复发缓解型EAE大鼠脊髓中神经干细胞增殖变化及α-硫辛酸的干预作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:多发性硬化(multiple sclerosis,MS)是一种以中枢神经系统( central nerval system, CNS)白质脱髓鞘为主要病理特点的自身免疫性疾病。实验性自身免疫性脑脊髓炎(experimental autoimmune encephalomyelitis,EAE)是以特异性致敏的CD4+ T细胞介导为主的,中枢神经系统内小血管周围单个核细胞浸润及髓鞘脱失为特征的自身免疫性疾病,在发病机制和病变表征等方面与MS极为相似,作为一种实验动物模型被广泛用于研究MS。
     已有人报道在脑及脊髓损伤情况下,神经干细胞标志物表达增多,但关于神经干细胞在EA E大鼠发病、缓解、复发过程中脊髓中表达情况未见报道。
     在MS的发病机制中,氧化应激起着非常重要的作用。α-硫辛酸作为一种很强的天然抗氧化剂,已引起人们的广泛重视。它主要通过清除自由基,螯合金属离子,再生其他抗氧化剂而发挥其抗氧化作用。但目前关于α-硫辛酸对MS的研究很少,我们研究发现α-硫辛酸可以显著降低其发病率,减轻病情,其作用是否与促进神经干细胞增殖有关尚不清楚。
     本实验旨在通过对EAE大鼠发病过程中脊髓中神经干细胞相关指标(巢蛋白Nestin及增殖细胞核抗原PCNA)的测定及分析,了解MS发病过程中神经干细胞的增殖情况及意义。并通过α-硫辛酸对EAE大鼠的干预来观察神经干细胞相关指标的变化,了解α-硫辛酸对神经干细胞增殖的影响,从而为临床治疗MS提供新的思路和实验依据。
     方法:
     1动物分组:将36只成年健康雌性Wistar大鼠,体重180~200g,随机分出正常对照组6只,其余动物用新鲜豚鼠全脊髓匀浆(GPSCH)诱导免疫,待动物第一次发病后随机选出发病组大鼠6只,其余平均分为EAE组和硫辛酸组(LA组,100mg .kg-1 .d-1),每组再按病程分为缓解、复发两个亚组,每亚组6只,硫辛酸组动物没复发者,按预实验中统计的EAE组动物缓解复发平均天数分为干预后7天组(缓解期)和干预后14天组(复发期)。
     2模型制备:将新鲜豚鼠全脊髓制成匀浆,加上完全福氏佐剂(complete Freund′s adjuvant,CFA),佐剂中含卡介苗6mg/ml,经过乳化后按0.5ml/只分别于大鼠四肢足垫和背部皮下注射。硫辛酸组于动物发病后(神经功能评分达2分)第一天起给予相应剂量腹腔注射,连续注射7天(100mg .kg-1. d-1)。
     3神经功能评分:于免疫诱导当日及免疫后每天对动物的体重变化、精神状态、活动情况进行观察,并对动物进行神经功能评分,采用国际通用的Kono评分标准,分为5分:0分,正常;1分,动物尾部无力;2分,尾部无力+肢体无力;3分,肢体轻度麻痹;4分,肢体严重麻痹,被动翻身后不能复原;5分,濒死状态或死亡。EAE大鼠以神经功能评分达2分或以上者为动物模型成功的标准。
     4免疫组织化学染色:在动物麻醉状态下,快速取其脊髓中腰膨大处组织,4%多聚甲醛固定,石蜡包埋,组织切片,分别加Nestin一抗及PCNA一抗,经二抗,三抗孵育,DAB显色,苏木精复染,脱水透明,中性树胶封片,光学显微镜下观察Nestin及PCNA表达情况。
     结果:
     1脊髓Nestin表达:发病期阳性细胞数目最多,缓解期减少,复发期阳性细胞再次增多,分布较分散,未明显集中于病灶区。复发期与发病期比较,阳性细胞数减少,有统计学意义(P<0.05)。缓解期LA组与EAE组比较,无统计学意义(P>0.05)。复发期LA组与EAE组比较,阳性细胞数减少,有统计学意义(P<0.05)。
     2脊髓PCNA表达:发病期阳性细胞数目最多,缓解期减少,复发期阳性细胞数再次增多,并主要集中在炎性细胞浸润的血管“袖套样”病变处,与病灶分布基本一致,其他部位弥漫分布。复发期与发病期比较,阳性细胞数减少,有统计学意义(P<0.05)。缓解期硫辛酸组与EAE组比较,无统计学意义(P>0.05)。复发期LA组与EAE组比较,阳性细胞数减少,有统计学意义(P<0.05)。
     结论:
     1硫辛酸能促进EAE大鼠病情缓解,但对内源性神经干细胞的增殖程度未见明显影响。
     2细胞增殖程度与EAE病情发展密切相关;硫辛酸能在一定程度上减少细胞增殖程度,可能与减轻炎症反应有关。
Objective:
     Multiple sclerosis (MS) is an inflammatory demyelination disease of the central nervous system (CNS) that causes relapsing and progressive neurological impairment. Experimental autoimmune encephalomyelitis (EAE), an autoimmune disease, characterised by myelinolysis and perivascular cuffings, is an ideal animal model for MS.
