表观遗传修饰在HOXB13基因转录中的调控机制及意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
HOXB13作为一个homeodomain蛋白对前列腺癌细胞生长停滞起着重要的作用。它仅仅在AR(androgen receptor)阳性的前列腺细胞中表达,但是,具体的机制未见报道。本文探讨了表观遗传修饰对HOXB13基因转录的影响,并且对其可能的机制和意义做了深入的研究。我们证实了在AR阴性的前列腺癌中组蛋白去乙酰化酶抑制剂NaB能够诱导细胞的生长停滞并且增强HOXB13基因的表达水平。我们的研究表明组蛋白去乙酰化酶HDAC4和转录因子YY1能够在mRNA和蛋白水平上调控HOXB13基因。组蛋白去乙酰化酶HDAC4和转录因子YY1都能够以组蛋白乙酰化的表观修饰机制阻遏HOXB13基因的表达。免疫共沉淀(CoIP)实验表明转录因子YY1和组蛋白去乙酰化酶HDAC4能够存在于同一复合物中。染色质免疫沉淀(ChIP)揭示组蛋白去乙酰化酶HDAC4是由转录因子YY1招募到HOXB13基因启动子处的。启动子截短突变和点突变结果都显示HOXB13基因启动子上两个近端的YY1结合位点对YY1和HDAC4的招募起着重要的作用。MTT细胞增殖检测结果显示YY1和HDAC4能够通过抑制HOXB13基因的表达影响前列腺癌细胞的生长。我们还发现EZH2siRNA和BMI1siRNA通过部分抑制Polycomb复合物亚基EZH2和BMI1的表达进而明显提高了AR阴性的前列腺癌细胞中的HOXB13 mRNA和蛋白表达水平,ChIP分析显示在这个过程中H3K27me3起着重要的作用。DNA甲基转移酶抑制剂5-aza-dC能够诱导HOXB13 mRNA和蛋白的表达,亚硫酸氢钠测序(bisulfite genomic sequencing)的研究表明AR阴性的前列腺癌细胞中HOXB13基因启动子处的CpG岛是高甲基化的状态。DNMT3b能够被Polycomb复合物亚基EZH2招募到HOXB13基因启动子处进而抑制HOXB13基因的表达。总之,我们的研究工作阐述了HOXB13基因沉默机制以及其对前列腺癌细胞生长的影响,这些发现也暗示了HOXB13可能作为前列腺癌治疗的一个分子靶标。
HOXB13 is a homeodomain protein implicated to play a role in growth arrest in prostate cancer cells. Expression of HOXB13 is restricted to the AR (androgen receptor)-expressing prostate cells; however, the mechanism underlying this silencing has not been fully understood. In this study, we investigated the possible regulatory mechanisms and roles of epigenetic modifications in HOXB13 gene transcription. We demonstrate that the HDAC inhibitor sodium butyrate (NaB) was able to induce cell growth arrest and to increase HOXB13 expression in AR-negative prostate cancer cells. Results arising our study revealed that both histone deacetylase HDAC4 and transcript factor YY1 could regulate HOXB13 gene at the levels of promoter activity, mRNA and protein expression. Moreover, we show that both HDAC4 and YY1 participated in the repression of HOXB13 expression through an epigenetic mechanism involving histone acetylation modification. Specifically, co-immuno- precipitation (CoIP) assays revealed that HDAC4 and YY1 formed a complex. The chromatin immunoprecipitation (ChIP) assays verified that HDAC4 was recruited to HOXB13 promoter by YY1. Additionally, promoter truncation and point mutation studies determined that the two proximal YY1 binding sites on the HOXB13 promoter were essential for the recruitments of YY1 and HDAC4. Results from MTT assays suggested that YY1 and HDAC4 affected cell growth through repressing the transcription of HOXB13 gene. Meanwhile, we found that the siRNA-induced partial silencing of Polycomb group proteins EZH2 and BMI1 resulted in a significant upregulation of both HOXB13 mRNA and protein levels in AR-negative prostate cancer cells. The ChIP assays demonstrated that H3K27me3 played an important role in this process. Also, we showed that the methyltransferase inhibitor 5-aza-dC induced the recovery of HOXB13 mRNA and protein expression, and we further manifested that almost all the CpG sites at HOXB13 promoter were densely methylated in AR-negative prostate cancer cells. Our evidence also showed that DNMT3b was recruited to the HOXB13 promoter by EZH2 to inhibit HOXB13 expression. Altogether, data included in this thesis will contribute to elucidating the unique silencing mechanisms of HOXB13 transcription, as well as its effects on prostate cancer cell growth. These findings may also implicate the possibility of HOXB13 as a potential molecular therapeutic target for prostate cancer.
引文
[1] Cillo, C, Cantile, M, Faiella, A, et al. Homeobox genes in normal and malignant cells[J]. J Cell Physiol, 2001, 188(2): 161-169.
    [2] Soubeyran, P, Haglund, K, Garcia, S, et al. Homeobox gene Cdx1 regulates Ras, Rho and PI3 kinase pathways leading to transformation and tumorigenesis of intestinal epithelial cells[J]. Oncogene, 2001, 20(31): 4180-4187.
    [3] McGinnis, W, Garber, R L, Wirz, J, et al. A homologous protein-coding sequence in Drosophila homeotic genes and its conservation in other metazoans[J]. Cell, 1984, 37(2): 403-408.
    [4] Brooke, N M, Garcia-Fernandez, J, Holland, P W. The ParaHox gene cluster is an evolutionary sister of the Hox gene cluster[J]. Nature, 1998, 392(6679): 920-922.
    [5] Ford, H L. Homeobox genes: a link between development, cell cycle, and cancer?[J]. Cell Biol Int, 1998, 22(6): 397-400.
    [6] Maroulakou, I G, Spyropoulos, D D. The study of HOX gene function in hematopoietic, breast and lung carcinogenesis[J]. Anticancer Res, 2003, 23(3A): 2101-2110.
    [7] Tomotsune, D, Shoji, H, Wakamatsu, Y, et al. A mouse homologue of the Drosophila tumour-suppressor gene l(2)gl controlled by Hox-C8 in vivo[J]. Nature, 1993, 365(6441): 69-72.
    [8] McGinnis, W, Krumlauf, R. Homeobox genes and axial patterning[J]. Cell, 1992, 68(2): 283-302.
    [9] Pirrotta, V. Chromatin-silencing mechanisms in Drosophila maintain patterns of gene expression[J]. Trends Genet, 1997, 13(8): 314-318.
    [10] Riddle, R D, Johnson, R L, Laufer, E, et al. Sonic hedgehog mediates the polarizing activity of the ZPA[J]. Cell, 1993, 75(7): 1401-1416.
    [11] Nieto, M A, Gilardi-Hebenstreit, P, Charnay, P, et al. A receptor protein tyrosine kinase implicated in the segmental patterning of the hindbrain and mesoderm[J]. Development, 1992, 116(4): 1137-1150.
    [12] Sessa, L, Breiling, A, Lavorgna, G, et al. Noncoding RNA synthesis and loss of Polycomb group repression accompanies the colinear activation of the human HOXA cluster[J]. Rna, 2007, 13(2): 223-239.
    [13] Naguibneva, I, Ameyar-Zazoua, M, Polesskaya, A, et al. The microRNA miR-181 targets the homeobox protein Hox-A11 during mammalian myoblast differentiation[J]. Nat Cell Biol, 2006, 8(3): 278-284.
    [14] Agger, K, Cloos, P A, Christensen, J, et al. UTX and JMJD3 are histone H3K27 demethylases involved in HOX gene regulation and development[J]. Nature, 2007, 449(7163): 731-734.
    [15] Kehrl, J H. Homeobox genes in hematopoiesis[J]. Crit Rev Oncol Hematol, 1994, 16(2): 145-156.
