丹参酮ⅡA对骨髓间充质干细胞在心梗大鼠体内定向募集的影响及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
心肌梗死会严重影响心功能并导致有害的心室重构,最终导致循环的不稳定甚至休克、死亡。由于心肌细胞和神经元细胞一样是处于分化末端的细胞,心肌梗死所致的心脏衰竭是不可逆的,因此逆转心脏衰竭必须替换损伤的心肌细胞,并且恢复血供。研究证实,干细胞在体外能分化成心肌细胞、内皮细胞和周细胞;对心梗动物模型进行细胞移植治疗也发现,其具有改善心功能、减小梗死面积、促进血管新生的能力。因此,干细胞治疗作为一种有效、快速的治疗手段,被赋予了很多期待。但是研究发现,只有很小部分的移植细胞会植入受损心脏并存活下来,而干细胞发挥治疗作用的前提是其必须首先募集到心脏的受损部位。因此,增加干细胞在受损部位的植入数量对于干细胞移植疗效有重要意义。研究发现,间质细胞因子-1(SDF-1)及其特异性受体CXCR4组成的SDF-1-CXCR4轴在干细胞的募集过程中起到了关键作用。它们通过选择性的募集循环中或者定居的干细胞,参与组织的修复和新生。实验表明,用转基因等方法提高心脏的SDF-1表达能够促进干细胞向受损心脏的募集,激活细胞生存信号通路,增加心梗部位的血管新生,最终促进心梗后心功能的恢复。因此,上调SDF-1/CXCR4通路不失为一个增加干细胞在受损组织内植入、促进心功能恢复的好方法。
     丹参是中医临床上治疗心脑血管疾病的一种常用药,具有活血化瘀、养血宁神、调经止痛、凉血消痈的功效。作为丹参主要活性成分之一,丹参酮ⅡA(TanⅡA)被证明具有抗氧化、抗凋亡的药理学作用。此外,TanⅡA对内皮细胞有直接的保护作用,同时能增加EPCs数量并改善其功能。我们前期的实验也表明,与丹参其他主要活性成分(丹参素、丹酚酸B、丹参酮Ⅰ)相比,TanⅡA能显著增加BMSCs的迁移能力,提高BMSCs向受损心脏募集的数量。但对TanⅡA是如何干预骨髓干细胞的募集过程,尚有待进一步研究。本实验拟以SDF-1/CXCR4轴为切入点,研究TanⅡA对BMSCs向梗死心肌募集的影响及机制,为中药干预干细胞的研究提供一些新的思路。
     实验一骨髓间充质干细胞在心肌梗死大鼠体内定向募集的研究
     实验目的:观察静脉移植BMSCs在心梗大鼠体内的定向募集及分化情况。
     实验方法:采用结扎雌性大鼠冠状动脉左前降支(LAD)的方法建立急性心肌梗死模型(MI). MI 3小时后静脉移植5×106/0.5ml Dil标记的BMSCs,1周或4周后取心脏等脏器进行冰冻切片。荧光显微镜观察BMSCs移植1周后在各脏器中的分布情况;免疫荧光染色观察BMSCs移植4周后在心脏受损部位的分化情况。
     实验结果:心梗大鼠静脉移植BMSCs后1周,可在心梗大鼠的心脏受损部位及其他特定器官如(肺、肝脏、脾脏、骨髓)中观察到BMSCs;心梗大鼠静脉移植BMSCs后4周,可在心梗部位发现少量BMSCs表达心肌特异性标记(Connexin43和TroponinⅠ),但BMSCs仍保留干细胞形态。
     实验二丹参酮ⅡA对BMSCs在心梗大鼠体内定向募集的影响及机制研究
     实验目的:以SDF-1/CXCR4轴为切入点,研究TanⅡA对BMSCs向梗死心肌募集的影响及机制。
     实验方法:整体实验分为5组:①假手术组;②模型组;③TanⅡA台疗组;④BMSCs移植治疗组;⑤TanⅡA合并BMSCs移植治疗组。治疗1周或4周后,记录大鼠血流动力学指标;以Real-time PCR相对定量募集至心梗部位BMSCs数量;ELISA测定心梗大鼠血清及左心室壁SDF-1α蛋白的含量;Masson三色染色检测心肌梗死程度及血管新生情况;免疫组化检测VEGF的表达;体外迁移实验考察TanⅡA对于BMSCs体外迁移能力的影响;细胞免疫荧光法检测BMSCs表面CXCR4表达情况。
     实验结果:TanⅡA能够显著增加BMSCs向心梗心脏的募集,并相应的提高心功能,减小梗死面积,提高VEGF的表达,促进血管新生。TanⅡA能够适当促进心梗组织分泌SDF-1α,增强SDF-1α及HIF-1αmRNA的表达,提高血循环中SDF-1a的浓度。同时,它能够增强体外培养BMSCs的CXCR4表达。体外迁移实验同样证明,TanⅡA能够显著提高BMSCs的迁移能力,并且这种促迁移能力可被CXCR4的拮抗剂AMD3100消除。结果说明,TanⅡA是通过调控SDF1/CXCR4轴以促进BMSCs向心梗部位的募集。
     实验结论
     1、静脉移植的BMSCs可募集至心梗大鼠的心脏受损部位;
     2、TanⅡA能够显著增加BMSCs向心梗心脏的募集,提高BMSCs的治疗效果;
     3、TanⅡA是通过调控SDF1/CXCR4轴以促进BMSCs向心梗部位的募集。
Effect of TanshinoneⅡA on Bone Marrow Mesenchymal Stem Cells Recruitment to Infarct Heart
     Millions of people suffer heart attacks each year, most experience irreversible myocardial damage, which due to lack of oxygen. Although current treatments could improve the quality and duration of life, they do not restore cardiac function, nor do they increase the number of functional myocardial cells. On the other hand, shortage of donor heart limits the heart transplantation. For these reasons, there has been a growing interest in using cellular therapy to restore lost heart function. Until now, a great many of preclinical studies of cellular therapeutics as well as clinical trials are being carried worldwide.
     Mesenchymal stem cells (MSCs) found in bone marrow (BM) are multipotent progenitors of mesenchymal tissues and have novel regenerative and immune properties. Systemic delivery of BMSCs were shown to facilitate myocardial repair following myocardial infarction (MI). However, many experiments and clinical studies find that only a small fraction of the transplanted cells engraft and survive in the injured hearts during the first week after transplantation, which undoubtedly limits the efficacy of cell transplar tation. No matter whether the transplanted cells transdifferentiate or not, they need to be recruited and retained in the injured myocardium in order to exert effects.
     SDF-la and its receptor CXCR4 are crucial for bone marrow retention, mobilization, and homing of hematopoietic stem cells, they are highly related to tissue repair ar d regeneration, which involves the selective recruitment of circulating or resident progenitor cells. Both ex vivo SDF-1αtransgene and protease-resistant SDF-1 nanofiber-mediated delivery or forced overexpression of SDF-1 can promote stem and progenitor cell migration to the heart, activates cell survival signaling, enhances angiomyogenesis in the infarcted area, and improved cardiac function after myocardial infarction eventually. So upregulation SDF-1/CXCR4 pathway may good way to enhance cell engraftment in target tissue, therefore improve the heart recovery.