     There has been some reports that the neural stem cell marker expression is increasing when the brain and spinal injury, but there is few reports about that in relapsing-remitting EAE rat.
     Oxidative stress plays an important role in the pathogenesis of MS. Alpha-lipoic acid has attracted wide attention as a strong natural anti-oxidants. It mainly plays its antioxidant activity through scavenging free radicals, chelating metal ions, and regenerating other antioxidants. We found that alpha-lipoic acid can significantly reduce the morbidity of EAE, but weather it can promote the neural stem cell proliferation or not is unclear.
     In the research, we want to know the neural stem cell proliferation and its significance in EAE rat by detecting the induction of Nestin and PCNA. We administrate alpha-lipoic acid to the EAE rat in order to know its impact about the neural stem cell proliferation, thus to provide new ideas and experimental evidence to the treatment of MS.
     Methods:
     A total of 36 adult healthy female Wistar rats weighing between 180g and 200g were divided randomly into three groups: normal control group(6 rats),other rats were immunized subcutaneously in the four foot pads and backside by fresh guinea pig spinal cord homogenate (GPSCH) and complete Freund′s adjuvant(CFA). After the first paroxysm, divided randomly out 6 rats as disease group, others divided into EAE group and alpha-lipoic acid (LA group, 100mg. Kg-1. d-1), and this two groups were divided into 7 day group and 14 day group, separately.
     Clinical signs of EAE were assessed the mean of twice daily by two observations. Scores were assigned on the basis of the following symptoms: 1. tail weakness; 2. tail weakness plus limb asthenia; 3. mild limb paralysis; 4. severe limb paralysis; 5. moribund/dead. LA group were injected intra- peritioneal resectively LA100mg.Kg-1.d-1. This treatment was started on the first day of EAE outbreak and continued daily for 7 days.
     Rats were sacrificed after anesthesia with intraperitoneal injection. Tissue of the spinal cord was fixed with 4% formalin, then the tissue was embedded in paraffin and sectioned at 6μm thickness. The sections were stained with immunehistochemistry staining of Nestin and PCNA. At last, the results were analyzed with microscopy.
     Results:
     1 Nestin expression in the spinal cord: The number of positive cells in EAE disease stage is increased. In the remitted stage, it is decreased. In relapsing stage, it is increased again. The number of positive cells in spinal cord of rats in EAE disease group is higher than Relapsing group (P<0.05). In the remitted stage, there is no statistical significance between LA group and EAE group (P>0.05). In the relapsed stage, the number of positive cells of LA group is lower than that of EAE group (P<0.05). In the study, we find that there are Nestin positive cells similar with neuron or astrocytes.
     2 PCNA expression in the spinal cord: The number of positive cells in EAE disease stage is increased. In the remitted stage, it is decreased. In relapsing stage, it is increased again. The number of positive cells in spinal cord of rats in EAE disease stage is more than that in Relapsing stage (P<0.05). In the remitted stage, there is no statistical significance between LA group and EAE group (P>0.05). In the relapsed stage, the number of positive cells of LA group is lower than that of EAE group (P<0.05). And the positive cells are mainly distributed in the department of inflammatory cell infiltration.
     Conclusions:
     1 alpha-lipoic acid can protect the EAE rats from the severity of the disease, but it has no significant effect on the endogenous neural stem cell proliferation.