    [16] Hunt, P, Wilkinson, D, Krumlauf, R. Patterning the vertebrate head: murine Hox 2 genes mark distinct subpopulations of premigratory and migrating cranial neural crest[J]. Development, 1991, 112(1): 43-50.
    [17] Kessel, M, Gruss, P. Murine developmental control genes[J]. Science, 1990, 249(4967): 374-379.
    [18] Abate-Shen, C. Homeobox genes and cancer: new OCTaves for an old tune[J]. Cancer Cell, 2003, 4(5): 329-330.
    [19] Rao, M K, Maiti, S, Ananthaswamy, H N, et al. A highly active homeobox gene promoter regulated by Ets and Sp1 family members in normal granulosa cells and diverse tumor cell types[J]. J Biol Chem, 2002, 277(29): 26036-26045.
    [20] Kroon, E, Krosl, J, Thorsteinsdottir, U, et al. Hoxa9 transforms primary bone marrow cells through specific collaboration with Meis1a but not Pbx1b[J]. Embo J, 1998, 17(13): 3714-3725.
    [21] Bijl, J, van Oostveen, J W, Kreike, M, et al. Expression of HOXC4, HOXC5, and HOXC6 in human lymphoid cell lines, leukemias, and benign and malignant lymphoid tissue[J]. Blood, 1996, 87(5): 1737-1745.
    [22] Raman, V, Martensen, S A, Reisman, D, et al. Compromised HOXA5 function can limit p53 expression in human breast tumours[J]. Nature, 2000, 405(6789): 974-978.
    [23] Manohar, C F, Salwen, H R, Furtado, M R, et al. Up-regulation of HOXC6, HOXD1, and HOXD8 homeobox gene expression in human neuroblastoma cells following chemical induction of differentiation[J]. Tumour Biol, 1996, 17(1): 34-47.
    [24] Omatu, T. [Overexpression of human homeobox gene in lung cancer A549 cells results in enhanced motile and invasive properties][J]. Hokkaido Igaku Zasshi, 1999, 74(5): 367-376.
    [25] Jung, C, Kim, R S, Zhang, H J, et al. HOXB13 induces growth suppression of prostate cancer cells as a repressor of hormone-activated androgen receptor signaling[J]. Cancer Res, 2004, 64(24): 9185-9192.
    [26] Vider, B Z, Zimber, A, Chastre, E, et al. Deregulated expression of homeobox-containing genes, HOXB6, B8, C8, C9, and Cdx-1, in human colon cancer cell lines[J]. Biochem Biophys Res Commun, 2000, 272(2): 513-518.
    [27] Alami, Y, Castronovo, V, Belotti, D, et al. HOXC5 and HOXC8 expression are selectively turned on in human cervical cancer cells compared to normal keratinocytes[J]. Biochem Biophys Res Commun, 1999, 257(3): 738-745.
    [28] Bodey, B, Bodey, B, Jr., Siegel, S E, et al. Homeobox B3, B4, and C6 gene product expression in osteosarcomas as detected by immunocytochemistry[J]. Anticancer Res, 2000, 20(4): 2717-2721.
    [29] Zeltser, L, Desplan, C, Heintz, N. Hoxb-13: a new Hox gene in a distant region of the HOXB cluster maintains colinearity[J]. Development, 1996, 122(8): 2475-2484.
    [30] Mack, J A, Li, L, Sato, N, et al. Hoxb13 up-regulates transglutaminase activity and drives terminal differentiation in an epidermal organotypic model[J]. J Biol Chem, 2005, 280(33): 29904-29911.
    [31] Economides, K D, Capecchi, M R. Hoxb13 is required for normal differentiation and secretory function of the ventral prostate[J]. Development, 2003, 130(10): 2061-2069.
    [32] Jung, C, Kim, R S, Lee, S J, et al. HOXB13 homeodomain protein suppresses the growth of prostate cancer cells by the negative regulation of T-cell factor 4[J]. Cancer Res, 2004, 64(9): 3046-3051.
    [33] Jung, C, Kim, R S, Zhang, H, et al. HOXB13 is downregulated in colorectal cancer to confer TCF4-mediated transactivation[J]. Br J Cancer, 2005, 92(12): 2233-2239.
    [34] Liu, S, Ren, S, Howell, P, et al. Identification of novel epigenetically modified genes in human melanoma via promoter methylation gene profiling[J]. Pigment Cell Melanoma Res, 2008, 21(5): 545-558.
    [35] Okuda, H, Toyota, M, Ishida, W, et al. Epigenetic inactivation of the candidate tumor suppressor gene HOXB13 in human renal cell carcinoma[J]. Oncogene, 2006, 25(12): 1733-1742.
    [36] Miao, J, Wang, Z, Provencher, H, et al. HOXB13 promotes ovarian cancer progression[J]. Proc Natl Acad Sci U S A, 2007, 104(43): 17093-17098.
    [37] Lopez, R, Garrido, E, Pina, P, et al. HOXB homeobox gene expression in cervical carcinoma[J]. Int J Gynecol Cancer, 2006, 16(1): 329-335.
    [38] Mann, R S, Chan, S K. Extra specificity from extradenticle: the partnership between HOX and PBX/EXD homeodomain proteins[J]. Trends Genet, 1996, 12(7): 258-262.
    [39] Shen, W F, Krishnan, K, Lawrence, H J, et al. The HOX homeodomain proteins block CBP histone acetyltransferase activity[J]. Mol Cell Biol, 2001, 21(21): 7509-7522.
    [40] Muthusamy, V, Duraisamy, S, Bradbury, C M, et al. Epigenetic silencing of novel tumor suppressors in malignant melanoma[J]. Cancer Res, 2006, 66(23): 11187-11193.
    [41] Hayes, J J, Bashkin, J, Tullius, T D, et al. The histone core exerts a dominant constraint on the structure of DNA in a nucleosome[J]. Biochemistry, 1991, 30(34): 8434-8440.
    [42] Hayes, J J, Clark, D J, Wolffe, A P. Histone contributions to the structure of DNA in the nucleosome[J]. Proc Natl Acad Sci U S A, 1991, 88(15): 6829-6833.
    [43] Imbalzano, A N. SWI/SNF complexes and facilitation of TATA binding protein:nucleosome interactions[J]. Methods, 1998, 15(4): 303-314.
    [44] Moreira, J M, Holmberg, S. Transcriptional repression of the yeast CHA1 gene requires the chromatin-remodeling complex RSC[J]. Embo J, 1999, 18(10): 2836-2844.
    [45] Tsukiyama, T, Daniel, C, Tamkun, J, et al. ISWI, a member of the SWI2/SNF2 ATPase family, encodes the 140 kDa subunit of the nucleosome remodeling factor[J]. Cell, 1995, 83(6): 1021-1026.
    [46] Varga-Weisz, P D, Wilm, M, Bonte, E, et al. Chromatin-remodelling factor CHRAC contains the ATPases ISWI and topoisomerase II[J]. Nature, 1997, 388(6642): 598-602.
    [47] Ito, T, Bulger, M, Pazin, M J, et al. ACF, an ISWI-containing and ATP-utilizing chromatin assembly and remodeling factor[J]. Cell, 1997, 90(1): 145-155.
    [48] Xue, Y, Wong, J, Moreno, G T, et al. NURD, a novel complex with both ATP-dependent chromatin-remodeling and histone deacetylase activities[J]. Mol Cell, 1998, 2(6): 851-861.
    [49] Workman, J L, Kingston, R E. Alteration of nucleosome structure as a mechanism of transcriptional regulation[J]. Annu Rev Biochem, 1998, 67: 545-579.
