胆管癌差异甲基化位点初步筛选的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     采用高通量MeDIP芯片分析胆管癌的甲基化谱,筛选胆管癌相关甲基化肿瘤标志物;采用能较好地模拟肿瘤体内生物学特征的3D细胞培养模型研究肼曲嗪和丙戊酸对2D和3D模型中胆管癌细胞甲基化的影响。
     方法
     1.采用MeDIP芯片分析人正常胆管上皮细胞株BEC和人胆管癌上皮细胞株TFK-1之间的差异甲基化位点;采用亚硫酸氢盐测序方法(BSP)验证目的基因的甲基化水平。采用RT-PCR检测甲基化酶抑制剂药物干预后,目的基因在TFK-1中表达的改变。采用免疫荧光检测目的基因在30例人胆管癌组织和9例人正常胆管组织中的表达;
     2.将单层培养的TFK-1细胞接种于2%poly-HEMA 100ul包被的U型底-96孔板中制备TFK-1 3D肿瘤细胞球。采用WST法和FDA/PI荧光染色法检测表观遗传学药物作用后2D和3D胆管癌肿瘤模型中肿瘤细胞的存活率;采用甲基化特异性PCR检测药物作用前后HOXA5,APC,和E-Cadherin基因甲基化程度的改变;
     3.利用肼曲嗪和丙戊酸单独或联合干预胆管癌细胞TFK-1, Annexin-FITC和Propidium双染检测药物干预后细胞凋亡率;用RT-PCR和MSP技术检测干预后ASC/TMS1基因甲基化状态的改变和mRNA的转录水平,用RT-PCR检测干预后caspase-1的mRNA转录水平。
     结果
     1.分析胆管癌甲基化谱发现胆管癌差异甲基化位点涉及多基因和信号通道改变。证实970个基因启动子区域内的CpG岛表现为高甲基化,其中317个为未知基因,653个已知基因,值得注意的是启动子区域呈现高甲基化改变的基因中,94个属于Homeobox家族。经BSP检测,甲基化程度最高的5个基因分别为HOXA2 (94.29%), HOXA5 (95.38%), HOXA11 (91.67%), HOXB4 (90.56%),和HOXD13 (94.38%)。在药物干预后,上述5个目的基因的表达得到恢复。免疫荧光检测分析证实上述5个目的基因在人正常胆管组织和人胆管癌组织中表达呈明显差异(P<0.05),分别为(66.67-100%正常胆管组,3.33%-10%胆管癌组)。
     2.3D培养方法形成外观圆形内部紧密的肿瘤小球,球体的平均直径为350-400μm。TFK-1胆管癌细胞3D模型比2D模型对药物治疗抵抗更明显。在2D培养模型组中,肼曲嗪和丙戊酸的IC 50值分别为59.2136μM和5.9214mM,但在3D培养模型组中肼曲嗪和丙戊酸的IC 50值分别为664.1101μM and 66.4110mM是2D模型的11.2155倍。在2D模型中,当药物剂量逐步提高时,药物呈现剂量依赖性地诱导基因去甲基化,但是这种平行的剂量和去甲基化的关系在3D肿瘤小球中并未体现。
     3.单用肼曲嗪或丙戊酸干预对ASC/TMS1表达无明显恢复,而联用以上两药后ASC/TMS1表达明显增加(P<0.05)。两药合用48h组基因表达量高于合用24h组表达量(P<0.05);且caspase-1表达也明显增加(P<0.05),胆管癌细胞生长明显受抑制,凋亡率明显增加(49.88±0.044)%。
     结论
     1.采用NimbleGen HG18 CpG Promoter芯片分析胆管癌差异甲基化位点,差异位点主要集中在Calcium, MAPK, Wnt, Hedgehog, TGF-beta信号通路,涉及的细胞功能主要为细胞生长、细胞周期、细胞分化、细胞损伤和修复、细胞凋亡、细胞运动,细胞转录和信号通路以及血管生成等。
     2.胆管癌差异甲基化位点所包含的CpG岛中有94个属于homeobox基因家族,进一步分析结果证实HOXA2, HOXA5, HOXA11, HOXAB4和HOXD13在人正常胆管上皮组织中呈现高表达,在人胆管癌组织中呈现低表达,这为我们发现新的胆管癌肿瘤标记物提供了思路。
     3.成功建立胆管癌上皮细胞3D模型,立体的3D肿瘤模型比单细胞层的2D模型生物学特点更为复杂,该特点能影响表观遗传学药物的药效。TFK-1胆管癌细胞3D模型比2D模型对去甲基化药物抵抗更明显。与2D肿瘤模型相比,需要更高剂量的肼曲嗪和丙戊酸逆转3D模型中肿瘤细胞的高甲基化状态,同时2D模型所表现的剂量依赖的去甲基化特点在3D模型中并未出现。我们推测当TFK-1细胞从单层2D培养转变为3D培养时,结构发生改变,可能需要细胞-细胞间粘附相关基因的表达增强,导致在不同培养模型中基因对去甲基化药物的反应不同。
     4.肼曲嗪和丙戊酸联合干预对ASC/TMS1去甲基化有明显的协同作用。两药联用后胆管癌细胞凋亡率的增加可能系因去甲基化后ASC/TMS1基因表达增加,通过caspase-1途径诱导细胞凋亡
     第一部分MeDIP甲基化芯片分析胆管癌差异甲基化位点
     目的人胆管癌是一种起源于胆管上皮细胞的恶性肿瘤。甲基化事件在不影响基因遗传密码的情况下影响着基因的表达,诱导基因沉默,是肿瘤重要的发生机制。本文旨在分析人胆管癌细胞株和人正常胆管上皮细胞株间的基因甲基化差异,建立胆管癌相关基因甲基化谱。
     方法采用全基因组甲基化芯片杂交技术(MeDIP)分析人胆管癌细胞株TFK-1和人正常胆管上皮细胞株BEC之间的差异甲基化位点,应用Molecule Annotation System(MAS)软件分析分析差异位基因的功能和作用。
     结果与BEC细胞株相比,TFK-1细胞株有2103个CpG岛表现为差异高甲基化,其中531个为未知CpG岛,1672个为已知CpG岛;其中970个高甲基化CpG岛位于基因启动子区域内,317个为未知基因,653个已知基因,包含11个homeobox家族的HOX基因,涉及多个信号通路主要为Calcium, MAPK, Wnt, Hedgehog, TGF-beta信号通路,发生甲基化改变的基因占其所在的信号通路已知基因中的比例为9%-30%,胆管癌差异甲基化位点所涉及的细胞功能主要为细胞生长、细胞周期、细胞分化、细胞损伤和修复、细胞凋亡、细胞运动,细胞转录和信号通路以及血管生成等。
     结论HOX基因呈现高甲基化改变的基因涉及细胞周期和分化,粘附与转移,信号通路和肿瘤血管生成等多个肿瘤发生机制,可能与胆管癌的发生相关,为寻找特异性胆管癌肿瘤标志物提供了新思路。
     第二部分DNA甲基化对HOX基因在人胆管癌中表达的影响
     目的Homeobox基因是转录因子家族中重要的组成成员,在胚胎的发育过程中发挥着重要作用,调控细胞的增殖、分化、凋亡和信号通路。现已证实在肿瘤的生长过程中homeobox (HOX)基因启动子区域高甲基化可导致其表达的降低,并和肿瘤的临床预后密切相关。本部分旨在分析HOX基因在胆管癌中甲基化水平及甲基化水平的改变对HOX基因在人胆管癌中表达的影响。
     方法采用亚硫酸氢盐测序方法检测差异HOX基因的甲基化水平。采用RT-PCR检测甲基化酶抑制剂药物干预后,目的基因在TFK-1中表达的改变。采用免疫荧光检测目的基因在30例人胆管癌组织和9例人正常胆管组织中的表达。
     结果我们分析胆管癌甲基化谱发现胆管癌差异甲基化位点涉及多基因和信号通道改变。值得注意的是启动子区域呈现高甲基化改变的基因中,94个属于Homeobox家族。经BSP检测,甲基化程度最高的5个基因分别为HOXA2 (94.29%), HOXA5 (95.38%), HOXA11 (91.67%), HOXB4 (90.56%),和HOXD13 (94.38%)。在药物干预后,上述5个目的基因的表达得到恢复。免疫荧光检测分析证实上述5个目的基因在人正常胆管组织和人胆管癌组织中表达呈明显差异,分别为(66.67-100%正常胆管组,3.33%-10%胆管癌组)。
     结论HOXA2, HOXA5, HOXA11, HOXB4和HOXD13在胆管癌细胞株TFK-1中呈现为DNA高甲基化,给予去甲基化药物作用后,呈现为DNA低甲基化。上述HOX基因在人正常胆管上皮组织中呈现高表达,在人胆管癌组织中呈现低表达。上述研究证实DNA甲基化是诱导HOXA2, HOXA5, HOXA11, HOXB4和HOXD13在肿瘤组织中表达降低的重要原因,这为我们发现新的胆管癌肿瘤标记物提供了思路。
     第三部分肼曲嗪和丙戊酸对2D和3D模型中胆管癌细胞甲基化的影响
     目的现已广泛被证实表观遗传学改变可以影响胆管癌相关基因的表达,但是关于表观遗传学药物治疗胆管癌的体内研究却进展缓慢。多细胞肿瘤小球能较好地模拟肿瘤在体内的生物学特征,因此3D细胞培养已经广泛应用于系统性药效毒理学研究。
     方法本研究采用将单层培养的TFK-1细胞接种于2% poly -HEMA 100ul包被的U型底-96孔板中制备TFK-1 3D肿瘤细胞球.采用WST法和FDA/PI荧光染色法检测表观遗传学药物作用后2D和3D胆管癌肿瘤模型中肿瘤细胞的存活率,采用甲基化特异性PCR检测药物作用前后APC, E-Cadherin和HOXA5基因甲基化程度的改变。
     结果3D培养方法形成外观圆形、内部紧密的肿瘤小球,球体的平均直径为350-400μm。TFK-1胆管癌细胞3D模型比2D模型对药物治疗抵抗更明显。在2D培养模型组中,肼曲嗪和丙戊酸的IC 50值分别为59.2136μM和5.9214mM,但在3D培养模型组中肼曲嗪和丙戊酸的IC 50值分别为664.1101μM and 66.4110mM是2D模型的11.2155。在2D模型中,当药物剂量逐步提高时,药物呈现剂量依赖性地诱导基因去甲基化,但是这种平行的剂量和去甲基化的关系在3D肿瘤小球中并未体现。
     结论成功建立胆管癌上皮细胞3D模型,立体的3D肿瘤模型比单细胞层的2D模型生物学特点更为复杂,该特点能影响表观遗传学药物的药效。TFK-1胆管癌细胞3D模型比2D模型对去甲基化药物抵抗更明显。与2D肿瘤模型相比,需要更高剂量的肼曲嗪和丙戊酸逆转3D模型中肿瘤细胞的高甲基化状态,同时2D模型所表现的剂量依赖的去甲基化特点在3D模型中并未出现。我们推测当TFK-1细胞从单层2D培养转变为3D培养时,结构发生改变,可能需要细胞-细胞间粘附相关基因的表达增强,导致在不同培养模型中基因对去甲基化药物的反应不同。
     第四部分肼曲嗪和丙戊酸对胆管癌ASC/TMS1基因甲基化的影响
     目的研究甲基化酶抑制剂肼曲嗪和组蛋白脱乙酰化酶抑制剂丙戊酸联合干预对胆管癌细胞TFK-1ASC/TMS1基因甲基化调控的影响,并探讨caspase-1介导的细胞凋亡与ASC/TMS1甲基化的关系。