     In China, Salvia miltiorrhiza has been widely used for treating the cardiovascular diseases in clinical practice for many years. As one of the main active compounds of Salvia miltiorrhiza, TanshinoneⅡA(TanⅡA) exhibits antioxidative and anti-apoptosis properties. Our previous experiment showed that TanⅡA can enhance the BMSCs Migration significantly. In this study, we aim to test the effect of TanⅡA on BMSC Migration in vitro and vivo, and the mechanism of it. We hypothesized that TanⅡA treatment promotes BMSCs migration into the infarct area by augmenting SDF1/CXCR4 axis.
     Experiment I:Study on BMSCs Recruitment in MI Rat
     Aim:To investigate the recruitment and differentiation of BMSCs in vivo.
     Methods:Myocardial infarction (MI) was induced by ligation of the left anterior descending coronary artery in rat. BMSCs(stained with Dil-dye) were injected by tail vein,3 hours after MI. lweek later, The survival of the transplanted BMSCs was demonstrated by the presence of DiI-labeled cells; 4 weeks later, differentiation of BMSCs wes detected by immunofluorescence.
     Result:BMSCs can be detected in ischemia area of heart and some other important organs, such as lung, liver, spleen and marrow,1 week after systemic transplantation.4 weeks later, a few of BMSCs which recruitmented to ischemia area, started to express cardiac specific marker(Connexin 43 and Troponin I), but they still maintained BMSCs morphous.
     ExperimentⅡ:Effect of TanshinoneⅡA on BMSCs Recruitment to Infarct Heart
     Aim:To test whether TanⅡA treatment promotes BMSC migration into the infarct area by augmenting SDF1/CXCR4 axis.
     Methods:Rats were randomly divided into 5 groups:(1) Sham group; (2) MI group; (3) MI+TanⅡA group; (4) MI+BMSCs group; (5) MI+BMSCs+TanⅡA group. Hemodynamic studies were performed 1week or 4weeks after MI. Real-time PCR was performed for the quantification of sry gene. The secretion of SDF-1αwas determined by rat SDF-1αELISA kit. Transwell system was used to test whether TanⅡA regulates BMSC migration. Immunofluorescent staining was performed to detect the expression of CXCR4 on BMSCs.
     Result:In this study, we demonstrated that TanⅡA could significantly increase BMSCs recruitment to infraction area after MI which correlates with cardiac function recovery, IS improvement and VEGF expression enhancement. TanⅡA can promote SDF-1 a expression in infarct area, and the concentration of SDF-1αin PB as well. Meanwhile it significantly enhances the CXCR4 expression in cultured BMSCs. Addtionally, in vitro study proved that TanⅡA can enhance BMSCs migration signfincantly, and this effect can be blocked by AMD3100 (a CXCR4 blocker).
     Conclusion
     1. BMSCs were preferentially attracted to the ischemic area in MI rats.
     2. TanⅡA could significantly increase BMSCs recruitment to infraction area after MI which correlates with cardiac function recovery.
     3. TanⅡA can increase BMSCs migration via SDF1/CXCR4 axis.
引文
1. 姬尚义,沈宗林,(2005)缺血性心脏病,人民卫生出版社,1.
    2. 裴雪涛.(2003)干细胞生物学[M],北京:科学出版社,125.
    3. Grove, J. E., Bruscia, E., and Krause, D. S. (2004) Plasticity of bone marrow-derived stem cells, Stem cells (Dayton, Ohio) 22,487-500.
    4. Krause, U., Harter, C., Seckinger, A., Wolf, D., Reinhard, A., Bea, F., Dengler, T., Hardt, S., Ho, A., Katus, H. A., Kuecherer, H., and Hansen, A. (2007) Intravenous delivery of autologous mesenchymal stem cells limits infarct size and improves left ventricular function in the infarcted porcine heart, Stem cells and development 16,31-37.
    5. Imanishi, Y., Saito, A., Komoda, H., Kitagawa-Sakakida, S., Miyagawa, S., Kondoh, H., Ichikawa, H., and Sawa, Y. (2008) Allogenic mesenchymal stem cell transplantation has a therapeutic effect in acute myocardial infarction in rats, Journal of molecular and cellular cardiology 44,662-671.
    6. Erbs, S., Linke, A., Schachinger, V., Assmus, B., Thiele, H., Diederich, K. W., Hoffmann, C., Dimmeler, S., Tonn, T., Hambrecht, R., Zeiher, A. M., and Schuler, G. (2007) Restoration of microvascular function in the infarct-related artery by intracoronary transplantation of bone marrow progenitor cells in patients with acute myocardial infarction:the Doppler Substudy of the Reinfusion of Enriched Progenitor Cells and Infarct Remodeling in Acute Myocardial Infarction (REPAIR-AMI) trial, Circulation 116,366-374.
    7. Wang, Q. D., and Sjoquist, P. O. (2006) Myocardial regeneration with stem cells:pharmacological possibilities for efficacy enhancement, Pharmacol Res 53,331-340.
    8.Pittenger, M. F., and Martin, B. J. (2004) Mesenchymal stem cells and their potential as cardiac therapeutics, Circulation research 95,9-20.
    9. Ohnishi, S., Yanagawa, B., Tanaka, K., Miyahara, Y., Obata, H., Kataoka, M., Kodama, M., Ishibashi-Ueda, H., Kangawa, K., Kitamura, S., and Nagaya, N. (2007) Transplantation of mesenchymal stem cells attenuates myocardial injury and dysfunction in a rat model of acute myocarditis, Journal of molecular and cellular cardiology 42,88-97.
    10. Pillarisetti, K., and Gupta, S. K. (2001) Cloning and relative expression analysis of rat stromal cell derived factor-1 (SDF-1)1:SDF-1 alpha mRNA is selectively induced in rat model of myocardial infarction, Inflammation 25, 293-300.
    11. Sheikh, A. Y., Lin, S. A., Cao, F., Cao, Y., van der Bogt, K. E., Chu, P., Chang, C. P., Contag, C. H., Robbins, R. C., and Wu, J. C. (2007) Molecular imaging of bone marrow mononuclear cell homing and engraftment in ischemic myocardium, Stem cells (Dayton, Ohio) 25,2677-2684.
    12. Nagaya, N., Fujii, T., Iwase, T., Ohgushi, H., Itoh, T., Uematsu, M., Yamagishi, M., Mori, H., Kangawa, K., and Kitamura, S. (2004) Intravenous administration of mesenchymal stem cells improves cardiac function in rats with acute myocardial infarction through angiogenesis and myogenesis, American journal of physiology 287, H2670-2676.
    13. Chamberlain, G., Fox, J., Ashton, B., and Middleton, J. (2007) Concise review: mesenchymal stem cells:their phenotype, differentiation capacity, immunological features, and potential for homing, Stem cells (Dayton, Ohio) 25,2739-2749.
    14. Orlic, D., Kajstura, J., Chimenti, S., Jakoniuk, I., Anderson, S. M., Li, B., Pickel, J., McKay, R., Nadal-Ginard, B., Bodine, D. M., Leri, A., and Anversa, P. (2001) Bone marrow cells regenerate infarcted myocardium, Nature 410, 701-705.
    15. Dai, W., Hale, S. L., Martin, B. J., Kuang, J. Q., Dow, J. S., Wold, L. E., and Kloner, R. A. (2005) Allogeneic mesenchymal stem cell transplantation in postinfarcted rat myocardium:short-and long-term effects, Circulation 112, 214-223.