    [50] Davie, J R. Covalent modifications of histones: expression from chromatin templates[J]. Curr Opin Genet Dev, 1998, 8(2): 173-178.
    [51] Khorasanizadeh, S. The nucleosome: from genomic organization to genomic regulation[J]. Cell, 2004, 116(2): 259-272.
    [52] He, H, Lehming, N. Global effects of histone modifications[J]. Brief Funct Genomic Proteomic, 2003, 2(3): 234-243.
    [53] Strahl, B D, Allis, C D. The language of covalent histone modifications[J]. Nature, 2000, 403(6765): 41-45.
    [54] Yang, X J, Seto, E. Lysine acetylation: codified crosstalk with other posttranslational modifications[J]. Mol Cell, 2008, 31(4): 449-461.
    [55] Hebbes, T R, Thorne, A W, Crane-Robinson, C. A direct link between core histone acetylation and transcriptionally active chromatin[J]. Embo J, 1988, 7(5): 1395-1402.
    [56] Grunstein, M. Histone acetylation in chromatin structure and transcription[J]. Nature, 1997, 389(6649): 349-352.
    [57] Fletcher, T M, Hansen, J C. The nucleosomal array: structure/function relationships[J]. Crit Rev Eukaryot Gene Expr, 1996, 6(2-3): 149-188.
    [58] Allfrey, V G, Faulkner, R, Mirsky, A E. Acetylation and Methylation of Histones and Their Possible Role in the Regulation of Rna Synthesis[J]. Proc Natl Acad Sci U S A, 1964, 51: 786-794.
    [59] Kimura, A, Horikoshi, M. Tip60 acetylates six lysines of a specific class in core histones in vitro[J]. Genes Cells, 1998, 3(12): 789-800.
    [60] Verreault, A, Kaufman, P D, Kobayashi, R, et al. Nucleosomal DNA regulates the core-histone-binding subunit of the human Hat1 acetyltransferase[J]. Curr Biol, 1998, 8(2): 96-108.
    [61] Schiltz, R L, Mizzen, C A, Vassilev, A, et al. Overlapping but distinct patterns of histone acetylation by the human coactivators p300 and PCAF within nucleosomal substrates[J]. J Biol Chem, 1999, 274(3): 1189-1192.
    [62] Mutskov, V, Gerber, D, Angelov, D, et al. Persistent interactions of core histone tails with nucleosomal DNA following acetylation and transcription factor binding[J]. Mol Cell Biol, 1998, 18(11): 6293-6304.
    [63] Roth, S Y, Denu, J M, Allis, C D. Histone acetyltransferases[J]. Annu Rev Biochem, 2001, 70: 81-120.
    [64] Cress, W D, Seto, E. Histone deacetylases, transcriptional control, and cancer[J]. J Cell Physiol, 2000, 184(1): 1-16.
    [65] Brownell, J E, Zhou, J, Ranalli, T, et al. Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation[J]. Cell, 1996, 84(6): 843-851.
    [66] Kuo, M H, Zhou, J, Jambeck, P, et al. Histone acetyltransferase activity of yeast Gcn5p is required for the activation of target genes in vivo[J]. Genes Dev, 1998, 12(5): 627-639.
    [67] Smith, E R, Allis, C D, Lucchesi, J C. Linking global histone acetylation to the transcription enhancement of X-chromosomal genes in Drosophila males[J]. J Biol Chem, 2001, 276(34): 31483-31486.
    [68] Lusser, A, Kolle, D, Loidl, P. Histone acetylation: lessons from the plant kingdom[J]. Trends Plant Sci, 2001, 6(2): 59-65.
    [69] Brownell, J E, Allis, C D. Special HATs for special occasions: linking histone acetylation to chromatin assembly and gene activation[J]. Curr Opin Genet Dev, 1996, 6(2): 176-184.
    [70] Ruiz-Carrillo, A, Wangh, L J, Allfrey, V G. Processing of newly synthesized histone molecules[J]. Science, 1975, 190(4210): 117-128.
    [71] Morales, V, Giamarchi, C, Chailleux, C, et al. Chromatin structure and dynamics: functional implications[J]. Biochimie, 2001, 83(11-12): 1029-1039.
    [72] Chen, H, Tini, M, Evans, R M. HATs on and beyond chromatin[J]. Curr Opin Cell Biol, 2001, 13(2): 218-224.
    [73] Struhl, K. Histone acetylation and transcriptional regulatory mechanisms[J]. Genes Dev, 1998, 12(5): 599-606.
    [74] Brown, C E, Lechner, T, Howe, L, et al. The many HATs of transcription coactivators[J]. Trends Biochem Sci, 2000, 25(1): 15-19.
    [75] Giles, R H, Peters, D J, Breuning, M H. Conjunction dysfunction: CBP/p300 in human disease[J]. Trends Genet, 1998, 14(5): 178-183.
    [76] Korzus, E, Torchia, J, Rose, D W, et al. Transcription factor-specific requirements for coactivators and their acetyltransferase functions[J]. Science, 1998, 279(5351): 703-707.
    [77] Bannister, A J, Miska, E A. Regulation of gene expression by transcription factor acetylation[J]. Cell Mol Life Sci, 2000, 57(8-9): 1184-1192.
    [78] Lo, W S, Duggan, L, Emre, N C, et al. Snf1--a histone kinase that works in concert with the histone acetyltransferase Gcn5 to regulate transcription[J]. Science, 2001, 293(5532): 1142-1146.
    [79] Rea, S, Eisenhaber, F, O'Carroll, D, et al. Regulation of chromatin structure by site-specific histone H3 methyltransferases[J]. Nature, 2000, 406(6796): 593-599.
    [80] Otero, G, Fellows, J, Li, Y, et al. Elongator, a multisubunit component of a novel RNA polymerase II holoenzyme for transcriptional elongation[J]. Mol Cell, 1999, 3(1): 109-118.
    [81] Wittschieben, B O, Otero, G, de Bizemont, T, et al. A novel histone acetyltransferase is an integral subunit of elongating RNA polymerase II holoenzyme[J]. Mol Cell, 1999, 4(1): 123-128.
    [82] Orphanides, G, Reinberg, D. RNA polymerase II elongation through chromatin[J]. Nature, 2000, 407(6803): 471-475.
    [83] Ehrenhofer-Murray, A E, Rivier, D H, Rine, J. The role of Sas2, an acetyltransferase homologue of Saccharomyces cerevisiae, in silencing and ORC function[J]. Genetics, 1997, 145(4): 923-934.
    [84] Reifsnyder, C, Lowell, J, Clarke, A, et al. Yeast SAS silencing genes and human genes associated with AML and HIV-1 Tat interactions are homologous with acetyltransferases[J]. Nat Genet, 1996, 14(1): 42-49.
    [85] Takechi, S, Nakayama, T. Sas3 is a histone acetyltransferase and requires a zinc finger motif[J]. Biochem Biophys Res Commun, 1999, 266(2): 405-410.
    [86] Kimura, A, Umehara, T, Horikoshi, M. Chromosomal gradient of histone acetylation established by Sas2p and Sir2p functions as a shield against gene silencing[J]. Nat Genet, 2002, 32(3): 370-377.
    [87] Mizzen, C A, Yang, X J, Kokubo, T, et al. The TAF(II)250 subunit of TFIID has histone acetyltransferase activity[J]. Cell, 1996, 87(7): 1261-1270.
    [88] O'Brien, T, Tjian, R. Functional analysis of the human TAFII250 N-terminal kinase domain[J]. Mol Cell, 1998, 1(6): 905-911.
    [89] O'Brien, T, Tjian, R. Different functional domains of TAFII250 modulate expression of distinct subsets of mammalian genes[J]. Proc Natl Acad Sci U S A, 2000, 97(6): 2456-2461.