     方法利用肼曲嗪和丙戊酸单独或联合干预胆管癌细胞TFK-1, Annexin-FITC和Propidium双染检测干预后细胞凋亡率;用RT-PCR和MSP技术检测干预后ASC/TMS1基因甲基化状态的改变和mRNA的转录水平,用RT-PCR检测干预后caspase-1的mRNA转录水平。
     结果单用肼曲嗪或丙戊酸干预对ASC/TMS1表达无明显恢复,而联用以上两药后ASC/TMS1表达明显增加(P<0.05)。两药合用48h组基因表达量高于合用24h组表达量(P<0.05);且caspase-1表达也明显增加(P<0.05),胆管癌细胞生长明显受抑制,凋亡率明显增加(49.88±0.044)%。
     结论肼曲嗪和丙戊酸联合干预对ASC/TMS1去甲基化有明显的协同作用。两药联用后胆管癌细胞凋亡率的增加可能是因为去甲基化后ASC/TMS1基因表达增加,通过caspase-1途径诱导细胞凋亡。
Purpose
     Our aims were to investigate the methylation profile of cholangiocarcinoma to screen methylation biomarker of cholangiocarcinoma by high-throughout MeDIP microarray, establish 3D model of human cholangiocarcinoma epithelial cell line TFK-1 and identify the differential effect of hydralazine and valproic acid between 2D and 3D cultured models.
     Methods
     1. In an effort to identify new cancer-specific methylation markers, we employed a high-throughput MeDIP microarray chip to explore the methylation profile differences between TFK-1 and BEC and utilized and NimbleScanTM2.2 and SignaMap software to analyze the methylation level and function of interesting genes. Validation of methylation level of candidate genes has been performed by bisulfite sequence-PCR. Furthermore, expression of target genes was investigated after the treatment with DNA demethylation agent. Expression of candidate genes was also observed by immunofluorescence in 30 chlangiocarcinoma tissues and 9 normal bile duct tissues.
     2.3D cultured cells were established in culture plates coated with poly-HEMA on a gyratory shaker.Viability of 2D and 3D cultured cells was examined by WST-1 viability assay and FDA/PI staining. Methylation status of promoters regarding 3 tumor suppressor genes APC, E-Cadherin, and HOXA5 was investigated by methylation-specific PCR.
     3. Apoptosis was detected by mixed dye including both Annexin-FITC and Propidium with flow cytometry technique, and changes of methylation and transcription of mRNA were explored by RT-PCR and MSP techniques after the intervention of hydralazine and valproic acid either alone or combined for 24 hours and 48 hours.
     Results
     1. Compared to BEC cell line,2103 CpG islands were hypermethylation, including 1672 known genes and 531 unknown genes, and 970 hypermethylated CpG islands located in the promoter area, including 317 unknown genes and 653 known genes. Interestingly,94 genes with hypermethylated CpG islands in promoter region were Homeobox genes. The top 5 hypermethylated genes validated by BSP were HOXA2 (94.29%), HOXA5 (95.38%), HOXA11 (91.67%), HOXB4 (90.56%) and HOXD13 (94.38%). Expression of these genes was reactivated with 5'-aza-2'-deoxycytidine. Significant expression differences were detectable between normal bile duct and cholangiocarcinoma tissues (66.67-100% normal vs 3.33%-10% cancer).
     2. The average diameters of TFK-1 spheroids were in the range of 350-400μm. WST-1 results demonstrated that TFK-1 spheroid cells were more resistant to the epigenetic drugs and 11.22fold higher IC 50 values of hydralazine and valproic acid than did the same cells growing in monolayer culture. FDA/PI staining indicated that death rate was presented in dose-dependent behavior. Higher dose of epigenetic drugs were needed to reverse hypermethylation status in 3D cells compared to 2D cells, while parallel dose-dependent characteristic existing in 2D cells didn't present in 3D cells.
     3. The transcription o f mRNA of TMS1/ASC gene and caspase-1 re-expressed again after the combined intervention o f hydralazine and valproic acid, which was higher than that of the cells treated with either hydralazine or valproic acid alone (P<0.05). The demethylation effect of 48 h by combind intervention treatment was better than that o f 24 h (P<0.05). The growth of the QBC 939 cell line was inhibited, and flow cytometry showed marked increase of apoptosis (49.88±0.044)%.
     Conclusion
     1. According to the results of data on MeDIP-chip (NimbleScan v2.5; Roche-NimbleGen), differentially methylated DNA concentrated on the Calcium, MAPK, Wnt, Hedgehog, TGF-beta signaling pathway and are involved in growth of cells, DNA synthesis and repair, cell differentiation,cell apoptosis, cell transcription factor, cell migration and adhesion and angiogenesis.
     2.94 genes with hypermethylated CpG islands in promoter region were Homeobox genes. Demonstrated that HOXA2 (94.29%), HOXA5 (95.38%), HOXA11 (91.67%), HOXB4 (90.56%) and HOXD13 (94.38%) expressed in normal but low expressed in cholangiocarcinoma, which provided us a new strategies to discover new biomarker of cholangiocarcinoma.