    16. Nygren, J. M., Jovinge, S., Breitbach, M., Sawen, P., Roll, W., Hescheler, J., Taneera, J., Fleischmann, B. K., and Jacobsen, S. E. (2004) Bone marrow-derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation, Nature medicine 10, 494-501.
    17. Rose, R. A., Jiang, H., Wang, X., Helke, S., Tsoporis, J. N., Gong, N., Keating, S.C., Parker, T. G, Backx, P. H., and Keating, A. (2008) Bone marrow-derived mesenchymal stromal cells express cardiac-specific markers, retain the stromal phenotype, and do not become functional cardiomyocytes in vitro, Stem cells (Dayton, Ohio) 26,2884-2892.
    18. Uemura, R., Xu, M., Ahmad, N., and Ashraf, M. (2006) Bone marrow stem cells prevent left ventricular remodeling of ischemic heart through paracrine signaling, Circulation research 98,1414-1421.
    19. Xu, M., Uemura, R., Dai, Y, Wang, Y., Pasha, Z., and Ashraf, M. (2007) In vitro and in vivo effects of bone marrow stem cells on cardiac structure and function, Journal of molecular and cellular cardiology 42,441-448.
    20. Beeres, S. L., Atsma, D. E., van der Laarse, A., Pijnappels, D. A., van Tuyn, J., Fibbe, W.E., de Vries, A. A., Ypey, D. L., van der Wall, E. E., and Schalij, M. J. (2005) Human adult bone marrow mesenchymal stem cells repair experimental conduction block in rat cardiomyocyte cultures, Journal of the American College of Cardiology 46,1943-1952.
    21. Chang, M. G., Tung, L., Sekar, R. B., Chang, C. Y, Cysyk, J., Dong, P., Marban, E., and Abraham, M. R. (2006) Proarrhythmic potential of mesenchymal stem cell transplantation revealed in an in vitro coculture model, Circulation 113,1832-1841.
    22. Fukushima, S., Varela-Carver, A., Coppen, S. R., Yamahara, K., Felkin, L. E., Lee, J., Barton, P.J., Terracciano, C. M., Yacoub, M. H., and Suzuki, K. (2007) Direct intramyocardial but not intracoronary injection of bone marrow cells induces ventricular arrhythmias in a rat chronic ischemic heart failure model, Circulation 115,2254-2261.
    23. Burger, J. A., and Kipps, T. J. (2006) CXCR4:a key receptor in the crosstalk between tumor cells and their microenvironment, Blood 107,1761-1767.
    24. Elmadbouh, I., Haider, H., Jiang, S., Idris, N. M., Lu, G, and Ashraf, M. (2007) Ex vivo delivered stromal cell-derived factor-1alpha promotes stem cell homing and induces angiomyogenesis in the infarcted myocardium, Journal of molecular and cellular cardiology 42,792-803.
    25. Segers, V. F., Tokunou, T., Higgins, L. J., MacGillivray, C., Gannon, J., and Lee, R. T. (2007) Local delivery of protease-resistant stromal cell derived factor-1 for stem cell recruitment after myocardial infarction, Circulation 116, 1683-1692.
    26. Adams, J. D., Wang, R., Yang, J., and Lien, E. J. (2006) Preclinical and clinical examinations of Salvia miltiorrhiza and its tanshinones in ischemic conditions, Chinese medicine 1,3.
    27. 陈晓峰,唐.,朱敏,等.(2007)丹参酮Ⅱ A对外周血内皮祖细胞增殖、粘附和迁移功能的影响[J],中国药理学通报 23,274.
    28. Askari, A. T., Unzek, S., Popovic, Z. B., Goldman, C. K., Forudi, F., Kiedrowski, M., Rovner, A., Ellis, S. G, Thomas, J. D., DiCorleto, P. E., Topol, E. J., and Penn, M. S. (2003) Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy, Lancet 362,697-703.
    29. Ma, J., Ge, J., Zhang, S., Sun, A., Shen, J., Chen, L., Wang, K., and Zou, Y. (2005) Time course of myocardial stromal cell-derived factor 1 expression and beneficial effects of intravenously administered bone marrow stem cells in rats with experimental myocardial infarction, Basic research in cardiology 100, 217-223.
    30. Broxmeyer, H. E., Hangoc, G, Cooper, S., Campbell, T., Ito, S., and Mantel, C. (2007) AMD3100 and CD26 modulate mobilization, engraftment, and survival of hematopoietic stem and progenitor cells mediated by the SDF-1/CXCL12-CXCR4 axis, Annals of the New York Academy of Sciences 1106,1-19.
    31. Bhakta, S., Hong, P., and Koc, O. (2006) The surface adhesion molecule CXCR4 stimulates mesenchymal stem cell migration to stromal cell-derived factor-1 in vitro but does not decrease apoptosis under serum deprivation, Cardiovasc Revasc Med 7,19-24.
    32. Kahn, J., Byk, T., Jansson-Sjostrand, L., Petit, I., Shivtiel, S., Nagler, A., Hardan, I., Deutsch, V., Gazit, Z., Gazit, D., Karlsson, S., and Lapidot, T. (2004) Overexpression of CXCR4 on human CD34+ progenitors increases their proliferation, migration, and NOD/SCID repopulation, Blood 103, 2942-2949.
    33. Zhang, D., Fan, G.C.,Zhou, X., Zhao, T., Pasha, Z., Xu, M., Zhu, Y, Ashraf, M., and Wang, Y. (2008) Over-expression of CXCR4 on mesenchymal stem cells augments myoangiogenesis in the infarcted myocardium, Journal of molecular and cellular cardiology 44,281-292.
    34. Liao, R., Pfister, O., Jain, M., and Mouquet, F. (2007) The bone marrow-cardiac axis of myocardial regeneration, Progress in cardiovascular diseases 50,18-30.
    35. Ferrarini, M., Arsic, N., Recchia, F. A., Zentilin, L., Zacchigna, S., Xu, X., Linke, A., Giacca, M., and Hintze, T. H. (2006) Adeno-associated virus-mediated transduction of VEGF165 improves cardiac tissue viability and functional recovery after permanent coronary occlusion in conscious dogs, Circulation research 98,954-961.
    36. Tang, Y L., Zhao, Q., Zhang, Y C.,Cheng, L., Liu, M., Shi, J., Yang, Y.Z., Pan, C.,Ge, J., and Phillips, M. I. (2004) Autologous mesenchymal stem cell transplantation induce VEGF and neovascularization in ischemic myocardium, Regulatory peptides 117,3-10.
    37. Takahashi, M., Li, T. S., Suzuki, R., Kobayashi, T., Ito, H., Ikeda, Y., Matsuzaki, M., and Hamano, K. (2006) Cytokines produced by bone marrow cells can contribute to functional improvement of the infarcted heart by protecting cardiomyocytes from ischemic injury, American journal of physiology 291, H886-893.
    38. Huang, K. J., Wang, H., Xie, W. Z., and Zhang, H. S. (2007) Investigation of the effect of tanshinone IIA on nitric oxide production in human vascular endothelial cells by fluorescence imaging, Spectrochimica acta 68,1180-1186.
    39. Zhang, Y., Wittner, M., Bouamar, H., Jarrier, P., Vainchenker, W., and Louache, F. (2007) Identification of CXCR4 as a new nitric oxide-regulated gene in human CD34+cells, Stem cells (Dayton, Ohio) 25,211-219.
