstructure. The BMD and biomechanic function also enhanced.
     4. The hUC-MSCs has a significant effect on RA simulated OP rats. The cells can promote bone formation and reduce bone loss, and improve the microstructure.
     5.
引文
[1]Consensus development conference:diagnosis,prophlaxis and treatment of osteo-porosis.American journal of medicine,1991,303:453-459.
    [2]肖建德主编.实用骨质疏松学[M].北京:科学出版社,2004,7-8.
    [3]罗先正.骨质疏松的流行病学概况[J].中国乡村医药,2010,17(2):5
    [4]朴俊红,庞连萍,刘忠厚,等.中国人口状况及原发性骨质疏松症诊断标准
    和发生率[J].中国骨质疏松杂志,2002,8(1):1
    [5]李恩,闰书云,谷丽敏,等.原发性骨质疏松发病的相关因素[J].中国骨质疏松杂志,1997,3(2):1-3.
    [6]Center JR, Nguyen TV, Schneider D, et al. Mortality after all major types of osteoporotic fracture in men and women:An observational study.Lancet.1999;353: 878-882.
    [7]NIH Consensus Development Panel on Osteoporosis Prevention, Diagnosis,and Therapy.Osteoporosisprevention,diagnosis,andtherapyJAMA.2001;285:785-795.
    [8]董瑞,崔宇洁,左海燕.骨质疏松症的影响因素及诊断治疗[J].医学综述,2009,15(17):2645-2647.
    [9]程晓光,阎东.骨质疏松症的影像学诊断[J]。新医学,2007,38(1):11-12.
    [10]冯琳,黄霞妹,陈亚东.骨质疏松症的药物治疗概述[J].海峡药学,2009,21(12):173-176.
    [11]柯箫韵,林建荣.骨质疏松药物治疗的新进展[J].健康大视野,2008,4:56-57.
    [12]史炜镔.骨质疏松的药物治疗[J].国外医学,老年医学分册,1996,17:177-181.
    [13]明庆华.骨质疏松临床应用进展[J].云南医药,2005(5):408-410.
    [14]Silverberg JF, Gartenberg F, Jacobs TP,et al.Longgitudinal measurements of bone density anf biomedical indices in untreated primary hyperparathy roidism[J].J Clin Endocrinol Metab.1995,80:773.
    [15]寿清耀,杨荣平,王宾豪,等.中药防治骨质疏松药物的研究[J].重庆中草药研究,2004,2:51-53.
    [16]吴隆琦.非药物疗法治疗绝经后骨质疏松症的理论与实践[J].中国临床康复,7(5):807.
    [17]夏进.益骨胶囊对去卵巢骨质疏松大鼠骨组织5-HT、5-HTT和5-HTR2B表达的影响.暨南大学硕士学位论文,广州:暨南大学,2008:6-7.
    [18]Pittenger MF, Mackay AM,Beck SC,et al.Multilineage potential of adult human mesenchymal stem cells.Science 1999;284:143-147.
    [19]Yuehua J, Jahagirdar BN, Reinhardt RL, et al. Pluripotency of mesenchymal stem cells derived from adult marrow.Nature 2002; 418:41-49.
    [20]Pittenger MF, Martin BJ.Mesenchymal stem cells and their potential as cardiac therapeutics.Circ Res 2004;95:9-20.
    [21]Schwartz RE,Reyes M,Koodie L,et al.Mutipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte-like cells.J Clin Invest 2002; 109:1291-1302.
    [22]Satake K, Lou J, Lenke LG.Migration of mesenchymal stem cells through ce-rebrospinal fluid into injured spinal cord tissue.Spine 2004; 29:1971-1979.
    [23]Baddoo M, Hill K, Wilkinson R, Gaupp D, Hughes C,Kopen GC, et al. Chara-cterization of mesenchymal stem cells isolated from murine bone marrow by negative selection.J.Cell.Biochem.,89,1235-1249.
    [24]Blanc LK, Rasmusson I, Sundberg B, et al.Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells.Lancet 2004; 363:1439-1441.
    [25]Frank MH, Sayegh MH.Immunomodulatory functions of mesenchymal stem cells.Lancet 2004; 363:1411-1412.
    [26]Deans RJ, Moseley AB.Mesenchymal stem cells:biology and potential clinical uses.Exp Hematol 2000; 28:875-84.
    [27]Noort WA,Kruisselbrink AB,In't Anker PS,et al.Mesenchymal stem cells promote engraftment of human umbilical cord blood-derived CD34(+)cells in NOD/SCID mice.Exp Hematol 2002;30:870-878.