     2 The degree of cell proliferation is closely related to the development of EAE disease; alpha-Lipoic acid can reduce cell proliferation by reducing the degree of inflammation.
引文
1曹翠丽,王惠,马常升等.实验性变态反应性脑脊髓炎大鼠模型的建立[J].解剖学杂志,2001,24(1):77-80
    2董梅,刘瑞春,郭力等. Wistar大鼠多病程实验性变态反应性脑脊髓炎的模型建立[J].中国免疫学杂志,2006,22:78-81
    3 Fisher LJ. Neural preceursor cells: applications for the study and repair of the central nervous system [J]. Neurobiol Dis, 1997, 4(1):1-22
    4 Kermie SG, Erwin TM, Parada LF. Brain remodelin due to neuronal and astrocytic proliferation after controlled corticl injury in mice [J]. J Neur osci Res, 2001, 66 (3):317-326
    5 Louis DN, Edgerton S, Thor AD, et al. Prolifereration cell nuclear antigen and kiimmunohistochemistry in brain tumors: a comparative study [J]. Acta Neuropathol, 1991, 81:675-679
    6 Galand P, Degref C. Cyclin/ PNCA immunostaining as an alternative to tritiated thymidine pulse labelling for marking S phase cells in paraffin sections from animal and human tissue [J]. Cell Tissue Kinet, 1989, 22:283-292
    7 Gilgun Sherki Y. The role of oxidative stress in the pathogenesis of multiple sclerosis:the need for effective antioxidant therapy[J]. J Neurol, 2004, 251(3):261-268
    8 Kornblum HI. Introduction to neural stem cells[J]. Stroke. 2007, 38 (2Suppl):810-816
    9 Macky R. Stemcell in the central nervous system [J]. Science, 1997, 276(5309):66-71
    10 Gage FH. Mammalian neural stem cells [J]. Science, 2000, 287 (5457):144 -147
    11 Bjorklund A, Lindvall O. Self-repair in the brain [J]. Nature, 2000, 405(22):892-895
    12 Jin K, Minami M, Lan JQ, et al. Neurogenesis in dentate subgranular zone rostral.subventricular zone after focal cerebral ischemia in the rat [J]. Proc Netl Acad Sci. USA, 2001, 98(8):4710-4715
    13 Li Y, Chen J, Chopp M. Cell proliferation and differentiation from epdendymal, subependymal and choroids plexus cells in response to stroke in rat [J]. J Nerrol Sci, 2002, 193(20):137-146
    14 Gironi M, Bergami A, Brambilla E, et al. Immunological markers in multiple sclerosis[J]. Neurol Sci, 2000,21(4 Suppl 2):S871-875
    15 Hemmer B, Cepok S, Nessler S, et al. Pathogenesis of multiple sclerosis: an update on immunology[J]. Curr Opin Neurol, 2002, 15:227-231
    16 Lassmann H. Mechanisms of demyelination and tissue destruction in multiple sclerosis[J]. Clin Neurol Neurosurg, 2002, 104:168-171
    17 Lendahl U, Zimmerman LB, McKay RD. CNS stem cells express a newclass of intermediate filament protein[J]. Cell, 1990, 60(4):585-595
    18 Michalczyk K, Ziman M. Nestin structure and predicted function in cellular cytoskeletal organisation[J]. Histol Histopathol, 2005, 20 (2):665-671
    19 Cai J, Wu Y, Mirua T, et al. Properties of a fetal multipotent neural stem cell (NEP cell) [J]. Dev Biol, 2002, 251(2):221-240
    20 Reynolds BA, Weiss S, Generation of neurons and astrocytes from isolated cells of adult mammalian central system [J]. Science, 1992, 255 (5025):1707-1710
    21 Johansson CB, Momma S. Identification of a neural stem cell in the adult mammalian central nervous system [J]. Cell, 1999, 96(1):25-34
    22 Weiss S, Dunne C, Hewson J, et al. Multipotent CNS stem cells are present in the adult mammalian spinal cord and ventricular neuroaxis [J]. J Neurosci, 1996, 16(23): 7599-7609
    23 Maslov AY, Barone TA, Plunkett RJ, et al. Neural stem cell detection, characterization and age-related changes in the subvert-ricular zone of mice[J]. J Neurosci, 2004, 24(7):1726-1733