    40. Cui, X., Chen, J., Zacharek, A., Li, Y., Roberts, C., Kapke, A., Savant-Bhonsale, S., and Chopp, M. (2007) Nitric oxide donor upregulation of stromal cell-derived factor-1/chemokine (CXC motif) receptor 4 enhances bone marrow stromal cell migration into ischemic brain after stroke, Stem cells (Dayton, Ohio) 25,2777-2785.
    41. Chen, J., Zhang, Z. G, Li, Y, Wang, L., Xu, Y. X., Gautam, S. C.,Lu, M., Zhu, Z., and Chopp, M. (2003) Intravenous administration of human bone marrow stromal cells induces angiogenesis in the ischemic boundary zone after stroke in rats, Circulation research 92,692-699.
    42. Barbash, I. M., Chouraqui, P., Baron, J., Feinberg, M. S., Etzion, S., Tessone, A., Miller, L., Guetta, E., Zipori, D., Kedes, L. H., Kloner, R. A., and Leor, J. (2003) Systemic delivery of bone marrow-derived mesenchymal stem cells to the infarcted myocardium:feasibility, cell migration, and body distribution, Circulation 108,863-868.
    43. Jiang, W., Ma, A., Wang, T., Han, K., Liu, Y, Zhang, Y, Dong, A., Du, Y, Huang, X., Wang, J., Lei, X., and Zheng, X. (2006) Homing and differentiation of mesenchymal stem cells delivered intravenously to ischemic myocardium in vivo:a time-series study, Pflugers Arch 453,43-52.
    44. Afanasyeva, M., Georgakopoulos, D., Belardi, D. F., Ramsundar, A. C., Barin, J. G, Kass, D. A., and Rose, N. R. (2004) Quantitative analysis of myocardial inflammation by flow cytometry in murine autoimmune myocarditis: correlation with cardiac function, The American journal of pathology 164, 807-815.
    45. Shujia, J., Haider, H. K., Idris, N. M., Lu, G., and Ashraf, M. (2008) Stable therapeutic effects of mesenchymal stem cell-based multiple gene delivery for cardiac repair, Cardiovascular research 77,525-533.
    46. Isakova, I. A., Baker, K., DuTreil, M., Dufour, J., Gaupp, D., and Phinney, D. G.(2007) Age-and dose-related effects on MSC engraftment levels and anatomical distribution in the central nervous systems of nonhuman primates: identification of novel MSC subpopulations that respond to guidance cues in brain, Stem cells (Dayton, Ohio) 25,3261-3270.
    47. Nagaya, N., Kangawa, K., Itoh, T., Iwase, T., Murakami, S., Miyahara, Y, Fujii, T., Uematsu, M., Ohgushi, H., Yamagishi, M., Tokudome, T., Mori, H., Miyatake, K., and Kitamura, S. (2005) Transplantation of mesenchymal stem cells improves cardiac function in a rat model of dilated cardiomyopathy, Circulation 112,1128-1135.
    48. Jiang, W., Ma, A., Wang, T., Han, K., Liu, Y, Zhang, Y., Zhao, X., Dong, A., Du, Y, Huang, X., Wang, J., Lei, X., and Zheng, X. (2006) Intravenous transplantation of mesenchymal stem cells improves cardiac performance after acute myocardial ischemia in female rats, Transpl Int 19,570-580.
    49. Dimmeler, S. (2006) Viewpoint:stem cells in cardiology, Circulation 113, f69-70.
    50. Janssens, S., Dubois, C., Bogaert, J., Theunissen, K., Deroose, C., Desmet, W., Kalantzi, M., Herbots, L., Sinnaeve, P., Dens, J., Maertens, J., Rademakers, F., Dymarkowski, S., Gheysens, O., Van Cleemput, J., Bormans, G, Nuyts, J., Belmans, A., Mortelmans, L., Boogaerts, M., and Van de Werf, F. (2006) Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction:double-blind, randomised controlled trial, Lancet 367,113-121.
    51. Wollert, K. C., Meyer, G. P., Lotz, J., Ringes-Lichtenberg, S., Lippolt, P., Breidenbach, C., Fichtner, S., Korte, T., Hornig, B., Messinger, D., Arseniev, L., Hertenstein, B., Ganser, A., and Drexler, H. (2004) Intracoronary autologous bone-marrow cell transfer after myocardial infarction:the BOOST randomised controlled clinical trial, Lancet 364,141-148.
    52. Freyman, T., Polin, G, Osman, H., Crary, J., Lu, M., Cheng, L., Palasis, M., and Wilensky, R. L. (2006) A quantitative, randomized study evaluating three methods of mesenchymal stem cell delivery following myocardial infarction, European heart journal 27,1114-1122.
    53. Wang, T., Tang, W., Sun, S., Ristagno, G, Huang, Z., and Weil, M. H. (2007) Intravenous infusion of bone marrow mesenchymal stem cells improves myocardial function in a rat model of myocardial ischemia, Critical care medicine 35,2587-2593.
    54. Abbott, J. D., Huang, Y, Liu, D., Hickey, R., Krause, D. S., and Giordano, F. J. (2004) Stromal cell-derived factor-1 alpha plays a critical role in stem cell recruitment to the heart after myocardial infarction but is not sufficient to induce homing in the absence of injury, Circulation 110,3300-3305.
    55. Kucia, M., Jankowski, K., Reca, R., Wysoczynski, M., Bandura, L., Allendorf, D. J., Zhang, J., Ratajczak, J., and Ratajczak, M. Z. (2004) CXCR4-SDF-1 signalling, locomotion, chemotaxis and adhesion, Journal of molecular histology 35,233-245.
    56. Segret, A., Rucker-Martin, C., Pavoine, C., Flavigny, J., Deroubaix, E., Chatel, M. A., Lombet, A., and Renaud, J. F. (2007) Structural localization and expression of CXCL12 and CXCR4 in rat heart and isolated cardiac myocytes, JHistochem Cytochem 55,141-150.
    57. Honczarenko, M., Le, Y, Swierkowski, M., Ghiran, I., Glodek, A. M., and Silberstein, L. E. (2006) Human bone marrow stromal cells express a distinct set of biologically functional chemokine receptors, Stem cells (Dayton, Ohio) 24,1030-1041.
    58. Wynn, R. F., Hart, C. A., Corradi-Perini, C., O'Neill, L., Evans, C. A., Wraith, J. E., Fairbairn, L. J., and Bellantuono, I. (2004) A small proportion of mesenchymal stem cells strongly expresses functionally active CXCR4 receptor capable of promoting migration to bone marrow, Blood 104, 2643-2645.
    59. Hatse, S., Princen, K., Gerlach, L. O., Bridger, G, Henson, G, De Clercq, E., Schwartz, T. W., and Schols, D. (2001) Mutation of Asp(171) and Asp(262) of the chemokine receptor CXCR4 impairs its coreceptor function for human immunodeficiency virus-1 entry and abrogates the antagonistic activity of AMD3100, Molecular pharmacology 60,164-173.
    60. Vila-Coro, A. J., Rodriguez-Frade, J. M., Martin De Ana, A., Moreno-Ortiz, M. C., Martinez, A. C., and Mellado, M. (1999) The chemokine SDF-1 alpha triggers CXCR4 receptor dimerization and activates the JAK/STAT pathway, Faseb J 13,1699-1710.