    [28]Angelopoulou M,Novelli E,Grove JE.Cotransplantation of human mesen-chymal stem cells enhances human myelopoiesis and megakaryocytopoiesis in NOD/SCID mice.Exp Hematol 2003;31:413-420.
    [29]Pittenger MF, Martin BJ.Mesenchymal stem cells and their potential as cardiac therapeutics.Circ Res,2004,95(1):9-20.
    [30]Toma C, Pittenger MF,CahilL KS,et al.Human mesenchymal stem cells diff-erentiate to a cardiomyocyte phenotype in the adult murine heart.Circulation,2002, 05:93-98.
    [31]Woodbury D, Schwarz EJ, Prock DJ,et al.Adult rat and human bone marrow stromal cells differentiate into neurons.J Neurosci Res,2000,61(4):363-370.
    [32]Sanchez Ramos J.Stem cells from umbilical cord blood.Semin Reprod Med, 2006,24(5):358-369.
    [33]Muller P,Beltrami AP,Cesselli D,et al.Myocardial regeneration by endogenous adult progenitor cells.J Mol Cell Cardiol,2005,39:377-387.
    [34]Fischer L, Boland QTuan RS.Wnt-3A enhances bone morphogenetic protein mediated chonddrogenesis of murine mesenchymal cells.J biochem,2002,277 (34): 30870-30878.
    [35]Oh SH, Muzzonigro TM, Bae SH,et al.Adult bone marrow-derived cells transdifferentiating into insulin-producing cells for the treatment of Type 1 diabetes. Lab Invest.2004 84(5):607-17.
    [36]Lu YH, Wang ZW,Zhu MY.Human bone marrow mesenchymal stem cells tranfected with human insulin genes can secrete insulin stably.Ann Clin Lab Sci,2006,36(2):127-136.
    [37]Karnieli O,Jzhar YP,Bulvk S.Generation of insulin-producing cells from human bone marrow mesenchymal stem cells by henetic manipulation.Stem Cells,2007, 25(11):2837-2844.
    [38]Urban VS,Kiss J, Kovacs J, et al. Mesenchymal stem cells cooperate with bone marrow cells in therapy of diabetes.Stem cells,2008,26(1):244-253.
    [39]Imene B,Suganya S,William TW.Autologous bone marrow-derived rat mesenchymal stem cells promote PDX-land insulin expression in the islets,alter T cell cytokine pattern and preserve regulatory T cells in the periphery and induce sustained normoglycemina. J Autoimmun,2009,32(1):33-42.
    [40]Sanvito F, Herrera PL, Huarte J. TGF-bl influences the relative development of the exocrine and endocrine pancreas in vitro.Development,1994,120(12):3451- 3462.
    [41]Otonkoski T,Cirulli V,Beattie M,et al.Role for hepatocyte growth factor/scatter factor in fetalmesenchyme-induced pancreatic β-cell growth. Endocrinology,1996, 137(7):3131-3139.
    [42]Parekkadan B, van Poll D, Suganuma K, et al. Mesenchymal stem cell-derived molecules reverse fulminant hepatic failure. PLos one,2007,2:941.
    [43]Agnieszka B, Takumi T, Yusuke Y, et al. Rapid hepatic fate specification of adipose-derived stem cells and their therapeutic potential for liver failure. J Gastro Hepatol,2009,24:70-77.
    [44]Kurikawa N, Suga M, Kuroda S, et al. An angiotensin II typel receptor antagonist, olmesartan medoxomil, improves experimental liver fibrosis by suppression of proliferation and collagen synthesis in activated hepatic stellate cells.Br J Pharmacol,2003,139:1085-94.
    [45]Mardini H, Record C. Detection assessment and monitoring of hepatic fibrosis:biochemistry or biopsy? Ann Clin Biochem,2005,42:441-447.
    [46]Troyer DL, Weiss ML. Wharton's jerlly-derived cells are a primitive stromal cell population. Stem Cells.2008; 26(3):591-599.
    [47]Kestendjieva S, Kyurkchiev D, Tsvetkova G, et al. Characterization of mesenchymal stem cells isolated from the human umbilical cord. Cell Biol Int. 2008; 32 (7):724-732.
    [48]Dom inici M,Le B lanc K,Mueller I,et al.M inimal criteria for defining multipotent mesenchymal stromal cells.The International Society for Cellular Therapy position statement Cytotherapy,2006,8(4):315—317.
    [49]WeissML, Medicetty S, Bledsoe AR, et al. Human umbilical cord matrix stem cells:preliminary characterization and effect of transplantation in a rodent model of Parkinson's disease.Stem Cells.2006; 24(3):781-792.
    [50]Conconi MT, Burra P, Di Liddo R, et al. CD 105 (+) cells fromWhartonps jelly show in vitro and in vivo myogenic differentiative potential. Int J Mol Med. 2006; 18 (6):1089-1096.