    [90] Sterner, D E, Berger, S L. Acetylation of histones and transcription-related factors[J]. Microbiol Mol Biol Rev, 2000, 64(2): 435-459.
    [91] Smith, E R, Eisen, A, Gu, W, et al. ESA1 is a histone acetyltransferase that is essential for growth in yeast[J]. Proc Natl Acad Sci U S A, 1998, 95(7): 3561-3565.
    [92] Allard, S, Utley, R T, Savard, J, et al. NuA4, an essential transcription adaptor/histone H4 acetyltransferase complex containing Esa1p and the ATM-related cofactor Tra1p[J]. Embo J, 1999, 18(18): 5108-5119.
    [93] Clarke, A S, Lowell, J E, Jacobson, S J, et al. Esa1p is an essential histone acetyltransferase required for cell cycle progression[J]. Mol Cell Biol, 1999, 19(4): 2515-2526.
    [94] Verreault, A. De novo nucleosome assembly: new pieces in an old puzzle[J]. Genes Dev, 2000, 14(12): 1430-1438.
    [95] Parthun, M R, Widom, J, Gottschling, D E. The major cytoplasmic histone acetyltransferase in yeast: links to chromatin replication and histone metabolism[J]. Cell, 1996, 87(1): 85-94.
    [96] Sobel, R E, Cook, R G, Perry, C A, et al. Conservation of deposition-related acetylation sites in newly synthesized histones H3 and H4[J]. Proc Natl Acad Sci U S A, 1995, 92(4): 1237-1241.
    [97] Ruiz-Garcia, A B, Sendra, R, Galiana, M, et al. HAT1 and HAT2 proteins are components of a yeast nuclear histone acetyltransferase enzyme specific for free histone H4[J]. J Biol Chem, 1998, 273(20): 12599-12605.
    [98] Golding, A, Chandler, S, Ballestar, E, et al. Nucleosome structure completely inhibits in vitro cleavage by the V(D)J recombinase[J]. Embo J, 1999, 18(13): 3712-3723.
    [99] McMurry, M T, Krangel, M S. A role for histone acetylation in the developmental regulation of VDJ recombination[J]. Science, 2000, 287(5452): 495-498.
    [100] McBlane, F, Boyes, J. Stimulation of V(D)J recombination by histone acetylation[J]. Curr Biol, 2000, 10(8): 483-486.
    [101] Iizuka, M, Stillman, B. Histone acetyltransferase HBO1 interacts with the ORC1 subunit of the human initiator protein[J]. J Biol Chem, 1999, 274(33): 23027-23034.
    [102] Fox, C A, Loo, S, Dillin, A, et al. The origin recognition complex has essential functions in transcriptional silencing and chromosomal replication[J]. Genes Dev, 1995, 9(8): 911-924.
    [103] Brand, M, Moggs, J G, Oulad-Abdelghani, M, et al. UV-damaged DNA-binding protein in the TFTC complex links DNA damage recognition to nucleosome acetylation[J]. Embo J, 2001, 20(12): 3187-3196.
    [104] Feaver, W J, Svejstrup, J Q, Bardwell, L, et al. Dual roles of a multiprotein complex from S. cerevisiae in transcription and DNA repair[J]. Cell, 1993, 75(7): 1379-1387.
    [105] Ikura, T, Ogryzko, V V, Grigoriev, M, et al. Involvement of the TIP60 histone acetylase complex in DNA repair and apoptosis[J]. Cell, 2000, 102(4): 463-473.
    [106] Onate, S A, Tsai, S Y, Tsai, M J, et al. Sequence and characterization of a coactivator for the steroid hormone receptor superfamily[J]. Science, 1995, 270(5240): 1354-1357.
    [107] Spencer, T E, Jenster, G, Burcin, M M, et al. Steroid receptor coactivator-1 is a histone acetyltransferase[J]. Nature, 1997, 389(6647): 194-198.
    [108] Chen, H, Lin, R J, Xie, W, et al. Regulation of hormone-induced histone hyperacetylation and gene activation via acetylation of an acetylase[J]. Cell, 1999, 98(5): 675-686.
    [109] Carapeti, M, Aguiar, R C, Goldman, J M, et al. A novel fusion between MOZ and the nuclear receptor coactivator TIF2 in acute myeloid leukemia[J]. Blood, 1998, 91(9): 3127-3133.
    [110] Champagne, N, Pelletier, N, Yang, X J. The monocytic leukemia zinc finger protein MOZ is a histone acetyltransferase[J]. Oncogene, 2001, 20(3): 404-409.
    [111] Kitabayashi, I, Aikawa, Y, Yokoyama, A, et al. Fusion of MOZ and p300 histone acetyltransferases in acute monocytic leukemia with a t(8;22)(p11;q13) chromosome translocation[J]. Leukemia, 2001, 15(1): 89-94.
    [112] Vidal, M, Braun, P, Chen, E, et al. Genetic characterization of a mammalian protein-protein interaction domain by using a yeast reverse two-hybrid system[J]. Proc Natl Acad Sci U S A, 1996, 93(19): 10321-10326.
    [113] Gray, S G, Ekstrom, T J. The human histone deacetylase family[J]. Exp Cell Res, 2001, 262(2): 75-83.
    [114] Lusser, A, Brosch, G, Loidl, A, et al. Identification of maize histone deacetylase HD2 as an acidic nucleolar phosphoprotein[J]. Science, 1997, 277(5322): 88-91.
    [115] Grozinger, C M, Hassig, C A, Schreiber, S L. Three proteins define a class of human histone deacetylases related to yeast Hda1p[J]. Proc Natl Acad Sci U S A, 1999, 96(9): 4868-4873.
    [116] Zhou, X, Marks, P A, Rifkind, R A, et al. Cloning and characterization of a histone deacetylase, HDAC9[J]. Proc Natl Acad Sci U S A, 2001, 98(19): 10572-10577.
    [117] Gao, L, Cueto, M A, Asselbergs, F, et al. Cloning and functional characterization of HDAC11, a novel member of the human histone deacetylase family[J]. J Biol Chem, 2002, 277(28): 25748-25755.
    [118] de Ruijter, A J, van Gennip, A H, Caron, H N, et al. Histone deacetylases (HDACs): characterization of the classical HDAC family[J]. Biochem J, 2003, 370(Pt 3): 737-749.
    [119] Frye, R A. Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins[J]. Biochem Biophys Res Commun, 2000, 273(2): 793-798.
    [120] Grozinger, C M, Schreiber, S L. Deacetylase enzymes: biological functions and the use of small-molecule inhibitors[J]. Chem Biol, 2002, 9(1): 3-16.
    [121] Huang, E Y, Zhang, J, Miska, E A, et al. Nuclear receptor corepressors partner with class II histone deacetylases in a Sin3-independent repression pathway[J]. Genes Dev, 2000, 14(1): 45-54.
    [122] Dressel, U, Bailey, P J, Wang, S C, et al. A dynamic role for HDAC7 in MEF2-mediated muscle differentiation[J]. J Biol Chem, 2001, 276(20): 17007-17013.
    [123] Miska, E A, Karlsson, C, Langley, E, et al. HDAC4 deacetylase associates with and represses the MEF2 transcription factor[J]. Embo J, 1999, 18(18): 5099-5107.
    [124] Horlein, A J, Naar, A M, Heinzel, T, et al. Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor[J]. Nature, 1995, 377(6548): 397-404.
    [125] Han, S, Lu, J, Zhang, Y, et al. Recruitment of histone deacetylase 4 by transcription factors represses interleukin-5 transcription[J]. Biochem J, 2006, 400(3): 439-448.
    [126] Gartenberg, M R. The Sir proteins of Saccharomyces cerevisiae: mediators of transcriptional silencing and much more[J]. Curr Opin Microbiol, 2000, 3(2): 132-137.