     3. The unique characteristics of spheroid culture, affecting the consequences of epigenetic therapy, are more complex in 3D spheroid cells than that of monolayer culture. Higher dose of epigenetic drugs were needed to reverse hypermethylation status in 3D cells compared to 2D cells, while parallel dose-dependent characteristic existing in 2D cells didn't present in 3D cells. We speculated that the novel structural changes between cells from 2D monolayer to 3D spheroid culture might require re-expression of cell-cell adhesion genes to maintain the formation of 3D spheroids.
     4. TMS1 /ASC gene and caspase-1 may re-express after the synergistical intervention of hydralazine and valproic acid, and the effect is more obvious as the treatment time is extended. The apoptosis of TFK-1 cell line is increased, which may be indued by caspase-1 passway.
     PartⅠIdentification of methylation profile of cholangiocarcinoma with MeDIP microarray
     Purpose Cholangiocarcinoma is a malignant cancer arising from the neoplastic transformation of cholangiocytes. It has been identified that methylation events will change the gene expression patterns without causing the changes in the nucleotide sequence of the genetic code, which is a main mechanism of tumorigenesis. The object of this study is to explore methylation profile differences between human cholangiocarcinoma cell line TFK-1 and biliary epithelial cell line BEC.
     Methods In an effort to identify new cancer-specific methylation markers, we employed a high-throughput MeDIP microarray chip to explore the methylation profile differences between TFK-1 and BEC and utilized and NimbleScanTM2.2 and SignaMap software to analyze the methylation level and function of interesting genes.
     Results Compared to BEC cell line,2103 CpG islands were hypermethylation, including 1672 known genes and 531 unknown genes, and 970 hypermethylated CpG islands located in the promoter area, including 317 unknown genes and 653 known genes which contains 11 HOX genes.
     Conclusion By using MeDIP screen we identified multiple hypermethylated genes involving cell cycle, differentiation, adhesion and metastasis, and tumor angiogenesis, which distribute to the mechanism of tumor. These data suggested new different methylated genes may work as new target genes for the search of possible specific cholangiocarcinoma marker.
     PartⅡEffects of DNA methylation on Hox gene expression in cholangiocarcinoma
     Purpose Homeobox genes are members of a transcription factor family and play a crucial role in embryonic development and in the control of cell differentiation proliferation, apoptosis and signaling path. Numerous examples of aberrant Hox gene expression induced by hypermethylation of promoter region have been found in cancer. The purpose was to investigate effect of DNA methylation on HOX expression in cholangiocarcinoma.
     Methods Validation of methylation level of candidate genes has been performed by bisulfite sequence-PCR. Furthermore, expression of target genes was investigated after the treatment with DNA demethylation agent. Expression of candidate genes was also observed by immunofluorescence in 30 chlangiocarcinoma tissues and 9 normal bile duct tissues.
     Results We identified methylation profile of cholangiocarcinoma with MeDIP microarray, relating to different gene functions and signaling pathways. Interestingly,94 genes with hypermethylated CpG islands in promoter region were Homeobox genes. The top 5 hypermethylated genes validated by BSP were HOXA2 (94.29%), HOXA5 (95.38%), HOXA11 (91.67%), HOXB4 (90.56%) and HOXD13 (94.38%). Expression of these genes was reactivated with 5'-aza-2'-deoxycytidine. Significant expression differences were detectable between normal bile duct and cholangiocarcinoma tissues (66.67-100% normal vs 3.33%-10% cancer).
     Conclusion Our research demonstrated methylation profile of cholangiocarcinoma for the first time with high throughput MeDIP chips. These findings supported that HOXA2, HOXA5, HOXA11, HOXAB4 and HOXD13 may work as targets for diagnosis screening and therapeutic intervention.
     PartⅢComparison of the effect of epigenetic therapy in 2D and 3D cholangiocarcinoma models
     Purpose Epigenetic modifications affect gene expression pattern of cholangiocarcinoma, but very little data of epigenetic therapy of cholangiocarcinoma exists in vivo. Since multicellular tumor spheroids can mimic biological characteristics of tumor,3D spheroid model have been widely applied in systemic drug screening. Our aims were to establish 3D model of human cholangiocarcinoma epithelial cell line TFK-1 and identify the differential effect of epigenetic drugs between 2D and 3D cultured models.
     Methods 3D cultured cells were established in culture plates coated with poly-HEMA on a gyratory shaker.Viability of 2D and 3D cultured cells was examined by WST-1 viability assay and FDA/PI staining. Methylation status of promoters regarding 3 tumor suppressor genes APC, E-Cadherin, and HOXA5 was investigated by methylation-specific PCR.
     Results The average diameters of TFK-1 spheroids were in the range of 350-400μm. WST-1 results demonstrated that TFK-1 spheroid cells were more resistant to the epigenetic drugs and 11.22fold higher IC 50 values of hydralazine and valproic acid than did the same cells growing in monolayer culture. FDA/PI staining indicated that death rate was presented in dose-dependent behavior. Higher dose of epigenetic drugs were needed to reverse hypermethylation status in 3D cells compared to 2D cells, while parallel dose-dependent characteristic existing in 2D cells didn't present in 3D cells.
     Conclusions The unique characteristics of spheroid culture, affecting the consequences of epigenetic therapy, are more complex in 3D spheroid cells than that of monolayer culture and 3D spheroid is a promising model for epigenetic therapy.
     PartⅣEffects of hydralazine and valproic acid on the methylation of ASC /TMS1 of human cholangiocarcinoma cell line
     Purpose To investigate changes of methylation status of ASC/TMS1 in QBC 939 cell line of cholangiocarcinoma before and after combined DNA methylation and histone deacetylase inhibitors treatment, and the correlation of the apoptosis which is induced by caspase-1, and methylation status of ASC/TMS1.
     Methods Apoptosis was detected by mixed dye including both Annexin-FITC and Propidium with flow cytometry technique, and changes of methylation and transcription of mRNA were explored by RT-PCR and MSP techniques after the intervention of hydralazine and valproic acid either alone or combined for 24 hours and 48 hours.
     Results The transcription o f mRNA of TMS1/ASC gene and caspase-1 re-expressed again after the combined intervention o f hydralazine and valproic acid, which was higher than that of the cells treated with either hydralazine or valproic acid alone (P<0.05). The demethylation effect of 48 h by combind intervention treatment was better than that o f 24 h (P<0.05). The growth of the QBC 939 cell line was inhibited, and flow cytometry showed marked increase of apoptosis (49.88±0.044)%.
     Conclusions TMS1 /ASC gene and caspase-1 may re-express after the synergistical intervention of hydralazine and valproic acid, and the effect is more obvious as the treatment time is extended. The apoptosis of TFK-1 cell line is increased, which may be indued by caspase-1 passway.
引文
[1]Meza- Junco J, Montano-Loza AJ, Ma M, et al. Cholangiocarcinoma:has there been any progress? [J] Can J Gastroenterol.2010;24(1):52-57
    [2]Manel Esteller. Profiling aberrant DNA methylation in hematologic neoplasms:a view from the tip of the iceberg [J] Chimical Immunology.2003;109(1):80-88
    [3]Costello JF, Fruhwald MC, Smiraglia DJ, Rush LJ, Robertson GP, Gao X, et al. Aberrant CpG-island methylation has non-random and tumour-type-specific patterns. Nature Genetics 2000;24:132-138.
    [4]Isomoto H. Epigenetic alterations associated with cholangiocarcinoma [J] Oncol Rep. 2009;22(2):227-232
    [5]Uhm KO, Lee ES, and Park SH, et al. Aberrant ptomoter CpG islands methylation of tumor sippressor genes in cholangiocarcinoma [J] Oncol Res,2008;17(4):151-157
    [6]Corn PG Genome-wide profiling of methylated promoters in pancreatic adenocarcinoma. Cancer Biol Ther 2008;7:1157-1159.