    61.Zhang, X. F., Wang, J. F., Matczak, E., Proper, J. A., and Groopman, J. E. (2001) Janus kinase 2 is involved in stromal cell-derived factor-1alpha-induced tyrosine phosphorylation of focal adhesion proteins and migration of hematopoietic progenitor cells, Blood 97,3342-3348.
    62. Cheng, Z. J., Zhao, J., Sun, Y., Hu, W., Wu, Y. L., Cen, B., Wu, G. X., and Pei, G (2000) beta-arrestin differentially regulates the chemokine receptor CXCR4-mediated signaling and receptor internalization, and this implicates multiple interaction sites between beta-arrestin and CXCR4, The Journal of biological chemistry 275,2479-2485.
    63. Ganju, R. K., Brubaker, S. A., Meyer, J., Dutt, P., Yang, Y, Qin, S., Newman, W., and Groopman, J. E. (1998) The alpha-chemokine, stromal cell-derived factor-1 alpha, binds to the transmembrane G-protein-coupled CXCR-4 receptor and activates multiple signal transduction pathways, The Journal of biological chemistry 273,23169-23175.
    64. Wysoczynski, M., Reca, R., Ratajczak, J., Kucia, M., Shirvaikar, N., Honczarenko, M., Mills, M., Wanzeck, J., Janowska-Wieczorek, A., and Ratajczak, M. Z. (2005) Incorporation of CXCR4 into membrane lipid rafts primes homing-related responses of hematopoietic stem/progenitor cells to an SDF-1 gradient, Blood 105,40-48.
    65. Kucia, M., Reca, R., Miekus, K., Wanzeck, J., Wojakowski, W., Janowska-Wieczorek, A., Ratajczak, J., and Ratajczak, M. Z. (2005) Trafficking of normal stem cells and metastasis of cancer stem cells involve similar mechanisms:pivotal role of the SDF-1-CXCR4 axis, Stem cells (Dayton, Ohio) 23,879-894.
    66. Moepps, B., Braun, M., Knopfle, K., Dillinger, K., Knochel, W, and Gierschik, P. (2000) Characterization of a Xenopus laevis CXC chemokine receptor 4: implications for hematopoietic cell development in the vertebrate embryo, European journal of immunology 30,2924-2934.
    67. Ma, Q., Jones, D., and Springer, T. A. (1999) The chemokine receptor CXCR4 is required for the retention of B lineage and granulocytic precursors within the bone marrow microenvironment, Immunity 10,463-471.
    68. Semerad, C. L., Christopher, M. J., Liu, F., Short, B., Simmons, P. J., Winkler, I., Levesque, J. P., Chappel, J., Ross, F. P., and Link, D. C. (2005) G-CSF potently inhibits osteoblast activity and CXCL12 mRNA expression in the bone marrow, Blood 106,3020-3027.
    69. Petit, I., Szyper-Kravitz, M., Nagler, A., Lahav, M., Peled, A., Habler, L. Ponomaryov, T., Taichman, R. S., Arenzana-Seisdedos, F., Fujii, N., Sandbank, J., Zipori, D., and Lapidot, T. (2002) G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4, Nature immunology 3,687-694.
    70. Lapidot, T., and Petit, I. (2002) Current understanding of stem cell mobilization:the roles of chemokines, proteolytic enzymes, adhesion molecules, cytokines, and stromal cells, Experimental hematology 30, 973-981.
    71. Peled, A., Petit, I., Kollet, O., Magid, M., Ponomaryov, T., Byk, T., Nagler, A., Ben-Hur, H., Many, A., Shultz, L., Lider, O., Alon, R., Zipori, D., and Lapidot, T. (1999) Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4, Science (New York, N.Y 283,845-848.
    72. Fernandis, A. Z., Cherla, R. P., and Ganju, R. K. (2003) Differential regulation of CXCR4-mediated T-cell chemotaxis and mitogen-activated protein kinase activation by the membrane tyrosine phosphatase, CD45, The Journal of biological chemistry 278,9536-9543.
    73. Reca, R., Mastellos, D., Majka, M., Marquez, L., Ratajczak, J., Franchini, S., Glodek, A., Honczarenko, M., Spruce, L. A., Janowska-Wieczorek, A., Lambris, J. D., and Ratajczak, M. Z. (2003) Functional receptor for C3a anaphylatoxin is expressed by normal hematopoietic stem/progenitor cells, and C3a enhances their homing-related responses to SDF-1, Blood 101, 3784-3793.
    74. Peled, A., Kollet, O., Ponomaryov, T., Petit, I., Franitza, S., Grabovsky, V., Slav, M. M., Nagler, A., Lider, O., Alon, R., Zipori, D., and Lapidot, T. (2000) The chemokine SDF-1 activates the integrins LFA-1, VLA-4, and VLA-5 on immature human CD34(+) cells:role in transendothelial/stromal migration and engraftment of NOD/SCID mice, Blood 95,3289-3296.
    75. Ding, Z., Issekutz, T. B., Downey, G. P., and Waddell, T. K. (2003) L-selectin stimulation enhances functional expression of surface CXCR4 in lymphocytes: implications for cellular activation during adhesion and migration, Blood 101, 4245-4252.
    76. Son, B. R., Marquez-Curtis, L. A., Kucia, M., Wysoczynski, M., Turner, A. R., Ratajczak, J., Ratajczak, M. Z., and Janowska-Wieczorek, A. (2006) Migration of bone marrow and cord blood mesenchymal stem cells in vitro is regulated by stromal-derived factor-1-CXCR4 and hepatocyte growth factor-c-met axes and involves matrix metalloproteinases, Stem cells (Dayton, Ohio) 24, 1254-1264.
    77. Belkin, A. M., Akimov, S. S., Zaritskaya, L. S., Ratnikov, B.I., Deryugina, E. I., and Strongin, A. Y. (2001) Matrix-dependent proteolysis of surface transglutaminase by membrane-type metalloproteinase regulates cancer cell adhesion and locomotion, The Journal of biological chemistry 276, 18415-18422.
    78. Saxena, A., Fish, J. E., White, M. D., Yu, S., Smyth, J. W., Shaw, R. M., DiMaio, J. M., and Srivastava, D.(2008) Stromal cell-derived factor-1alpha is cardioprotective after myocardial infarction, Circulation 117,2224-2231.
    79. Hu, X., Dai, S., Wu, W. J., Tan, W., Zhu, X., Mu, J., Guo, Y, Bolli, R., and Rokosh, G (2007) Stromal cell derived factor-1 alpha confers protection against myocardial ischemia/reperfusion injury:role of the cardiac stromal cell derived factor-1 alpha CXCR4 axis, Circulation 116,654-663.
    80. Yamaguchi, J., Kusano, K. F., Masuo, O., Kawamoto, A., Silver, M., Murasawa, S., Bosch-Marce, M., Masuda, H., Losordo, D. W., Isner, J. M., and Asahara, T. (2003) Stromal cell-derived factor-1 effects on ex vivo expanded endothelial progenitor cell recruitment for ischemic neovascularization, Circulation 107,1322-1328.
    81. Kryczek, I., Lange, A., Mottram, P., Alvarez, X., Cheng, P., Hogan, M., Moons, L., Wei, S., Zou, L., Machelon, V., Emilie, D., Terrassa, M., Lackner, A., Curiel, T. J., Carmeliet, P., and Zou, W. (2005) CXCL12 and vascular endothelial growth factor synergistically induce neoangiogenesis in human ovarian cancers, Cancer research 65,465-472.