    [127] Brachmann, C B, Sherman, J M, Devine, S E, et al. The SIR2 gene family, conserved from bacteria to humans, functions in silencing, cell cycle progression, and chromosome stability[J]. Genes Dev, 1995, 9(23): 2888-2902.
    [128] Xie, J, Pierce, M, Gailus-Durner, V, et al. Sum1 and Hst1 repress middle sporulation-specific gene expression during mitosis in Saccharomyces cerevisiae[J]. Embo J, 1999, 18(22): 6448-6454.
    [129] Perrod, S, Cockell, M M, Laroche, T, et al. A cytosolic NAD-dependent deacetylase, Hst2p, can modulate nucleolar and telomeric silencing in yeast[J]. Embo J, 2001, 20(1-2): 197-209.
    [130] Yang, Y H, Chen, Y H, Zhang, C Y, et al. Cloning and characterization of two mouse genes with homology to the yeast Sir2 gene[J]. Genomics, 2000, 69(3): 355-369.
    [131] Muth, V, Nadaud, S, Grummt, I, et al. Acetylation of TAF(I)68, a subunit of TIF-IB/SL1, activates RNA polymerase I transcription[J]. Embo J, 2001, 20(6): 1353-1362.
    [132] Yang, W M, Yao, Y L, Sun, J M, et al. Isolation and characterization of cDNAs corresponding to an additional member of the human histone deacetylase gene family[J]. J Biol Chem, 1997, 272(44): 28001-28007.
    [133] Yang, W M, Inouye, C, Zeng, Y, et al. Transcriptional repression by YY1 is mediated by interaction with a mammalian homolog of the yeast global regulator RPD3[J]. Proc Natl Acad Sci U S A, 1996, 93(23): 12845-12850.
    [134] Rundlett, S E, Carmen, A A, Suka, N, et al. Transcriptional repression by UME6 involves deacetylation of lysine 5 of histone H4 by RPD3[J]. Nature, 1998, 392(6678): 831-835.
    [135] Wang, A H, Bertos, N R, Vezmar, M, et al. HDAC4, a human histone deacetylase related to yeast HDA1, is a transcriptional corepressor[J]. Mol Cell Biol, 1999, 19(11): 7816-7827.
    [136] Palladino, F, Laroche, T, Gilson, E, et al. SIR3 and SIR4 proteins are required for the positioning and integrity of yeast telomeres[J]. Cell, 1993, 75(3): 543-555.
    [137] Vaziri, H, Dessain, S K, Ng Eaton, E, et al. hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase[J]. Cell, 2001, 107(2): 149-159.
    [138] Nielsen, A L, Oulad-Abdelghani, M, Ortiz, J A, et al. Heterochromatin formation in mammalian cells: interaction between histones and HP1 proteins[J]. Mol Cell, 2001, 7(4): 729-739.
    [139] Grewal, S I, Elgin, S C. Heterochromatin: new possibilities for the inheritance of structure[J]. Curr Opin Genet Dev, 2002, 12(2): 178-187.
    [140] Thiel, G, Lietz, M, Hohl, M. How mammalian transcriptional repressors work[J]. Eur J Biochem, 2004, 271(14): 2855-2862.
    [141] Brehm, A, Miska, E A, McCance, D J, et al. Retinoblastoma protein recruits histone deacetylase to repress transcription[J]. Nature, 1998, 391(6667): 597-601.
    [142] Lai, A, Lee, J M, Yang, W M, et al. RBP1 recruits both histone deacetylase-dependent and -independent repression activities to retinoblastoma family proteins[J]. Mol Cell Biol, 1999, 19(10): 6632-6641.
    [143] Sellers, W R, Kaelin, W G, Jr. Role of the retinoblastoma protein in the pathogenesis of human cancer[J]. J Clin Oncol, 1997, 15(11): 3301-3312.
    [144] De Carolis, S, Grimolizzi, F, Garofalo, S, et al. Cancer in pregnancy: results of a series of 32 patients[J]. Anticancer Res, 2006, 26(3B): 2413-2418.
    [145] Roediger, W E. The colonic epithelium in ulcerative colitis: an energy-deficiency disease?[J]. Lancet, 1980, 2(8197): 712-715.
    [146] Yoshida, M. [Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A][J]. Tanpakushitsu Kakusan Koso, 2007, 52(13 Suppl): 1788-1789.
    [147] Furumai, R, Komatsu, Y, Nishino, N, et al. Potent histone deacetylase inhibitors built from trichostatin A and cyclic tetrapeptide antibiotics including trapoxin[J]. Proc Natl Acad Sci U S A, 2001, 98(1): 87-92.
    [148] Miremadi, A, Oestergaard, M Z, Pharoah, P D, et al. Cancer genetics of epigenetic genes[J]. Hum Mol Genet, 2007, 16 Spec No 1: R28-49.
    [149] Park, S Y, Kim, B H, Kim, J H, et al. Methylation profiles of CpG island loci in major types of human cancers[J]. J Korean Med Sci, 2007, 22(2): 311-317.
    [150] Lai, H C, Lin, Y W, Huang, T H, et al. Identification of novel DNA methylation markers in cervical cancer[J]. Int J Cancer, 2008, 123(1): 161-167.
    [151] Jacinto, F V, Ballestar, E, Esteller, M. Methyl-DNA immunoprecipitation (MeDIP): hunting down the DNA methylome[J]. Biotechniques, 2008, 44(1): 35, 37, 39 passim.
    [152] Esteller, M. Epigenetic gene silencing in cancer: the DNA hypermethylome[J]. Hum Mol Genet, 2007, 16 Spec No 1: R50-59.
    [153] Esteller, M. The necessity of a human epigenome project[J]. Carcinogenesis, 2006, 27(6): 1121-1125.
    [154] Esteller, M. CpG island methylation and histone modifications: biology and clinical significance[J]. Ernst Schering Res Found Workshop, 2006, (57): 115-126.
    [155] Strathdee, G, Davies, B R, Vass, J K, et al. Cell type-specific methylation of an intronic CpG island controls expression of the MCJ gene[J]. Carcinogenesis, 2004, 25(5): 693-701.
    [156] Motokura, T, Bloom, T, Kim, H G, et al. A novel cyclin encoded by a bcl1-linked candidate oncogene[J]. Nature, 1991, 350(6318): 512-515.
    [157] Baldin, V, Lukas, J, Marcote, M J, et al. Cyclin D1 is a nuclear protein required for cell cycle progression in G1[J]. Genes Dev, 1993, 7(5): 812-821.
    [158] Yu, C, Lu, W, Tan, W, et al. Lack of association between CCND1 G870A polymorphism and risk of esophageal squamous cell carcinoma[J]. Cancer Epidemiol Biomarkers Prev, 2003, 12(2): 176.
    [159] Esteller, M. Cancer epigenomics: DNA methylomes and histone-modification maps[J]. Nat Rev Genet, 2007, 8(4): 286-298.
    [160] Hellebrekers, D M, Jair, K W, Vire, E, et al. Angiostatic activity of DNA methyltransferase inhibitors[J]. Mol Cancer Ther, 2006, 5(2): 467-475.
    [161] Esteller, M. Aberrant DNA methylation as a cancer-inducing mechanism[J]. Annu Rev Pharmacol Toxicol, 2005, 45: 629-656.
    [162] Esteller, M. DNA methylation and cancer therapy: new developments and expectations[J]. Curr Opin Oncol, 2005, 17(1): 55-60.
    [163] Jacinto, F V, Esteller, M. Mutator pathways unleashed by epigenetic silencing in human cancer[J]. Mutagenesis, 2007, 22(4): 247-253.