    [7]Jacinto FV, Ballestar E, Esteller M, Methyl-DNA immunoprecipitation(MeDIP): Hunting down the DNA methylome, Biotechniques.44(2008)35-39
    [8]Weng YI, Huang TH, Yan PS, Methylated DNA immunoprecipitation and microarray-based analysis:Detection of DNA methylation in breast cancer cell lines, Methods Mol Biol.590(2009):165-176
    [9]Ruike Y, Imanaka Y, Sato F, Shimizu K, Tsujimoto G, Genome-wide analysis of aberrant methylation in human breast cancer cells using methyl-DNA immunoprecipitation combined with high-throughput sequencing, BMC Genomics. 11(2010)137
    [10]Shames DS, Girard L, Gao B, Sato M, Lewis CM, Shivapurkar N, Jiang A, Perou CM, Kim YH, Pollack JR, Fong KM, Lam CL, Wong M, Shyr Y, Nanda R, Olopade OI, Gerald W, Euhus DM, Shay JW, Gazdar AF, Minna JD, A genome- wide screen for promoter methylation in lung cancer novel methylation markers for multiple malignancies, PLoS Med.3(2006)e 486
    [11]Palmke N, Santacruz D,Walter J, et al.Comprehensive analysis of DNAA-methylation in mammalian tissues using MeDIP-chip[J] Methods,2010,Epub ahead of print
    [12]M.Weber, I. Hellmann, and M. Rebhan, D, et al. Distribution, silencing potential and evolutionary impact of promoter DNAA methylation in the human genome [J]Nat. Genet.2007;39(4):457-466
    [13]M.Weber, D.Schubeler, Genomic patterns of DNA methylation:targets and function of an epigenetic mark [J] Cell. Biol.2007;19(3) 273-280.
    [14]D. Zilberman,M.Gehring, R.K.Tran, T. Ballinger, S. Henikoff, Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription[J] Nat. Genet.2007,39(1):161-69
    [15]W.Weber, J.J. Davies, and D.Schubeler, Chromosome-wide and promoter-specifc analysis identify sites of differential DNA methylation in normal and transformed human cells [J] Nat. Genet.2005;37(8)853-862.
    [16]Jacinto FV, Ballestar,E, and Esteller M. Methylation-DNA immunoprecipitation(MeDIP):Hunting down the DNA methylome [J] Biotechniques 2008; 44(1)35,37,39 passim.
    [17]Paun BC, Kukuruga D, and Meltzer SJ, et al. Relation between normal rectal methylation, smoking status, and the presence or absence of colorectal adenomas.[J] Cancer 2010; Epub ahead of print
    [18]Loyo M, Brait M, and Sidransky D, et al. A survey of methylated candidate tumor suppressor genes in nasopharyngeal carcinoma. [J] Int J cancer 2010; Epub ahead of print
    [19]Wu X, Rauch TA, and Pfeifer GP, et al. CpG island hypermethylation in human astrocytomas. [J] Cancer Res 2010;70(7):2718-2727
    [20]Okamoto J, Hirata T, and He B.EMX2 is epigenetically silenced and suppresses growth in human lung cancer [J]Oncogene 2010; Epub ahead of print
    [21]Cheong SC, Chandramouli GV, Gutkind JS, et al. Gene expression in human oral squamous cell carcinoma is influenced by risk factor exposure. [J] Oral Oncol,2009, 45(8):712-719
    [22]Schiling SH, Hjelmeland AB, and Datto MB, et al.NDRG4 is required for cell cycle progression and survival in glioblastoma cells. [J] J Biol Chem,2009,284(37): 25160-25169
    [23]Pua TL, Wang FQ, Fishman DA, Roles of LPA in ovarian cancer development and progression, Future Oncol.5(2009)1659-1673
    [24]Grier DG, Thompson A, Lappin TR, et al. The pathophysiology of HOXgenes and their role in cancer. J Pathol 2005; 205:154-171
    [25]Liu Z, Habener JF:Wnt signaling in pancreatic islets. Adv Exp Med Biol 2010, 654:391-419.
    [26]Yao Z, Mishra L:Cancer stem cells and hepatocellular carcinoma. Cancer Biol Ther 2009,8:1691-1698.
    [27]Chen W, Chen M, Barak LS:Development of small molecules targeting the Wnt pathway for the treatment of colon cancer:a high-throughput screening approach. AM J Physiol Gastrointest Liver Physiol 2010,299:293-300.
    [28]Nilay Shah and Saraswati Sukumar. The Hox genes and their roles in oncogenesis [J] Nat Rev Cancer 2010;10(5):361-371
    [29]Qinghua Wu, Ragnhild A Lothe and Guro E Lind, et al. DNA methylation profiling of ovarian carcinomas and their in vitro models identifies HOXA9, HOAB5,SCGB3A1, and CRABP1 as novel targets [J] Molecular Cancer 2007;6:45
    [30]Rauch T,Wang Z, and Pfeifer GP,et al. Homeobox gene methylation in lung cancer studied by genome-wide analysis with a microarray-based methylated CpG island recovery assay.[J]Proc Natl Acad.Sci USA 2007; 104(13):5527-5532
    [31]Gerd P.Pfeifer and Tibor A.Rauch. DNA methylation patterns in lung carcinomas[J]Semin Cancer Biol 2009;19(3):181-187
    [32]Miller GJ, Miller HL, and Nordeen SK, et al. Aberrant HOXC expression accompanies the malignant phenotype in human prostate.[J] Cancer Res 2003;63(18) 5879-5888
    [33]Tibor Rauch, Zunde Wang, Gerd P. Pfeifer, et al. Homeobox gene methylation in lung cancer studied by genome-wide analysis with a microarray-based methylated CpG island recovery assay. Proc Natl Acad Sci 2007;104:5527-5532
    [34]Shah N, Sukumar S, The Hox genes and their roles in oncogenesis, Nat Rev Cancer. 10(2010)361-371
    [35]Kim DS, Kim MJ, Lee JY, Lee SM, Choi JY, Yoon GS, Na YK, Hong HS, Kim SG, Choi JE, Lee SY, Park JY, Epigenetic inactivation of Homeobox A5 gene in nonsmall cell lung cancer and its relationship with clinicopathological features, Mol Carcinog. 48(2009)1109-1115
    [36]Salsi V, Ferrari S, Ferraresi R, Cossarizza A, Grande A, Zappavigna V, HOXD13 binds DNA repilication origins to promote origin licensing and is inhibited by geminin, Mol Cell Biol.29(2009)5775-5788
    [37]Hateboer G, Wobst A,Petersen BO, Le Cam L, Sardet C, Helin K, Cell cycle-regulated expression of mammalian CDC6 is dependent on E2F, Mol Cell Biol. 18(1998)6679-6697
    [38]Cantile M, Franco R, Tschan A, Baumhoer D, Zlobec I, Schiavo G, Forte I, Bihl M, Liguori G, Botti G, HOX D13 expresion across 79 tumor tissue types, Int.J.Cancer. 125(2009)1532-1541
    [40]Maeda K, Hamada J, Takahashi Y, Tada M, Yamamoto Y, Sugihara T, Moriuchi T, Altered expression of HOX genes in human cutaneous malignant melanoma, Int.J.Cancer. 114(2005)436-441
    [41]Gordon-Keylock SA, Jackson M, Huang C, Samuel K, Axton RA, Oostendorp RA, Taylor H, Wilson J, Forrester LM, Induction of Hematopoietic Differentiation of Mouse Embryonic Stem Cells by an AGM-Derived Stromal Cell Line is Not Further Enhanced by Overexpression of HOXB4, Stem Cell Dev.19(2010)1687-1698
    [42]Segara D, Biankin AV, Kench JG, Langusch CC, Dawson AC, Skalicky DA, Gotley DC, Coleman MJ, Sutherland RL, Henshall SM, Expression of HOXB2, a retinoic acid signaling target in pancreatic cancer and pancreatic intraepithelial neoplasia, Clin Cancer Res.11(2005)3587-3596
    [43]Cao R, Tsukada Y, Zhang Y, Role of Bmi-1 and Ring1A in H2A ubiquitylation and Hox gene silencing, Mol Cell.20(2005)845-854
    [44]Tibor Rauch, Zunde Wang, Gerd P. Pfeifer, et al. Homeobox gene methylation in lung cancer studied by genome-wide analysis with a microarray-based methylated CpG island recovery assay [J] Proc Natl Acad Sci 2007;104(13):5527-5532
    [45]Mosconi S, Beretta GD, Labianca R, et al. Cholangiocarcinoma. Crit Rev Oncol Hematol,2009,69:259-270
    [46]Chen YJ, Tang QB, Zhou SQ. Inactivation of RASSF1A, the tumor suppressor gene at 3p21.3 in extrahepatic cholangiocarcinoma. World J gastroenterol,2005,11:1333-1338