    82. Tang, J., Wang, J., Yang, J., and Kong, X. (2008) Adenovirus-mediated stromal cell-derived-factor-1 alpha gene transfer induces cardiac preservation after infarction via angiogenesis of CD133+stem cells and anti-apoptosis, Interactive cardiovascular and thoracic surgery 7,767-770.
    83. Hiasa, K., Ishibashi, M.,Ohtani, K., Inoue, S., Zhao, Q., Kitamoto, S., Sata, M., Ichiki, T., Takeshita, A., and Egashira, K. (2004) Gene transfer of stromal cell-derived factor-1alpha enhances ischemic vasculogenesis and angiogenesis via vascular endothelial growth factor/endothelial nitric oxide synthase-related pathway:next-generation chemokine therapy for therapeutic neovascularization, Circulation 109,2454-2461.
    84. Ceradini, D. J., Kulkarni, A. R., Callaghan, M. J., Tepper, O. M., Bastidas, N., Kleinman, M. E., Capla, J. M., Galiano, R. D., Levine, J. P., and Gurtner, G C. (2004) Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1, Nature medicine 10,858-864.
    85. Siddiq, A., Ayoub, I. A., Chavez, J. C., Aminova, L., Shah, S., LaManna, J. C., Patton, S. M., Connor, J. R., Cherny, R. A., Volitakis, I., Bush, A. I., Langsetmo, I., Seeley, T., Gunzler, V., and Ratan, R. R. (2005) Hypoxia-inducible factor prolyl 4-hydroxylase inhibition. A target for neuroprotection in the central nervous system, The Journal of biological chemistry 280,41732-41743.
    1. 姬尚义,沈宗林.(2005)缺血性心脏病,人民卫生出版社,1.
    2. Wang, Q. D., and Sjoquist, P.O. (2006) Myocardial regeneration with stem cells:pharmacological possibilities for efficacy enhancement, Pharmacol Res 53,331-340.
    3. Orlic, D., Kajstura, J., Chimenti, S., Jakoniuk, I., Anderson, S. M., Li, B., Pickel, J., McKay, R., Nadal-Ginard, B., Bodine, D. M., Leri, A., and Anversa, P. (2001) Bone marrow cells regenerate infarcted myocardium, Nature 410, 701-705.
    4. Dai, W., Hale, S. L., Martin, B. J., Kuang, J. Q., Dow, J. S., Wold, L. E., and Kloner, R. A. (2005) Allogeneic mesenchymal stem cell transplantation in postinfarcted rat myocardium:short- and long-term effects, Circulation 112, 214-223.
    5. Nagaya, N., Kangawa, K., Itoh, T., Iwase, T., Murakami, S., Miyahara, Y., Fujii, T., Uematsu, M., Ohgushi, H., Yamagishi, M., Tokudome, T., Mori, H., Miyatake, K., and Kitamura, S. (2005) Transplantation of mesenchymal stem cells improves cardiac function in a rat model of dilated cardiomyopathy, Circulation 112,1128-1135.
    6. Nagaya, N., Fujii, T., Iwase, T., Ohgushi, H., Itoh, T., Uematsu, M., Yamagishi, M., Mori, H., Kangawa, K., and Kitamura, S. (2004) Intravenous administration of mesenchymal stem cells improves cardiac function in rats with acute myocardial infarction through angiogenesis and myogenesis, American journal of physiology 287, H2670-2676.
    7. Jiang, W., Ma, A., Wang, T., Han, K., Liu, Y., Zhang, Y, Zhao, X., Dong, A., Du, Y, Huang, X., Wang, J., Lei, X., and Zheng, X. (2006) Intravenous transplantation of mesenchymal stem cells improves cardiac performance after acute myocardial ischemia in female rats, Transpl Int 19,570-580.
    8. Dimmeler, S. (2006) Viewpoint:stem cells in cardiology, Circulation 113, f69-70.
    9. Janssens, S., Dubois, C., Bogaert, J., Theunissen, K., Deroose, C., Desmet, W., Kalantzi, M., Herbots, L., Sinnaeve, P., Dens, J., Maertens, J., Rademakers, F., Dymarkowski, S., Gheysens, O., Van Cleemput, J., Bormans, G., Nuyts, J., Belmans, A., Mortelmans, L., Boogaerts, M., and Van de Werf, F. (2006) Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction:double-blind, randomised controlled trial, Lancet 367,113-121.
    10. Wollert, K. C., Meyer, G.P., Lotz, J., Ringes-Lichtenberg, S., Lippolt, P., Breidenbach, C., Fichtner, S., Korte, T., Hornig, B., Messinger, D., Arseniev, L., Hertenstein, B., Ganser, A., and Drexler, H. (2004) Intracoronary autologous bone-marrow cell transfer after myocardial infarction:the BOOST randomised controlled clinical trial, Lancet 364,141-148.
    11. Nygren, J. M., Jovinge, S., Breitbach, M., Sawen, P., Roll, W., Hescheler, J., Taneera, J., Fleischmann, B. K., and Jacobsen, S. E. (2004) Bone marrow-derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation, Nature medicine 10, 494-501.
    12. Rose, R. A., Jiang, H., Wang, X., Helke, S., Tsoporis, J. N., Gong, N., Keating, S. C., Parker, T. G, Backx, P. H., and Keating, A. (2008) Bone marrow-derived mesenchymal stromal cells express cardiac-specific markers, retain the stromal phenotype, and do not become functional cardiomyocytes in vitro, Stem cells (Dayton, Ohio) 26,2884-2892.
    13. Freyman, T., Polin, G, Osman, H., Crary, J., Lu, M., Cheng, L., Palasis, M., and Wilensky, R. L. (2006) A quantitative, randomized study evaluating three methods of mesenchymal stem cell delivery following myocardial infarction, European heart journal 27,1114-1122.
    14. Jiang, W., Ma, A., Wang, T., Han, K., Liu, Y, Zhang, Y., Dong, A., Du, Y, Huang, X., Wang, J., Lei, X., and Zheng, X. (2006) Homing and differentiation of mesenchymal stem cells delivered intravenously to ischemic myocardium in vivo:a time-series study, Pflugers Arch 453,43-52.
    15. Krause, U., Harter, C., Seckinger, A., Wolf, D., Reinhard, A., Bea, F., Dengler, T., Hardt, S., Ho, A., Katus, H. A., Kuecherer, H., and Hansen, A. (2007) Intravenous delivery of autologous mesenchymal stem cells limits infarct size and improves left ventricular function in the infarcted porcine heart, Stem cells and development 16,31-37.
    16. Wang, T., Tang, W., Sun, S., Ristagno, G, Huang, Z., and Weil, M. H. (2007) Intravenous infusion of bone marrow mesenchymal stem cells improves myocardial function in a rat model of myocardial ischemia, Critical care medicine 35,2587-2593.
    17. Sheikh, A. Y, Lin, S. A., Cao, F., Cao, Y, van der Bogt, K. E., Chu, P., Chang, C. P., Contag, C. H., Robbins, R. C., and Wu, J. C. (2007) Molecular imaging of bone marrow mononuclear cell homing and engraftment in ischemic myocardium, Stem cells (Dayton, Ohio) 25,2677-2684.
    18. Chamberlain, G, Fox, J., Ashton, B., and Middleton, J. (2007) Concise review: mesenchymal stem cells:their phenotype, differentiation capacity, immunological features, and potential for homing, Stem cells (Dayton, Ohio) 25,2739-2749.