    [164] Fackler, M J, McVeigh, M, Evron, E, et al. DNA methylation of RASSF1A, HIN-1, RAR-beta, Cyclin D2 and Twist in in situ and invasive lobular breast carcinoma[J]. Int J Cancer, 2003, 107(6): 970-975.
    [165] Tomizawa, Y, Iijima, H, Nomoto, T, et al. Clinicopathological significance of aberrant methylation of RARbeta2 at 3p24, RASSF1A at 3p21.3, and FHIT at 3p14.2 in patients with non-small cell lung cancer[J]. Lung Cancer, 2004, 46(3): 305-312.
    [166] Malik, K, Salpekar, A, Hancock, A, et al. Identification of differential methylation of the WT1 antisense regulatory region and relaxation of imprinting in Wilms' tumor[J]. Cancer Res, 2000, 60(9): 2356-2360.
    [167] Hanafusa, T, Yumoto, Y, Nouso, K, et al. Reduced expression of insulin-like growth factor binding protein-3 and its promoter hypermethylation in human hepatocellular carcinoma[J]. Cancer Lett, 2002, 176(2): 149-158.
    [168] Schneider-Stock, R, Roessner, A, Ullrich, O. DAP-kinase--protector or enemy in apoptotic cell death[J]. Int J Biochem Cell Biol, 2005, 37(9): 1763-1767.
    [169] Suzuki, M, Toyooka, S, Shivapurkar, N, et al. Aberrant methylation profile of human malignant mesotheliomas and its relationship to SV40 infection[J]. Oncogene, 2005, 24(7): 1302-1308.
    [170] van Noesel, M M, van Bezouw, S, Salomons, G S, et al. Tumor-specific down-regulation of the tumor necrosis factor-related apoptosis-inducing ligand decoy receptors DcR1 and DcR2 is associated with dense promoter hypermethylation[J]. Cancer Res, 2002, 62(7): 2157-2161.
    [171] Margetts, C D, Astuti, D, Gentle, D C, et al. Epigenetic analysis of HIC1, CASP8, FLIP, TSP1, DCR1, DCR2, DR4, DR5, KvDMR1, H19 and preferential 11p15.5 maternal-allele loss in von Hippel-Lindau and sporadic phaeochromocytomas[J]. Endocr Relat Cancer, 2005, 12(1): 161-172.
    [172] Li, Z, Ren, Y, Lin, S X, et al. Association of E-cadherin and beta-catenin with metastasis in nasopharyngeal carcinoma[J]. Chin Med J (Engl), 2004, 117(8): 1232-1239.
    [173] Nass, S J, Herman, J G, Gabrielson, E, et al. Aberrant methylation of the estrogen receptor and E-cadherin 5' CpG islands increases with malignant progression in human breast cancer[J]. Cancer Res, 2000, 60(16): 4346-4348.
    [174] Fendrich, V, Slater, E P, Heinmoller, E, et al. Alterations of the tissue inhibitor of metalloproteinase-3 (TIMP3) gene in pancreatic adenocarcinomas[J]. Pancreas, 2005, 30(2): e40-45.
    [175] Kallakury, B V, Sheehan, C E, Winn-Deen, E, et al. Decreased expression of catenins (alpha and beta), p120 CTN, and E-cadherin cell adhesion proteins and E-cadherin gene promoter methylation in prostatic adenocarcinomas[J]. Cancer, 2001, 92(11): 2786-2795.
    [176] Guitton, A E, Berger, F. Control of reproduction by Polycomb Group complexes in animals and plants[J]. Int J Dev Biol, 2005, 49(5-6): 707-716.
    [177] Steeg, P S, Ouatas, T, Halverson, D, et al. Metastasis suppressor genes: basic biology and potential clinical use[J]. Clin Breast Cancer, 2003, 4(1): 51-62.
    [178] Fukushima, T, Katayama, Y, Watanabe, T, et al. Promoter hypermethylation of mismatch repair gene hMLH1 predicts the clinical response of malignant astrocytomas to nitrosourea[J]. Clin Cancer Res, 2005, 11(4): 1539-1544.
    [179] Okuda, T, Kawakami, K, Ishiguro, K, et al. The profile of hMLH1 methylation and microsatellite instability in colorectal and non-small cell lung cancer[J]. Int J Mol Med, 2005, 15(1): 85-90.
    [180] Enokida, H, Shiina, H, Igawa, M, et al. CpG hypermethylation of MDR1 gene contributes to the pathogenesis and progression of human prostate cancer[J]. Cancer Res, 2004, 64(17): 5956-5962.
    [181] Ishida, E, Nakamura, M, Ikuta, M, et al. Promotor hypermethylation of p14ARF is a key alteration for progression of oral squamous cell carcinoma[J]. Oral Oncol, 2005, 41(6): 614-622.
    [182] Makarla, P B, Saboorian, M H, Ashfaq, R, et al. Promoter hypermethylation profile of ovarian epithelial neoplasms[J]. Clin Cancer Res, 2005, 11(15): 5365-5369.
    [183] Tada, M, Yokosuka, O, Fukai, K, et al. Hypermethylation of NAD(P)H: quinone oxidoreductase 1 (NQO1) gene in human hepatocellular carcinoma[J]. J Hepatol, 2005, 42(4): 511-519.
    [184] Matros, E, Wang, Z C, Lodeiro, G, et al. BRCA1 promoter methylation in sporadic breast tumors: relationship to gene expression profiles[J]. Breast Cancer Res Treat, 2005, 91(2): 179-186.
    [185] Dammann, R, Schagdarsurengin, U, Seidel, C, et al. The tumor suppressor RASSF1A in human carcinogenesis: an update[J]. Histol Histopathol, 2005, 20(2): 645-663.
    [186] Kim, B N, Yamamoto, H, Ikeda, K, et al. Methylation and expression of p16INK4 tumor suppressor gene in primary colorectal cancer tissues[J]. Int J Oncol, 2005, 26(5): 1217-1226.
    [187] Tuck-Muller, C M, Narayan, A, Tsien, F, et al. DNA hypomethylation and unusual chromosome instability in cell lines from ICF syndrome patients[J]. Cytogenet Cell Genet, 2000, 89(1-2): 121-128.
    [188] Wijermans, P, Lubbert, M, Verhoef, G, et al. Low-dose 5-aza-2'-deoxycytidine, a DNA hypomethylating agent, for the treatment of high-risk myelodysplastic syndrome: a multicenter phase II study in elderly patients[J]. J Clin Oncol, 2000, 18(5): 956-962.
    [189] Jemal, A, Ward, E, Hao, Y, et al. Trends in the leading causes of death in the United States, 1970-2002[J]. Jama, 2005, 294(10): 1255-1259.
    [190] Schalken, J A, Bergh, A, Bono, A, et al. Molecular prostate cancer pathology: current issues and achievements[J]. Scand J Urol Nephrol Suppl, 2005, (216): 82-93.
    [191] Bostwick, D G, Burke, H B, Djakiew, D, et al. Human prostate cancer risk factors[J]. Cancer, 2004, 101(10 Suppl): 2371-2490.
    [192] Bratt, O. Hereditary prostate cancer: clinical aspects[J]. J Urol, 2002, 168(3): 906-913.
    [193] Simard, J, Dumont, M, Soucy, P, et al. Perspective: prostate cancer susceptibility genes[J]. Endocrinology, 2002, 143(6): 2029-2040.
    [194] Feldman, B J, Feldman, D. The development of androgen-independent prostate cancer[J]. Nat Rev Cancer, 2001, 1(1): 34-45.
    [195] Andriole, G, Bostwick, D, Civantos, F, et al. The effects of 5alpha-reductase inhibitors on the natural history, detection and grading of prostate cancer: current state of knowledge[J]. J Urol, 2005, 174(6): 2098-2104.