    [47]Kim BH, Cho NY, Shin SH, et al. CpG island hypermethylation and repetitive DNA hypomethylation in premalignant lesion of extrahepatic cholangiocarcinoma. Virchows Arch,2009,455:343-351
    [48]Steven A. Belinsky, Donna M. Klinge, Stephen B Baylin, et al. Cancer Research,2003, 63:7089-7093
    [49]Alma Chavez-Blanco, Carlos Perez-Plasencia, Alfonso Duenas-Gonzalez, et al. Antineoplastic effects of the DNA methylation inhibitor hydrazlazine and the histone deacetylase inhibitor valproic acid in cancer cell lines. Cancer Cell Int,2006,6:1-9
    [50]Claudia Arce, Blance Segura-Pacheco, Alfonso Duenas-Gonzalez, et al. Hydralazine target:From blood vessels to the epigenome. J Transl Med,2006,4:1-16
    [51]Erick de la Cruz-Hernandez, Enrique Perez-Cardenas, Alfonso Duenas-Gonzalez, et al. The effects of DNA methylation and histone deacetylase inhibitors on human papillomavirus early gene expression in cervical cancer:an in vitro and clinical study. Virol J,2007,4:1-11
    [52]Christine B. Yoo, Peter A. Jones. Epigenetic therapy of cancer:past, present and future. Nat Rev Drug Discov,2006,5:37-50
    [53]Alexandra Reininger-Mack, Hagen Thielecke, Andrea A. Robitzki.3D-biohybrid system:applications in drug screening. Trends Biotechnol,2002,20:56-61
    [54]Stephen B Baylin. DNA methylation and gene silencing in cancer. Nature Clinical Practice Oncology,2005,2 Suppl 1:S4-S11
    [55]Christine B. Yoo, Peter A. Jones. Epigenetic therapy of cancer:past present and future. Nature Reviews,2006,5:37-50
    [56]Bin Yang, Michael G House, Douglas P Glark et al. Promoter methylation profiles of tumor suppressor genes in intrahepatic and extrahepatic cholangiocarcinoma. Mad Pathol, 2005,18:412-420
    [57]Kim BH, Cho NY, Kang GH, et al. Methylation profiles of multiple CpG island loci in extrahepatic cholangiocarcinoma versus those of intrahepatic cholangiocarcinomas. Arch Pathol Lab Med,2007,131:923-930
    [58]Tischoff I, Wittekind C, Tannapfel A, et al. Role of epigenetic alterations in cholangiocarcinoma. J hepatobiliary Pancreat Surg,2006,13:274-279
    [59]Sandhu DS, Shire AM, Roberts LR. Epigenetic DNA hypermethylation in cholangiocarcinoma:potential roles in pathogenesis, diagnosis and identification of treatment targets,2008,28:12-27
    [60]Isomoto H, et al. Epigenetic alterations associated with cholangiocarcinoma. Oncol Rep,2009,22:227-232
    [61]Juergen Friedrich, Claudia Seidel, Reinhard Ebner, et al. Spheroid-based drug screen: considerations and practical approach. Nat Protoc,2009,4:309-324
    [62]Hirschhaeuser F, Menne H, Dittfeld C, et al. Multicellular tumor spheroids:An underestimated tool is Catching up again. J biotechnol,2010,148:3-15
    [63]Kunz-schughart LA, Freyer JP, Hofstaedter F, et al.The use of 3-D cultures for high -throughput screening:the multicellular spheroid model. J Biomol Screen,2004,9:273-285
    [64]Friedrich J, Ebner R, Kunz-Schughart LA, et al. Experimental anti-tumor therapy in 3-D:spheroid -old hat or new challenge? Int J Radiat Biol,2007,83:849-871
    [65]Siew- Min Ong, Ziqing Zhao, Talha Arooz, et al. Engineering a scaffold-free 3D tumor model for in vitro drug penetration studies. Biomaterials,2010,31:1180-1190
    [66]Desoize B and Jardillier J. Multicellular resistance: a paradigm for clinical resistance. Crit Rev Oncol Hematol,2000,36:193-207
    [67]Zambrano P, Segura-Pacheco B, Perez-Cardenas E, et al. A phase Ⅰ study of hydralazine to demethylate and reactive the expression of tumor suppressor genes. BMC Cancer,2005,5:44-56
    [68]M. Candelaria, D. Gallardo-Rincon, C. Arce, et al. A phase Ⅱ study of epigenetic therapy with hydralazine and magnesium valproate to overcome chemotherapy resistance in refractory solid tumors. Ann Oncol,2007,18:1529-1538 [69]Jubb AM, Bell SM, Quirke P, et al. Methylation and colorectal cancer. J Pathol,2001, 195:111-134
    [70]Van der Auwera I, Bovie C, Sevensson C, et al.Quantitative methylation profiling in tumor and matched morphologically normal tissues from breast cancer patients. BMC Cancer,2010,10:97
    [71]Yoshino M, Suzuki M, Tian L, et al. Promoter hypermethzlation of the P16 and Wif-1 genes as an independent prognostic marker in stage I A non-small cell lung cancers. Int J oncol,2009,35:1201-1209
    [72]Bagadi SA, Prasad CP, Kaur J et al. Clinical significance of promoter hypermethylation of RASSF1A, RARbeta2, BRCA1 and HOXA5 in breast cancers of Indian patients. Life Sci 2008; 82:1288-92.
    [73]Kim DS, Kim MJ, Lee JY et al. Epigenetic inactivation of Homeobox A5 gene in nonsmall cell lung cancer and its relationship with clinicopathological features. Mol Carcinog 2009;48:1109-15.
    [74]Watson RE, Curtin GM, Hellmann GM, Doolittle DJ, Goodman JI. Increased DNA methylation in the HoxA5 promoter region correlates with decreased expression of the gene during tumor promotion. Mol Carcinog 2004;41:54-66.
    [75]Chen H, Zhang H, Lee J et al. HOXA5 acts directly downstream of retinoic acid receptor beta and contributes to retinoic acidinduced apoptosis and growth inhibition. Cancer Res 2007;67:8007-13.
    [76]Koo Han Yoo, Yong-Koo Park, Hyun-Sook Kim, Woon-Won Jung and Sung-Goo Chang. Epigenetic inactivation of HOXA5 and MSH2 gene in clear cell renal cell carcinoma. Pathology International 2010; 60:661-666
    [77]Raman V, Martensen SA, Reisman D, Evron E, Odenwald WF, Jaffee E, Marks J, Sukumar S. Compromised HOX A5 function can limit p53 expression in humn breast tumors. Nature 2000;405:974-978.
    [78]B. P. L. Wijinhoven, W. N. M. Dinjens, M. Pignatelli. E-cadherin-catenin cell-cell adhesion complex and human cancer. British Journal of Surgery,2000,87:992-1005
    [79]Heuberger J, Birchmeier W. Interplay of cadherin-mediated cell adhesion and canonical wnt signaling. Cold Spring Harb Perspect Biol,2010,2:a002915
    [80]Caroline A. Hanson, Jeffrey R. Miller. Non-traditional roles for the adenomatous polyposis coli(APC) tumor suppressor protein. Gene,2005,21:1-12
    [81]Mariann Bienz and Fumihiko Hamada. Adenomatous polyposis coli proteins and cell adhesion. Curr Opin Cell Biol,2004,16:528-535
    [82]Neal AL Cody, Magdalena Zietarska, Patricia N Tonin, et al. Influence of monolayer, spheroid and tumor growth conditions on chromosome 3 gene expression on tumorigenic epithelial ovarian cancer cell lines. BMC Medical Genomics,2008,1:34.
    [83]Parson s M J, Vertino PM. Dual. Role of TMS 1/ASC in death receptor signaling. Oncogene 2006,25(52):6948-6958.
    [84]Pas PM, Ramachandran K, Vanwert J, et al. Methylation mediated silencing of TMS 1/ASC gene in prostate cancer. Mol Cancer 2006,5(1):28.
    [85]Martinez R, Schackert G, Esteller M, et al. Hypermethylation of the proapoptotic gene TMS 1/ASC:prognostic importance in glioblastom a multiforme. J Neurooncol 2007,82 (2):133-139.
    [86]Taro Yokoyama, Jun ji Sagara, Xin Guan, et al. Methylation of ASC /TMS1, a proapoptotic gene responsible for activating procaspase-1, in human colorectal cancer. Cancer Letter 2003,202 (1):101-108.
    [87]Liu XF, Zhu SG, Zhang H, et al. The methylation status of the TMS 1/ASC gene in cholangiocarcinoma and its clinical significance. Hepatobiliary Pancreat Dis Int 2006, 5(3):449-453.