    19. Abbott, J. D., Huang, Y, Liu, D., Hickey, R., Krause, D. S., and Giordano, F. J. (2004) Stromal cell-derived factor-1alpha plays a critical role in stem cell recruitment to the heart after myocardial infarction but is not sufficient to induce homing in the absence of injury, Circulation 110,3300-3305.
    20. Elmadbouh, I., Haider, H., Jiang, S., Idris, N. M., Lu, G, and Ashraf, M. (2007) Ex vivo delivered stromal cell-derived factor-1 alpha promotes stem cell homing and induces angiomyogenesis in the infarcted myocardium, Journal of molecular and cellular cardiology 42,792-803.
    21. Broxmeyer, H. E., Hangoc, G, Cooper, S., Campbell, T., Ito, S., and Mantel, C. (2007) AMD3100 and CD26 modulate mobilization, engraftment, and survival of hematopoietic stem and progenitor cells mediated by the SDF-1/CXCL12-CXCR4 axis, Annals of the New York Academy of Sciences 1106,1-19.
    22. Burger, J. A., and Kipps, T. J. (2006) CXCR4:a key receptor in the crosstalk between tumor cells and their microenvironment, Blood 107,1761-1767.
    23. Pillarisetti, K., and Gupta, S. K. (2001) Cloning and relative expression analysis of rat stromal cell derived factor-1 (SDF-1)1:SDF-1 alpha mRNA is selectively induced in rat model of myocardial infarction, Inflammation 25, 293-300.
    24. Kucia, M., Jankowski, K., Reca, R., Wysoczynski, M., Bandura, L., Allendorf, D. J., Zhang, J., Ratajczak, J., and Ratajczak, M. Z. (2004) CXCR4-SDF-1 signalling, locomotion, chemotaxis and adhesion, Journal of molecular histology 35,233-245.
    25. Segret, A., Rucker-Martin, C., Pavoine, C., Flavigny, J., Deroubaix, E., Chatel, M. A., Lombet, A., and Renaud, J. F. (2007) Structural localization and expression of CXCL12 and CXCR4 in rat heart and isolated cardiac myocytes, J Histochem Cytochem 55,141-150.
    26. Honczarenko, M., Le, Y., Swierkowski, M., Ghiran, I., Glodek, A. M., and Silberstein, L. E. (2006) Human bone marrow stromal cells express a distinct set of biologically functional chemokine receptors, Stem cells (Dayton, Ohio) 24,1030-1041.
    27. Wynn, R. F., Hart, C. A., Corradi-Perini, C., O'Neill, L., Evans, C. A., Wraith, J. E., Fairbairn, L. J., and Bellantuono, I. (2004) A small proportion of mesenchymal stem cells strongly expresses functionally active CXCR4 receptor capable of promoting migration to bone marrow, Blood 104, 2643-2645.
    28. Hatse, S., Princen, K., Gerlach, L. O., Bridger, G, Henson, G, De Clercq, E., Schwartz, T. W., and Schols, D. (2001) Mutation of Asp(171) and Asp(262) of the chemokine receptor CXCR4 impairs its coreceptor function for human immunodeficiency virus-1 entry and abrogates the antagonistic activity of AMD3100, Molecular pharmacology 60,164-173.
    29. Vila-Coro, A. J., Rodriguez-Frade, J. M., Martin De Ana, A., Moreno-Ortiz, M. C., Martinez, A. C., and Mellado, M. (1999) The chemokine SDF-1alpha triggers CXCR4 receptor dimerization and activates the JAK/STAT pathway, Faseb J 13,1699-1710.
    30. Zhang, X. F., Wang, J. F., Matczak, E., Proper, J. A., and Groopman, J. E.
    (2001)Janus kinase 2 is involved in stromal cell-derived factor-1 alpha-induced tyrosine phosphorylation of focal adhesion proteins and migration of hematopoietic progenitor cells, Blood 97,3342-3348.
    31. Cheng, Z. J., Zhao, J., Sun, Y., Hu, W., Wu, Y. L., Cen, B., Wu, G.X., and Pei, G. (2000) beta-arrestin differentially regulates the chemokine receptor CXCR4-mediated signaling and receptor internalization, and this implicates multiple interaction sites between beta-arrestin and CXCR4, The Journal of biological chemistry 275,2479-2485.
    32. Ganju, R. K., Brubaker, S. A., Meyer, J., Dutt, P., Yang, Y, Qin, S., Newman, W., and Groopman, J. E. (1998) The alpha-chemokine, stromal cell-derived factor-1alpha, binds to the transmembrane G-protein-coupled CXCR-4 receptor and activates multiple signal transduction pathways, The Journal of biological chemistry 273,23169-23175.
    33. Wysoczynski, M., Reca, R., Ratajczak, J., Kucia, M., Shirvaikar, N., Honczarenko, M., Mills, M., Wanzeck, J., Janowska-Wieczorek, A., and Ratajczak, M. Z. (2005) Incorporation of CXCR4 into membrane lipid rafts primes homing-related responses of hematopoietic stem/progenitor cells to an SDF-1 gradient, Blood 105,40-48.
    34. Kucia, M., Reca, R., Miekus, K., Wanzeck, J., Wojakowski, W., Janowska-Wieczorek, A., Ratajczak, J., and Ratajczak, M. Z. (2005) Trafficking of normal stem cells and metastasis of cancer stem cells involve similar mechanisms:pivotal role of the SDF-1-CXCR4 axis, Stem cells (Dayton, Ohio) 23,879-894.
    35. Moepps, B., Braun, M., Knopfle, K., Dillinger, K., Knochel, W., and Gierschik, P. (2000) Characterization of a Xenopus laevis CXC chemokine receptor 4: implications for hematopoietic cell development in the vertebrate embryo, European journal of immunology 30,2924-2934.
    36. Ma, Q., Jones, D., and Springer, T. A. (1999) The chemokine receptor CXCR4 is required for the retention of B lineage and granulocytic precursors within the bone marrow microenvironment, Immunity 10,463-471.
    37. Semerad, C. L., Christopher, M. J., Liu, F., Short, B., Simmons, P. J., Winkler, I., Levesque, J. P., Chappel, J., Ross, F. P., and Link, D. C. (2005) G-CSF potently inhibits osteoblast activity and CXCL12 mRNA expression in the bone marrow, Blood 106,3020-3027.
    38. Petit, I., Szyper-Kravitz, M., Nagler, A., Lahav, M., Peled, A., Habler, L., Ponomaryov, T., Taichman, R. S., Arenzana-Seisdedos, F., Fujii, N., Sandbank, J., Zipori, D., and Lapidot, T. (2002) G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4, Nature immunology 3,687-694.
    39. Lapidot, T., and Petit, I. (2002) Current understanding of stem cell mobilization:the roles of chemokines, proteolytic enzymes, adhesion molecules, cytokines, and stromal cells, Experimental hematology 30, 973-981.
    40. Ma, J., Ge, J., Zhang, S., Sun, A., Shen, J., Chen, L., Wang, K., and Zou, Y (2005) Time course of myocardial stromal cell-derived factor 1 expression and
    beneficial effects of intravenously administered bone marrow stem cells in rats with experimental myocardial infarction, Basic research in cardiology 100, 217-223.