    [196] Jarrard, D F, Kinoshita, H, Shi, Y, et al. Methylation of the androgen receptor promoter CpG island is associated with loss of androgen receptor expression in prostate cancer cells[J]. Cancer Res, 1998, 58(23): 5310-5314.
    [197] Dong, J T. Chromosomal deletions and tumor suppressor genes in prostate cancer[J]. Cancer Metastasis Rev, 2001, 20(3-4): 173-193.
    [198] Schulz, W A, Burchardt, M, Cronauer, M V. Molecular biology of prostate cancer[J]. Mol Hum Reprod, 2003, 9(8): 437-448.
    [199] Karayi, M K, Markham, A F. Molecular biology of prostate cancer[J]. Prostate Cancer Prostatic Dis, 2004, 7(1): 6-20.
    [200] Kindich, R, Florl, A R, Kamradt, J, et al. Relationship of NKX3.1 and MYC gene copy number ratio and DNA hypomethylation to prostate carcinoma stage[J]. Eur Urol, 2006, 49(1): 169-175; discussion 175.
    [201] Nakayama, M, Gonzalgo, M L, Yegnasubramanian, S, et al. GSTP1 CpG island hypermethylation as a molecular biomarker for prostate cancer[J]. J Cell Biochem, 2004, 91(3): 540-552.
    [202] Holliday, R. Epigenetics: an overview[J]. Dev Genet, 1994, 15(6): 453-457.
    [203] Slack, J M. Conrad Hal Waddington: the last Renaissance biologist?[J]. Nat Rev Genet, 2002, 3(11): 889-895.
    [204] Deininger, M W, Goldman, J M, Melo, J V. The molecular biology of chronic myeloid leukemia[J]. Blood, 2000, 96(10): 3343-3356.
    [205] Schulz, W A, Hatina, J. Epigenetics of prostate cancer: beyond DNA methylation[J]. J Cell Mol Med, 2006, 10(1): 100-125.
    [206] Jarrard, D F, Bussemakers, M J, Bova, G S, et al. Regional loss of imprinting of the insulin-like growth factor II gene occurs in human prostate tissues[J]. Clin Cancer Res, 1995, 1(12): 1471-1478.
    [207] Morton, R A, Jr., Watkins, J J, Bova, G S, et al. Hypermethylation of chromosome 17P locus D17S5 in human prostate tissue[J]. J Urol, 1996, 156(2 Pt 1): 512-516.
    [208] Jacobs, J J, van Lohuizen, M. Cellular memory of transcriptional states by Polycomb-group proteins[J]. Semin Cell Dev Biol, 1999, 10(2): 227-235.
    [209] Simon, J A. Polycomb group proteins[J]. Curr Biol, 2003, 13(3): R79-80.
    [210] Orlando, V. Polycomb, epigenomes, and control of cell identity[J]. Cell, 2003, 112(5): 599-606.
    [211] Martinez, A M, Cavalli, G. The role of polycomb group proteins in cell cycle regulation during development[J]. Cell Cycle, 2006, 5(11): 1189-1197.
    [212] Gil, J, Bernard, D, Peters, G. Role of polycomb group proteins in stem cell self-renewal and cancer[J]. DNA Cell Biol, 2005, 24(2): 117-125.
    [213] Valk-Lingbeek, M E, Bruggeman, S W, van Lohuizen, M. Stem cells and cancer; the polycomb connection[J]. Cell, 2004, 118(4): 409-418.
    [214] Jacobs, J J, van Lohuizen, M. Polycomb repression: from cellular memory to cellular proliferation and cancer[J]. Biochim Biophys Acta, 2002, 1602(2): 151-161.
    [215] Shao, Z, Raible, F, Mollaaghababa, R, et al. Stabilization of chromatin structure by PRC1, a Polycomb complex[J]. Cell, 1999, 98(1): 37-46.
    [216] Schwartz, Y B, Pirrotta, V. Polycomb complexes and epigenetic states[J]. Curr Opin Cell Biol, 2008, 20(3): 266-273.
    [217] Simon, J, Chiang, A, Bender, W, et al. Elements of the Drosophila bithorax complex that mediate repression by Polycomb group products[J]. Dev Biol, 1993, 158(1): 131-144.
    [218] Muller, J, Kassis, J A. Polycomb response elements and targeting of Polycomb group proteins in Drosophila[J]. Curr Opin Genet Dev, 2006, 16(5): 476-484.
    [219] Schuettengruber, B, Chourrout, D, Vervoort, M, et al. Genome regulation by polycomb and trithorax proteins[J]. Cell, 2007, 128(4): 735-745.
    [220] Shi, Y, Lee, J S, Galvin, K M. Everything you have ever wanted to know about Yin Yang 1[J]. Biochim Biophys Acta, 1997, 1332(2): F49-66.
    [221] Kuzmichev, A, Nishioka, K, Erdjument-Bromage, H, et al. Histone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of Zeste protein[J]. Genes Dev, 2002, 16(22): 2893-2905.
    [222] Kuzmichev, A, Jenuwein, T, Tempst, P, et al. Different EZH2-containing complexes target methylation of histone H1 or nucleosomal histone H3[J]. Mol Cell, 2004, 14(2): 183-193.
    [223] Francis, N J, Kingston, R E, Woodcock, C L. Chromatin compaction by a polycomb group protein complex[J]. Science, 2004, 306(5701): 1574-1577.
    [224] Schwartz, Y B, Pirrotta, V. Polycomb silencing mechanisms and the management of genomic programmes[J]. Nat Rev Genet, 2007, 8(1): 9-22.
    [225] Dellino, G I, Schwartz, Y B, Farkas, G, et al. Polycomb silencing blocks transcription initiation[J]. Mol Cell, 2004, 13(6): 887-893.
    [226] Daujat, S, Zeissler, U, Waldmann, T, et al. HP1 binds specifically to Lys26-methylated histone H1.4, whereas simultaneous Ser27 phosphorylation blocks HP1 binding[J]. J Biol Chem, 2005, 280(45): 38090-38095.
    [227] Grimaud, C, Bantignies, F, Pal-Bhadra, M, et al. RNAi components are required for nuclear clustering of Polycomb group response elements[J]. Cell, 2006, 124(5): 957-971.
    [228] Vire, E, Brenner, C, Deplus, R, et al. The Polycomb group protein EZH2 directly controls DNA methylation[J]. Nature, 2006, 439(7078): 871-874.
    [229] Jones, P A, Baylin, S B. The fundamental role of epigenetic events in cancer[J]. Nat Rev Genet, 2002, 3(6): 415-428.
    [230] Voncken, J W, Schweizer, D, Aagaard, L, et al. Chromatin-association of the Polycomb group protein BMI1 is cell cycle-regulated and correlates with its phosphorylation status[J]. J Cell Sci, 1999, 112 ( Pt 24): 4627-4639.
    [231] Jacobs, J J, Kieboom, K, Marino, S, et al. The oncogene and Polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus[J]. Nature, 1999, 397(6715): 164-168.
    [232] Jacobs, J J, Scheijen, B, Voncken, J W, et al. Bmi-1 collaborates with c-Myc in tumorigenesis by inhibiting c-Myc-induced apoptosis via INK4a/ARF[J]. Genes Dev, 1999, 13(20): 2678-2690.
    [233] Bracken, A P, Pasini, D, Capra, M, et al. EZH2 is downstream of the pRB-E2F pathway, essential for proliferation and amplified in cancer[J]. Embo J, 2003, 22(20): 5323-5335.
    [234] Azuara, V, Perry, P, Sauer, S, et al. Chromatin signatures of pluripotent cell lines[J]. Nat Cell Biol, 2006, 8(5): 532-538.