    [88]Segura-Pacheco B, Trejo-Becerril C, Perez-Cardenas E, et al. Reactivation of tumor suppressor genes by the cardiovascular drugs hydralazine and procainamide and their potential usein cancer therapy. Clin Cancer Res,2003,9(5):1596-1603.
    [89]Arce C, Segura-Pacheco B, Perez-Cardenas E, et al. Hydralazine target:from blood vessels to the epigenome. J Transl Med,2006,4(1):10-25.
    [90]Zambrano P, Segura-Pacheco B, Perez-Cardenas E, et al. A phase I study of hydralazine to demethylate and reactivate the expression-of tumor suppressor genes. BMC Cancer,2005,5(1):44-55.
    [91]Chavez-Blanco A, Segura-Pacheco B, Perez-Cardenas E, et al. Histone acetylation and histone deacetylase activity of magnesium valproate in tumor and peripheral blood of patients with cervical cancer. A phase I study. Mol Cancer 2005,4(1):22-30.
    [92]Leung WK, Yu J, Ng EK, et al. Concurrent hypemethylation of multiple tumor related genes in gastric carcinoma and ajucent normal t issues. Cancer,2001,91(12):2294-2301.
    [93]Robertson KD. DNA methylation, methyltransferases and cancer. Oncogene 2001, 20(24):3139-3155.
    [94]Egger G, Liang G, A paricio A, et al. Epigenetics in human disease and prospects for epigenetic therapy. Nature,2004,429(6990):457-463.
    [95]Bruey JM, Bruey-Sedano N, Newman R, et al. PAN1/NALP2/PYPAF2, an inducible inflammatory mediator that regulates NF-B and caspase-1 activation in macrophages. J Biol Chem 2004,279(50):51897-51907.
    [96]Mc Connell BB, Vertino PM. TMS1/ASC:The cancer connection. Apoptosis,2004, 9(1):5-18.
    [97]Srinivasu la SM, Poyet JL, Razmara M, et al. The PYRIN-CARD protein ASC is an activating adaptor for caspase-1. J. Biol. Chem,2002,277(24):21119-21122.
    [98]Fantuzzi G, Puren AJ, Harding MW, et al. Interleukin 218 regulation of interferon gamma production and cell proliferation as shown in interleukin-1beta-converting enzyme (caspase-1)-deficient mice. Blood 1998,91(6):2118-2125.
    [99]Keller M, Reqq A, Werner S, et al. Active caspase-1 is a regulator of unconventional protein secretion. Cell 2008,132(5):818-831.
    [100]Cameron EE, Bachman KE, Myohanen S, et al. Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat Genet 1999,21(1):103-107.
    [101]Zhu WG, Lakshmanan RR, Beal MD, et al. DNA methyltransferase inhibition enhances apoptosis induced by histone deacetylase inhibitors. Cancer Res,2001,61 (4):1327-1333.
    [102]邹声泉.重视胆道肿瘤的临床基础研究[J]外科理论与实践2007,12(4):307-309
    [103]刘小方, 邹声泉TMS1/ASC抑癌基因与癌的发生[J]医学综述2007,13(7):485-487
    [104]Xiao- Fang Liu, Shi-Guang Zhu, Hao Zhang, et al. The methylation status of the TMS1/ASC gene in cholangiocarcinoma and its clinical significance [J] Hepatobiliary Pancreat Dis Int 2006,3(5) 449-453
    [105]Tomohiro Tozawa, Gen Tamura, Teiichiro Honda, et al. Promoter hypermethylation of DAP-kinase is associated with poor survival in primary biliary tract carcinoma patients [J]Cancer Sci 2004,95(9):736-740
    [106]Sun Lee, Woo Ho Kim, Hwoon-Yong Jung, et al. Aberrant CpG Island Methylation of Multiple Genes in Intrahepatic Cholangiocarcinoma [J] American Journal of Pathology 2002,161(3):1015-1022
    [107]Bin Yang, Michael G House, Mingzhou Guo, et al. Promoter methylation profiles of tumor suppressor genes in intrahepatic and extrahepatic cholangiocarcinoma [J]Modern Pathology 2005,18:412-420
    [108]Yasuo Koga, Yoshihiko Kitajima, Atsushi Miyoshi, et al. Tumor Progression Through Epigenetic Gene Silencing ofO6-Methylguanine-DNA Methyltransferase in Human Biliary Tract Cancers [J] Annals of Surgical Oncology 2005,12(5):1)10
    [109]Temduang Limpaiboon, Prasong Khaenam, Patcharee Chinnasri, et al. Promoter hypermethylation is a major event of hMLH1 gene inactivation in liver fluke related cholangiocarcinoma[J] Cancer Letters 2005,217:213-219
    [110]A Tannapfel, M Benicke, A Katalinic, D Uhlmann, et al. Frequency of p16INK4A alterations and k-ras mutations in intrahepatic cholangiocarcinoma of the liver [J] Gut 2000, 47:721-727
    [111]Andrea Tannapfel, Florian Sommerer, Markus Benicke, et al. Genetic and epigenetic alterations of the INK4a-ARF pathway in cholangiocarcinoma [J] Journal of Pathology 2002,197:624-631
    [112]Foja S, Goldberg M, Schagdarsurengin U, et al. Promoter methylation and loss of coding exons of the fragile histidine triad (FHIT) gene in intrahepatic cholangiocarcinomas. [J]Liver Int 2005,25:1202-1208.
    [113]Stehlik C ,Fiorentino L,Dorfletner A, et al. The PAADPPYRIN2family protein ASCis a dual regulator of a conserved step in nuclear factor kappaB activation pathways [J]. J Exp Med,2002,196 (12):1605-1615.
    [114]Yong-Jun Chen, Qi-Bin Tang, Shen-Quan Zou. Inactivation of RASSF1A, the tumor suppressor gene at 3p21.3 in extrahepatic cholangiocarcinoma [J] World J Gastroenol 2006, 11(9):1333-1338
    [115]Emi Ota Machida, Malcolm V. Brock, Craig M. Hooker, Hypermethylation of ASC/TMS1 Is a Sputum Marker for Late-Stage Lung Cancer, [J]Cancer Res 2006;66: (12).)
    [116]Segura-Pacheco B, Trejo-Becerril C, Perez-Cardenas E, Taja-Chayeb L, Mariscal I, Chavez A, et al. Reactivation of tumor suppressor genes by the cardiovascular drugs hydralazine and procainamide and their potential use in cancer therapy. Clin Cancer Res 2003,9:1596-1603
    [117]Bridges, C. B. Current maps of the location of the mutant genes of Drosophila Melanogaster. Proc. Natl Acad. Sci 1921;7:127-132.
    [118]Wilson R, Ainscough R, Anderson K, Baynes C, Berks M, Bonfield J, Burton J, Connell M, Copsey T, Cooper J, et al.2.2 Mb of contiguous nucleotide sequence from chromosome Ⅲ of C. elegans. Nature 1994;368:32-38.
    [119]Schilling TF, Knight RD. Origins of anteroposterior patterning and Hox gene regulation during chordate evolution. Philos Trans R Soc Lond B Biol Sci 2001;356:1599-613.
    [120]Shen, W. F., Krishnan, K., Lawrence, H. J. & Largman, C. The HOX homeodomain proteins block CBP histone acetyltransferase activity. Mol. Cell. Biol 2001;7509-7522.
    [121]Dolle, P., Izpisua-Belmonte, J. C., Brown, J., Tickle, C.& Duboule, D. Hox genes and the morphogenesis of the vertebrate limb. Prog. Clin. Biol. Res 1993;11-20.
    [122]Mortlock, D. P.& Innis, J. W. Mutation of HOXA13 in hand-foot-genital syndrome. Nature Genet 1997;179-180.
    [123]Perez-Cabrera, A., Kofman-Alfaro, S.& Zenteno, J. C. Mutational analysis of HOXD13 and HOXA13 genes in the triphalangeal thumb-brachyectrodactyly syndrome. J. Orthop. Res 2002;899-901.
    [124]Zacchetti, G., Duboule, D.& Zakany, J. Hox gene function in vertebrate gut morphogenesis:the case of the caecum. Development 2007;3967-3973.
    [125]Cardoso, W. V. Transcription factors and pattern formation in the developing lung. Am. J. Physiol 1995;269:L429-L442.
    [126]Simpson, J. L. Genetics of the female reproductive ducts. Am. J. Med. Genet 1999; 89:224-239.
    [127]Wellik, D. M. Hox genes and vertebrate axial pattern. Curr. Top. Dev. Biol 2009;88; 257-278.