    [51]Lupatov AY, Karalkin PA, Suzdalp tseva YG, et al. Cytofluoro2 metric analysis of phenotypes of human bone marrow and umbili cal fibroblast-like cells. Bull Exp Biol Med.2006;142(4):521-526.
    [52]Koh SH, Kim KS, ChoiMR, et al. Implantation of human umbilical cord-derived mesenchymal stem cells as a neuroprotective therapy for ischemic stroke in rats. Brain Res.2008;1229:233-248.
    [53]Saito T, Kuang JQ,Brittra B,et al.Xenotransplant cardiac chimera:immune tolerance of adult stem cells.Ann Thorac Surg.2002;74:19-24.
    [54]Secco M, Zucconi E, Vieira NM,et al.Multipotent stem cells from umbilical cord: cord is richer than blood! Stem Cells.2008; 26 (1):146-150.
    [55]Reger RL, Tucker AH, Wolfe MR.Differentiation and characterization of human MSCs.Methods Mol Biol.2008; 449:93-107.
    [56]Roubelakis MG, Pappa KI, Bitsika V, et al. Molecular and proteomic charact-erization of human mesenchymal stem cells derived from amniotic fluid:comparison to bone marrow mesenchymal stem cells. Stem Cells Dev.2007; 16(6):931-952.
    [57]孙丽萍,孙承琳,张丽,等.骨质疏松动物模型的探讨.中国骨质疏松杂志,1997;3(3):24-6.
    [58]邵金莺,尹钟桂,许哲,等.龙牡壮骨药对大鼠实验性骨质疏松影响[J].中药药理与临床,1989,5:25-27.
    [59]崔少千,王海义,李书琴,等.骨疏康冲剂与钙剂联合应用防治维甲酸所致骨质疏松的实验研究[J].中国骨质疏松杂志,1999,5:74-77.
    [60]吴波,徐冰,黄添友,等.维甲酸致大鼠骨质疏松模型与机理研究[J].药学学报,1996,31:241-245.
    [61]Ahmed N, Sammons J, Khokher MA, et al. Retinoic acid suppresses interleukin 6 production in normal human osteoblasts. Cytokine,2000; 12(3): 289.
    [62]Tedeschi-Bolk N, Lee M, Sison JD, et al. Inverse association of antioxidant and phytoestrogen nutrient intake with adult glioma in the San Francisco Bay Area: a case-control study[J].BMC Cancer2006,3(6):148.
    [63]Hahn M, Vogel M, Pmpesius M, et al. Trabecular bone pattern factona new parameter for simple quantification of bone microarchitecture.Bone,1992,13(4): 327-330.
    [64]Bielby R, Jones E, McGonagle D.The role of mesenchymal stem cells in maintenance and repair of bone. Int. J. Care Injured(2007) 3851,s26-s32.
    [65]Giuilani N,Bataille R,Mancini C,et al.Myeloma cells induceimbalance in the osteoprotegerin/osteoprotegerin ligand system in the human bone marrow environment.Blood.2001,98:3527-3533.
    [66]Gori F,Hofbauer LC,Dunstan CR et al.The expression of osteoprotegein and RANK ligand and the support of osteoclast formation by stromal-osteoblast lineage cells is developmentally regulated.Endocrinology. 2000 141:4768-4776.
    [67]Honczarenko M,Le Y,Swierkowski M,et al.Human bone marrow stromal stem cells express a distinct set of biologically functional chemokine receptors. Stem Cells.2006 24:1030-1041.
    [68]Brandstrom H, BjOrkman T, Ljunggren O. Regulation of osteoprotegerin secretion from primary cultures of human bone marrow stromal cells.Biochem Biophys Res Comm.2001 280:831-835.
    [69]Brandstrom H, Jonsson KB, Ohlsson C,et al.Regulation of osteoprotegein mRNA levels by prostaglandin E2 in human bone marrow stromal cells.Biochem Biophys Res Comm.1998 247:338-341.
    [70]Le Blanc K, Rasmusson I, Gotherstrom C,et al. Mesenchymal stem cells inhibit the expression of CD25(Interleukin2-receptor)and CD38 on phytohaemag glutinin-activated lymphocytes.Scan J Immuno.2004 60:307-315.
    [71]Dimitriou R,Eleftherios T and Giannoudis P.Current concepts of molecular aspects of bone healing.Injury.2005 36:1392-1404.
    [72]Shirley D, Marsh D, Jordan J,et al.Systemic recruitment of osteoblastic cells in fracture healing.J Orthop Res.2005 23:1013-1021.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700