    41. Askari, A. T., Unzek, S., Popovic, Z. B., Goldman, C. K., Forudi, F., Kiedrowski, M., Rovner, A., Ellis, S. G, Thomas, J. D., DiCorleto, P. E., Topol, E. J., and Penn, M. S. (2003) Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy, Lancet 362,697-703.
    42. Zhang, D., Fan, G C., Zhou, X., Zhao, T., Pasha, Z., Xu, M., Zhu, Y., Ashraf, M., and Wang, Y. (2008) Over-expression of CXCR4 on mesenchymal stem cells augments myoangiogenesis in the infarcted myocardium, Journal of molecular and cellular cardiology 44,281-292.
    43. Peled, A., Petit, I., Kollet, O., Magid, M., Ponomaryov, T., Byk, T., Nagler, A., Ben-Hur, H., Many, A., Shultz, L., Lider, O., Alon, R., Zipori, D., and Lapidot, T. (1999) Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4, Science (New York, N.Y 283,845-848.
    44. Fernandis, A. Z., Cherla, R. P., and Ganju, R. K. (2003) Differential regulation of CXCR4-mediated T-cell chemotaxis and mitogen-activated protein kinase activation by the membrane tyrosine phosphatase, CD45, The Journal of biological chemistry 278,9536-9543.
    45. Reca, R., Mastellos, D., Majka, M., Marquez, L., Ratajczak, J., Franchini, S., Glodek, A., Honczarenko, M., Spruce, L. A., Janowska-Wieczorek, A., Lambris, J. D., and Ratajczak, M. Z. (2003) Functional receptor for C3a anaphylatoxin is expressed by normal hematopoietic stem/progenitor cells, and C3a enhances their homing-related responses to SDF-1, Blood 101, 3784-3793.
    46. Peled, A., Kollet, O., Ponomaryov, T., Petit, I., Franitza, S., Grabovsky, V., Slav, M. M., Nagler, A., Lider, O., Alon, R., Zipori, D., and Lapidot, T. (2000) The chemokine SDF-1 activates the integrins LFA-1, VLA-4, and VLA-5 on immature human CD34(+) cells:role in transendothelial/stromal migration and engraftment of NOD/SCID mice, Blood 95,3289-3296.
    47. Ding, Z., Issekutz, T. B., Downey, G.P., and Waddell, T. K. (2003) L-selectin stimulation enhances functional expression of surface CXCR4 in lymphocytes: implications for cellular activation during adhesion and migration, Blood 101, 4245-4252.
    48. Son, B. R., Marquez-Curtis, L. A., Kucia, M., Wysoczynski, M., Turner, A. R., Ratajczak, J., Ratajczak, M. Z., and Janowska-Wieczorek, A. (2006) Migration of bone marrow and cord blood mesenchymal stem cells in vitro is regulated by stromal-derived factor-1-CXCR4 and hepatocyte growth factor-c-met axes and involves matrix metalloproteinases, Stem cells (Dayton, Ohio) 24, 1254-1264.
    49. Belkin, A. M., Akimov, S. S., Zaritskaya, L. S., Ratnikov, B. I., Deryugina, E. I., and Strongin, A. Y. (2001) Matrix-dependent proteolysis of surface transglutaminase by membrane-type metalloproteinase regulates cancer cell adhesion and locomotion, The Journal of biological chemistry 276,
    18415-18422.
    50. Takahashi, M., Li, T. S., Suzuki, R., Kobayashi, T., Ito, H., Ikeda, Y., Matsuzaki, M., and Hamano, K. (2006) Cytokines produced by bone marrow cells can contribute to functional improvement of the infarcted heart by protecting cardiomyocytes from ischemic injury, American journal of physiology 291, H886-893.
    51. Saxena, A., Fish, J. E., White, M. D., Yu, S., Smyth, J. W., Shaw, R. M., DiMaio, J. M., and Srivastava, D. (2008) Stromal cell-derived factor-1 alpha is cardioprotective after myocardial infarction, Circulation 117,2224-2231.
    52. Hu, X., Dai, S., Wu, W. J., Tan, W., Zhu, X., Mu, J., Guo, Y., Bolli, R., and Rokosh, G. (2007) Stromal cell derived factor-1 alpha confers protection against myocardial ischemia/reperfusion injury:role of the cardiac stromal cell derived factor-1 alpha CXCR4 axis, Circulation 116,654-663.
    53. Yamaguchi, J., Kusano, K. F., Masuo, O., Kawamoto, A., Silver, M., Murasawa, S., Bosch-Marce, M., Masuda, H., Losordo, D. W., Isner, J. M., and Asahara, T. (2003) Stromal cell-derived factor-1 effects on ex vivo expanded endothelial progenitor cell recruitment for ischemic neovascularization, Circulation 107,1322-1328.
    54. Kryczek, I., Lange, A., Mottram, P., Alvarez, X., Cheng, P., Hogan, M., Moons, L., Wei, S., Zou, L., Machelon, V., Emilie, D., Terrassa, M., Lackner, A., Curiel, T. J., Carmeliet, P., and Zou, W. (2005) CXCL12 and vascular endothelial growth factor synergistically induce neoangiogenesis in human ovarian cancers, Cancer research 65,465-472.
    55. Tang, J., Wang, J., Yang, J., and Kong, X. (2008) Adenovirus-mediated stromal cell-derived-factor-1 alpha gene transfer induces cardiac preservation after infarction via angiogenesis of CD133+stem cells and anti-apoptosis, Interactive cardiovascular and thoracic surgery 7,767-770.
    56. Hiasa, K., Ishibashi, M., Ohtani, K., Inoue, S., Zhao, Q., Kitamoto, S., Sata, M., Ichiki, T., Takeshita, A., and Egashira, K. (2004) Gene transfer of stromal cell-derived factor-1alpha enhances ischemic vasculogenesis and angiogenesis via vascular endothelial growth factor/endothelial nitric oxide synthase-related pathway:next-generation chemokine therapy for therapeutic neovascularization, Circulation 109,2454-2461.
    57. Ceradini, D. J., Kulkarni, A. R., Callaghan, M. J., Tepper, O. M., Bastidas, N., Kleinman, M. E., Capla, J. M., Galiano, R. D., Levine, J. P., and Gurtner, G. C. (2004) Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1, Nature medicine 10,858-864.
    58. Siddiq, A., Ayoub, I. A., Chavez, J. C., Aminova, L., Shah, S., LaManna, J. C., Patton, S. M., Connor, J. R., Cherny, R. A., Volitakis, I., Bush, A. I., Langsetmo, I., Seeley, T., Gunzler, V., and Ratan, R. R. (2005) Hypoxia-inducible factor prolyl 4-hydroxylase inhibition. A target for neuroprotection in the central nervous system, The Journal of biological chemistry 280,41732-41743.
    59. Zhang, Y, Wittner, M., Bouamar, H., Jarrier, P., Vainchenker, W.,and Louache, F. (2007) Identification of CXCR4 as a new nitric oxide-regulated gene in human CD34+cells, Stem cells (Dayton, Ohio) 25,211-219.
    60. Cui, X., Chen, J., Zacharek, A., Li, Y, Roberts, C., Kapke, A., Savant-Bhonsale, S., and Chopp, M. (2007) Nitric oxide donor upregulation of stromal cell-derived factor-1/chemokine (CXC motif) receptor 4 enhances bone marrow stromal cell migration into ischemic brain after stroke, Stem cells (Dayton, Ohio) 25,2777-2785.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700