    [128]Lewin B. Homeodomains bind related targets in DNA. In Genes Ⅶ. Oxford:Oxford University Press 2000:660-62.
    [129]Mollard R, Dziadek M. Homeobox genes from clusters A and B demonstrate characteristics of temporal colinearity and differential restrictions in spatial expression domains in the branching mouse lung. Int J Dev Biol 1997;41:655-66.
    [130]Golpon HA, Geraci MW, Moore MD, Miller HL, Miller GJ, Tuder RM, Voelkel NF. HOX genes in human lung:altered expression in primary pulmonary hypertension and emphysema. Am J Pathol 2001;158:955-66.
    [131]Kim C, Nielsen HC. Hoxa-5 in mouse developing lung:cell-specific expression and retinoic acid regulation. Am J Physiol Lung Cell Mol Physiol 2000; 279:L863-71. [132] Volpe MV, Archavachotikul K, Bhan I, Lessin MS, Nielsen HC. Association of
    bronchopulmonary sequestration with expression of the homeobox protein Hoxb-5. J Pediatr Surg 2000; 35:1817-9.
    [133]Calvo R, West J, Franklin W, Erickson P, Bemis L, Li E, Helfrich B, Bunn P, Roche J, Brambilla E, Rosell R, Gemmill RM, Drabkin HA. Altered HOX and WNT7A expression in human lung cancer. Proc Natl Acad Sci USA 2000; 97:12776-81.
    [134]Volpe MV, Pham L, Lessin M, Ralston SJ, Bhan I, Cutz E, Nielsen HC. Expression of Hoxb-5 during human lung development and in congenital lung malformations. Birth Defects Res Part A Clin Mol Teratol 2003;67:550-6.
    [135]Volpe MV, Vosatka RJ, Nielsen HC. Hoxb-5 control of early airway formation during branching morphogenesis in the developing mouse lung. Biochim Biophys Acta 2000; 1475: 337-45.
    [136]Aubin J, Lemieux M, Tremblay M, Berard J, Jeannotte L. Early postnatal lethality in Hoxa-5 mutant mice is attributable to respiratory tract defects. Dev Biol 1997;192:432-45.
    [137]Care A, Testa U, Bassani A, Tritarelli E, Montesoro E, Samoggia P, Cianetti L, Peschle C. Coordinated expression and proliferative role of HOXB genes in activated adult T lymphocytes. Mol Cell Biol 1994;14:4872-77.
    [138]Jung, C., Kim, R. S., Lee, S. J., Wang, C. & Jeng, M. H. HOXB13 homeodomain protein suppresses the growth of prostate cancer cells by the negative regulation of T-cell factor 4. Cancer Res.2004; 3046-3051.
    [139]Economides, K. D. & Capecchi, M. R. Hoxb13 is required for normal differentiation and secretory function of the ventral prostate. Development 2003;130: 2061-2069.
    [140]Wang, Z. et al. The prognostic biomarkers HOXB13, IL17BR, and CHDH are regulated by estrogen in breast cancer. Clin. Cancer Res 2007;13:6327-6334.
    [141]Calvo, K. R., Sykes, D. B., Pasillas, M. P. & Kamps, M. P. Nup98-HoxA9 immortalizes myeloid progenitors, enforces expression of Hoxa9, Hoxa7 and Meisl, and alters cytokine-specific responses in a manner similar to that induced by retroviral co-expression of Hoxa9 and Meisl. Oncogene 2002;21:4247-4256.
    [142]Zhang, X. et al. HOXC6 and HOXC11 increase transcription of S100beta gene in BrdU-induced in vitro differentiation of GOTO neuroblastoma cells into Schwannian cells. J. Cell. Mol. Med 2007;11:299-306.
    [143]Chen, H. et al. HOXA5 acts directly downstream of retinoic acid receptor beta and contributes to retinoic acid-induced apoptosis and growth inhibition. Cancer Res 2007;67:8007-8013.
    [144]Miao, J. et al. HOXB 13 promotes ovarian cancer progression. Proc. Natl Acad. Sci. USA 2007;104:17093-17098.
    [145]Wu, X. et al. HOXB7, a homeodomain protein, is overexpressed in breast cancer and confers epithelialmesenchymal transition. Cancer Res 2006;66:9527-9534.
    [146]Zhai, Y. et al. Gene expression analysis of preinvasive and invasive cervical squamous cell carcinomas identifies HOXC10 as a key mediator of invasion. Cancer Res 2007;67:10163-10172.
    [147]Abate-Shen, C. Deregulated homeobox gene expression in cancer: cause or consequence? Nature Rev. Cancer 2002;2:777-785.
    [148]Hershko, A. Y., Kafri, T., Fainsod, A. & Razin, A. Methylation of HoxA5 and HoxB5 and its relevance to expression during mouse development. Gene 2003;302:65-72.
    [149]Rauch, T. et al. Homeobox gene methylation in lung cancer studied by genome-wide analysis with a microarray-based methylated CpG island recovery assay. Proc. Natl Acad. Sci. USA 2007;104:5527-5532.
    [150]Fanti, L. et al. The trithorax group and Pc group proteins are differentially involved in heterochromatin formation in Drosophila. Chromosoma 2008;117:25-39.
    [151]Hanson, R. D. et al. Mammalian Trithorax and polycomb-group homologues are antagonistic regulators of homeotic development. Proc. Natl Acad. Sci. USA 1999;96:14372-14377.
    [152]Krivtsov, A. V. & Armstrong, S. A. MLL translocations, histone modifications and leukaemia stem-cell development. Nature Rev. Cancer 2007;7:823-833.
    [153]Ferrando, A. A. et al. Gene expression signatures in MLL-rearranged T-lineage and B-precursor acute leukemias:dominance of HOX dysregulation. Blood 2003;102:262-268.
    [154]Armstrong, S. A., Golub, T. R. & Korsmeyer, S. J. MLL-rearranged leukemias: insights from gene expression profiling. Semin. Hematol 2003;40:268-273.
    [155]Golub, T. R. et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 1999;286:531-537.
    [156]Faber, J. et al. HOXA9 is required for survival in human MLL-rearranged acute leukemias Blood 2009;113:2375-2385.
    [157]Takahashi, O. et al. Dysregulated expression of HOX and ParaHOX genes in human esophageal squamous cell carcinoma. Oncol. Rep 2007;17:753-760.
    [158]Jung, C. et al. HOXB13 is downregulated in colorectal cancer to confer TCF4-mediated transactivation. Br. J. Cancer 2005;92:2233-2239.
    [159]Ghannam, G. et al. The oncogene Nup98-HOXA9 induces gene transcription in myeloid cells. J. Biol. Chem 2004;279,866-875.
    [160]Lawrence, H. J. et al. Mice bearing a targeted interruption of the homeobox gene HOXA9 have defects in myeloid, erythroid, and lymphoid hematopoiesis. Blood 1997;89:1922-1930.
    [161]Myers, C., Charboneau, A., Cheung, I., Hanks, D.& Boudreau, N. Sustained expression of homeobox D10 inhibits angiogenesis. Am. J. Pathol 2002;161:2099-2109.
    [162]Hansen, S. L., Dosanjh, A., Young, D. M., Boudreau, N. & Hoffman, W. Y. Hemangiomas and homeobox gene expression. J. Craniofac Surg 2006;17:767-771.
    [163]Myers, C., Charboneau, A. & Boudreau, N. Homeobox B3 promotes capillary morphogenesis and angiogenesis. J. Cell Biol 2000;148:343-351.
    [164]Huang, L., Pu, Y., Hepps, D., Danielpour, D. & Prins, G. S. Posterior Hox gene expression and differential androgen regulation in the developing and adult rat prostate lobes. Endocrinology 2007;148:1235-1245.
    [165]Trivedi, C. M., Patel, R. C.& Patel, C. V. Homeobox gene HOXA9 inhibits nuclear factor-KB dependent activation of endothelium. Atherosclerosis 2007;195:e50-e60.
    [166]McMullin, R. P., Mutton, L. N.& Bieberich, C. J. Hoxb13 regulatory elements mediate transgene expression during prostate organogenesis and carcinogenesis. Dev. Dyn 2009;238:664-672.
    [167]Patel, C. V., Sharangpani, R., Bandyopadhyay, S.& DiCorleto, P. E. Endothelial cells express a novel, tumor necrosis factor-alpha-regulated variant of HOXA9. J. Biol. Chem 1999;274:1415-1422.