    [235] Boyer, L A, Lee, T I, Cole, M F, et al. Core transcriptional regulatory circuitry in human embryonic stem cells[J]. Cell, 2005, 122(6): 947-956.
    [236] Avilion, A A, Nicolis, S K, Pevny, L H, et al. Multipotent cell lineages in early mouse development depend on SOX2 function[J]. Genes Dev, 2003, 17(1): 126-140.
    [237] Chambers, I, Colby, D, Robertson, M, et al. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells[J]. Cell, 2003, 113(5): 643-655.
    [238] Burch, J B. Regulation of GATA gene expression during vertebrate development[J]. Semin Cell Dev Biol, 2005, 16(1): 71-81.
    [239] Schepers, G E, Teasdale, R D, Koopman, P. Twenty pairs of sox: extent, homology, and nomenclature of the mouse and human sox transcription factor gene families[J]. Dev Cell, 2002, 3(2): 167-170.
    [240] Showell, C, Binder, O, Conlon, F L. T-box genes in early embryogenesis[J]. Dev Dyn, 2004, 229(1): 201-218.
    [241] Loebel, D A, Watson, C M, De Young, R A, et al. Lineage choice and differentiation in mouse embryos and embryonic stem cells[J]. Dev Biol, 2003, 264(1): 1-14.
    [242] Bierie, B, Moses, H L. TGF-beta and cancer[J]. Cytokine Growth Factor Rev, 2006, 17(1-2): 29-40.
    [243] Reya, T, Clevers, H. Wnt signalling in stem cells and cancer[J]. Nature, 2005, 434(7035): 843-850.
    [244] Kamminga, L M, Bystrykh, L V, de Boer, A, et al. The Polycomb group gene Ezh2 prevents hematopoietic stem cell exhaustion[J]. Blood, 2006, 107(5): 2170-2179.
    [245] Caretti, G, Di Padova, M, Micales, B, et al. The Polycomb Ezh2 methyltransferase regulates muscle gene expression and skeletal muscle differentiation[J]. Genes Dev, 2004, 18(21): 2627-2638.
    [246] Reya, T, Morrison, S J, Clarke, M F, et al. Stem cells, cancer, and cancer stem cells[J]. Nature, 2001, 414(6859): 105-111.
    [247] Shackleton, M, Vaillant, F, Simpson, K J, et al. Generation of a functional mammary gland from a single stem cell[J]. Nature, 2006, 439(7072): 84-88.
    [248] Evron, E, Dooley, W C, Umbricht, C B, et al. Detection of breast cancer cells in ductal lavage fluid by methylation-specific PCR[J]. Lancet, 2001, 357(9265): 1335-1336.
    [249] Lewis, C M, Cler, L R, Bu, D W, et al. Promoter hypermethylation in benign breast epithelium in relation to predicted breast cancer risk[J]. Clin Cancer Res, 2005, 11(1): 166-172.
    [250] Loeb, D M, Evron, E, Patel, C B, et al. Wilms' tumor suppressor gene (WT1) is expressed in primary breast tumors despite tumor-specific promoter methylation[J]. Cancer Res, 2001, 61(3): 921-925.
    [251] Hagihara, A, Miyamoto, K, Furuta, J, et al. Identification of 27 5' CpG islands aberrantly methylated and 13 genes silenced in human pancreatic cancers[J]. Oncogene, 2004, 23(53): 8705-8710.
    [252] Fukami, T, Fukuhara, H, Kuramochi, M, et al. Promoter methylation of the TSLC1 gene in advanced lung tumors and various cancer cell lines[J]. Int J Cancer, 2003, 107(1): 53-59.
    [253] Henrique, R, Jeronimo, C, Hoque, M O, et al. MT1G hypermethylation is associated with higher tumor stage in prostate cancer[J]. Cancer Epidemiol Biomarkers Prev, 2005, 14(5): 1274-1278.
    [254] Zhao, W, Hisamuddin, I M, Nandan, M O, et al. Identification of Kruppel-like factor 4 as a potential tumor suppressor gene in colorectal cancer[J]. Oncogene, 2004, 23(2): 395-402.
    [255] Kirmizis, A, Bartley, S M, Farnham, P J. Identification of the polycomb group protein SU(Z)12 as a potential molecular target for human cancer therapy[J]. Mol Cancer Ther, 2003, 2(1): 113-121.
    [256] Varambally, S, Dhanasekaran, S M, Zhou, M, et al. The polycomb group protein EZH2 is involved in progression of prostate cancer[J]. Nature, 2002, 419(6907): 624-629.
    [257] van Kemenade, F J, Raaphorst, F M, Blokzijl, T, et al. Coexpression of BMI-1 and EZH2 polycomb-group proteins is associated with cycling cells and degree of malignancy in B-cell non-Hodgkin lymphoma[J]. Blood, 2001, 97(12): 3896-3901.
    [258] Raaphorst, F M, van Kemenade, F J, Blokzijl, T, et al. Coexpression of BMI-1 and EZH2 polycomb group genes in Reed-Sternberg cells of Hodgkin's disease[J]. Am J Pathol, 2000, 157(3): 709-715.
    [259] Visser, H P, Gunster, M J, Kluin-Nelemans, H C, et al. The Polycomb group protein EZH2 is upregulated in proliferating, cultured human mantle cell lymphoma[J]. Br J Haematol, 2001, 112(4): 950-958.
    [260] Kleer, C G, Cao, Q, Varambally, S, et al. EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells[J]. Proc Natl Acad Sci U S A, 2003, 100(20): 11606-11611.
    [261] Glinsky, G V, Berezovska, O, Glinskii, A B. Microarray analysis identifies a death-from-cancer signature predicting therapy failure in patients with multiple types of cancer[J]. J Clin Invest, 2005, 115(6): 1503-1521.
    [262] van 't Veer, L J, Dai, H, van de Vijver, M J, et al. Gene expression profiling predicts clinical outcome of breast cancer[J]. Nature, 2002, 415(6871): 530-536.
    [263] Sparmann, A, van Lohuizen, M. Polycomb silencers control cell fate, development and cancer[J]. Nat Rev Cancer, 2006, 6(11): 846-856.
    [264] Sellers, W R, Loda, M. The EZH2 polycomb transcriptional repressor--a marker or mover of metastatic prostate cancer?[J]. Cancer Cell, 2002, 2(5): 349-350.
    [265] Rong, Y, Cheng, L, Ning, H, et al. Wilms' tumor 1 and signal transducers and activators of transcription 3 synergistically promote cell proliferation: a possible mechanism in sporadic Wilms' tumor[J]. Cancer Res, 2006, 66(16): 8049-8057.
    [266] Wang, X, Feng, Y, Xu, L, et al. YY1 restrained cell senescence through repressing the transcription of p16[J]. Biochim Biophys Acta, 2008, 1783(10): 1876-1883.
    [267] Shrivastava, A, Calame, K. An analysis of genes regulated by the multi-functional transcriptional regulator Yin Yang-1[J]. Nucleic Acids Res, 1994, 22(24): 5151-5155.
    [268] Thomas, M J, Seto, E. Unlocking the mechanisms of transcription factor YY1: are chromatin modifying enzymes the key?[J]. Gene, 1999, 236(2): 197-208.
    [269] Gordon, S, Akopyan, G, Garban, H, et al. Transcription factor YY1: structure, function, and therapeutic implications in cancer biology[J]. Oncogene, 2006, 25(8): 1125-1142.
    [270] Bracken, A P, Dietrich, N, Pasini, D, et al. Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions[J]. Genes Dev, 2006, 20(9): 1123-1136.
    [271] Yu, J, Cao, Q, Mehra, R, et al. Integrative genomics analysis reveals silencing of beta-adrenergic signaling by polycomb in prostate cancer[J]. Cancer Cell, 2007, 12(5): 419-431.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700