    [168]Trivedi, C. M., Patel, R. C.& Patel, C. V. Differential regulation of HOXA9 expression by nuclear factor kappa B (NF-κB) and HOXA9. Gene 2008;408:187-195 (2008).
    [169]Park, J. R., Eggert, A.& Caron, H. Neuroblastoma:biology, prognosis, and treatment. Pediatr. Clin. North Am.2008;55:97-120.
    [170]Abbracchio, M. P., Cattabeni, F., Clementi, F.& Sher, E. Adenosine receptors linked to adenylate cyclase activity in human neuroblastoma cells:modulation during cell differentiation. Neuroscience 1989;30:819-825.
    [171]Horii, Y. et al. Differential expression of N-myc and c-src proto-oncogenes during neuronal and schwannian differentiation of human neuroblastoma cells. Int. J. Cancer 1989;43:305-309.
    [172]Manohar, C. F., Salwen, H. R., Furtado, M. R. & Cohn, S. L. Up-regulation of HOXC6, HOXD1, and HOXD8 homeobox gene expression in human neuroblastoma cells following chemical induction of differentiation. Tumour Biol 1996;17:34-47.
    [173]Jung, C., Kim, R. S., Zhang, H. J., Lee, S. J. & Jeng, M. H. HOXB13 induces growth suppression of prostate cancer cells as a repressor of hormoneactivated androgen receptor signaling. Cancer Res 2004;64,9185-9192.
    [174]Miller, G. J. et al. Aberrant HOXC expression accompanies the malignant phenotype in human prostate. Cancer Res.2003;63:5879-5888.
    [175]Waltregny, D., Alami, Y., Clausse, N., de Leval, J. & Castronovo, V. Overexpression of the homeobox gene HOXC8 in human prostate cancer correlates with loss of tumor differentiation. Prostate 2002;50:162-169.
    [176]Kikugawa, T. et al. PLZF regulates Pbxl transcription and Pbxl-HoxC8 complex leads to androgenindependent prostate cancer proliferation. Prostate 2006;66:1092-1099.
    [177]Cheng, W., Liu, J., Yoshida, H., Rosen, D. & Naora, H. Lineage infidelity of epithelial ovarian cancers is controlled by HOX genes that specify regional identity in the reproductive tract. Nature Med 2005;11:531-537.
    [178]Dubeau, L. The cell of origin of ovarian epithelial tumors and the ovarian surface epithelium dogma:does the emperor have no clothes? Gynecol. Oncol 1999;72:437-442.
    [179]Lawrence, H. J., Sauvageau, G., Humphries, R. K. & Largman, C. The role of HOX homeobox genes in normal and leukemic hematopoiesis. Stem Cells 1996;14:281-291.
    [180]Bijl, J. et al. Expression of HOXC4, HOXC5, and HOXC6 in human lymphoid cell lines, leukemias, and benign and malignant lymphoid tissue. Blood 1996;87:1737-1745.
    [181]Ayton, P. M.& Cleary, M. L. Transformation of myeloid progenitors by MLL oncoproteins is dependent on Hoxa7 and Hoxa9. Genes Dev 2003;17:2298-2307.
    [182]Rubin, E. et al. A role for the HOXB7 homeodomain protein in DNA repair. Cancer Res.2007;67:1527-1535.
    [183]Ma, X. J. et al. Gene expression profiles of human breast cancer progression. Proc. Natl Acad. Sci. USA 2003;100:5974-5979.
    [184]Raman, V. et al. Compromised HOXA5 function can limit p53 expression in human breast tumours. Nature 2000;405:974-978.
    [185]Chen, H., Chung, S. & Sukumar, S. HOXA5-induced apoptosis in breast cancer cells is mediated by caspases 2 and 8. Mol. Cell. Biol 2004;24:924-935.
    [186]Gendronneau, G. et al. Influence of Hoxa5 on p53 tumorigenic outcome in mice. Am. J. Pathol.2010;176:995-1005.
    [187]Chu, M. C., Selam, F. B.& Taylor, H. S. HOXA10 regulates p53 expression and matrigel invasion in human breast cancer cells. Cancer Biol. Ther 2004;3:568-572.
    [188]Plowright, L., Harrington, K. J., Pandha, H. S. & Morgan, R. HOX transcription factors are potential therapeutic targets in non-small-cell lung cancer (targeting HOX genes in lung cancer). Br. J. Cancer 2009;100:470-475.
    [189]Morgan, R. et al. Antagonism of HOX/PBX dimer formation blocks the in vivo proliferation of melanoma. Cancer Res 2007;67:5806-5813.
    [190]Kasibhatla, S. et al. DNA damaging agents induce expression of Fas ligand and subsequent apoptosis in T lymphocytes via the activation of NF-κB and AP-1. Mol. Cell 1998;1:543-551.
    [191]Argiropoulos, B. & Humphries, R. K. Hox genes in hematopoiesis and leukemogenesis. Oncogene 2007;26:6766-6776.
    [192]Lawrence, H. J.& Largman, C. Homeobox genes in normal hematopoiesis and leukemia. Blood 1992;80,2445-2453.
    [193]Hu, Y. L., Fong, S., Ferrell, C., Largman, C.& Shen, W. F. HOXA9 modulates its oncogenic partner Meis1 to influence normal hematopoiesis. Mol. Cell. Biol 2009;29, 5181-5192.
    [194]Whelan, J. T., Ludwig, D. L.& Bertrand, F. E. HoxA9 induces insulin-like growth factor-1 receptor expression in B-lineage acute lymphoblastic leukemia. Leukemia 2008;22, 1161-1169.
    [195]Carrio, M., Arderiu, G., Myers, C.& Boudreau, N. J. Homeobox D10 induces phenotypic reversion of breast tumor cells in a three-dimensional culture model. Cancer Res.2005;65:7177-7185.
    [196]Daftary, G. S.& Taylor, H. S. Endocrine regulation of HOX genes. Endocr. Rev. 2006;27:331-355.
    [197]Zhang X, Zhu T, Chen Y, Mertani HC, Lee KO, Lobie PE. Human growth hormone-regulated HOXA1 is a human mammary epithelial oncogene. J Biol Chem 2003;278:7580-90.
    [198]Qiu, Y. et al. Pre-B-cell leukemia transcription factor 1 regulates expression of valosin-containing protein, a gene involved in cancer growth. Am. J. Pathol. 2007;170:152-159 (2007).
    [199]Crickmore, M. A., Ranade, V.& Mann, R. S. Regulation of Ubx expression by epigenetic enhancer silencing in response to Ubx levels and genetic variation. PLoS Genet 2009;5:e1000633.
    [200]Kannan, R., Berger, C., Myneni, S., Technau, G. M. & Shashidhara, L. S. Abdominal-A mediated repression of Cyclin E expression during cell-fate specification in the Drosophila central nervous system. Mech. Dev.2009; 127:137-145.
    [201]Korkaya, H.& Wicha, M. S. HER-2, notch, and breast cancer stem cells:targeting an axis of evil. Clin. Cancer Res 2009;15:1845-1847.
    [202]Wang, G. G., Cai, L., Pasillas, M. P. & Kamps, M. P. NUP98-NSD1 links H3K36 methylation to Hox-A gene activation and leukaemogenesis. Nature Cell Biol 2007;9,804-812.
    [203]Yang, Y. C. et al. A tumorigenic homeobox (HOX) gene expressing human gastric cell line derived from putative gastric stem cell. Eur. J. Gastroenterol. Hepatol 2009;21:1016-1023.
    [204]Chou, W. C. et al. Acute myeloid leukemia bearing t(7;11)(p15;p15) is a distinct cytogenetic entity with poor outcome and a distinct mutation profile:comparative analysis of 493 adult patients. Leukemia 2009;23:1303-1310.
    [205]Goetz, M. P. et al. A two-gene expression ratio of homeoBOX 13 and interleukin-17B receptor for prediction of recurrence and survival in women receiving adjuvant tamoxifen. Clin. Cancer Res.2006;12:2080-2087.
    [206]Jansen, M. P. et al. HOXB13-to-IL17BR expression ratio is related with tumor aggressiveness and response to tamoxifen of recurrent breast cancer:a retrospective study. J. Clin. Oncol 2007;25:662-668.
    [207]Zaremba, T.& Curtin, N. J. PARP inhibitor development for systemic cancer targeting. Anticancer Agents Med. Chem 2007;7:515-523.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700