    24 Sergent-Tanguy S, Michel DCl. Long-lasting coexpression of Nestin and glial fibrillary acidic protein in primary cultures of astroglial cells with a major participation of Nestin(+)/GFAP(-) cells in cell proliferation [J]. J Neurosci Res, 2006, 83(8): 1515-1524
    25 Lang B, Liu HL, Liu R, et al. Astrocytes in injured adult rat spinal cord may acquire the potential of neural stem cells [J]. Neuroscience, 2004, 128(4): 775-783
    26 Taupin P. Neural progenitor and stem cells in the adult central nervous system[J]. Ann Acad Med Singapore, 2006, 35(11):814-820
    27 Ben-Hur T, Einstein O, Mizrachi-Kol R, et al. Transplanted multip otential neural precursor cells migrate into the inflamed white matter in response to experimental autoimmune encephalomyelitis [J]. Glia, 2003, 41 (1):73-80
    28 Koch M. Peripheral blood leukocyte NO production and oxidative stress in multiple sclerosis[J]. Mult Scler, 2008, 14(2):159-165
    29 Gonsette RE. Neurodegeneration in multiple sclerosis:The role of oxidative stress and excitotoxicity[J]. J Neurol Sci, 2008, 274(1-2):48-53
    30 Koch MW. Oxidative stress in serum and peripheral blood leukocytes in patients with different disease[J]. J Neurol, 2006, 253(4):483-487
    31 Lutskii MA. Oxidant stress in the pathogenesis of multiple sclerosis[J]. Neurosci Behav Physiol, 2007, 37(3):209-213
    32 Pari L, Murugavel P. Protective effect of alpha-lipoic acid against chloroquine-induced hepatotoxicity in rats[J]. J Appl Toxicol, 2004, 24(1):21-26
    33 Jones RE. Treatment of experimental autoimmune encephalo- myelitis with alpha lipoic acid and associative conditioning[J]. Brain Behav Immun, 2008, 22(4):538-543
    34 Morini M. Alpha-lipoic acid is effective in prevention and treatment of experimental autoimmune encephalomyelitis[J]. J Neuroimmunol, 2004, 148(1-2):146-153
    35 Marracci GH, McKeon GP, Marquardt WE, et al. Alpha lipoic acid inhibits human T-cell migration:implication for multiple sclerosis[J]. J Neurosci Res, 2004, 78(3):362-370
    36 Hendriks JJ, Alblas J, Van Der Pol SM, et al. Flavonoids influence monocytic GTPase activity and are protectivein experimental allergic encephalitis[J]. EXP.Med, 2004, 200(12):1667-1672
    37 Chaudhary P. Lipoic acid inhibits expression of ICAM-1 and VCAM-1 by CNS endothelial cells and T cell migration into the spinal cord in experimental autoimmune encephalomyelitis[J]. J Neuroimmunol, 2006, 175 (1-2):87-96
    1 Gironi M, Bergami A, Brambilla E, et al. Immunological markers in multiple sclerosis[J]. Neurol Sci, 2000, 21(4 Suppl 2):S871-875
    2 Hemmer B, Cepok S, Nessler S, et al. Pathogenesis of multiple sclerosis: an update on immunology[J]. Curr Opin Neurol, 2002, 15:227-231
    3 Lassmann H. Mechanisms of demyelination and tissue destruction in multiple sclerosis[J]. Clin Neurol Neurosurg, 2002,104:168-171
    4 Irene A, Filippo C. Radial glia and neural stem cells[J]. Cell Tissue Res, 2008, 331(1):165-178
    5 Reynolds BA, Weiss S, Generation of neurons and astrocytes from isolated cells of adult mammalian central system[J]. Science, 1992, 255 (5025):1707-1710
    6 Johansson CB, Momma S. Identification of a neural stem cell in the adult mammalian central nervous system [J]. Cell, 1999, 96 (1): 25-34
    7 Weiss S, Dunne C, Hewson J, et al. Multipotent CNS stem cells are present in the adult mammalian spinal cord and ventricular neuroaxis [J]. J Neurosci, 1996, 16(23):7599-7609
    8 Bjorklund A, Lindvall O. Self-repair in the brain [J]. Nature, 2000, 405 (22):892-895
    9 Jin K, Minami M, Lan JQ, et al. Neurogenesis in dentate subgranular zone rostral subventricular zone after focal cerebral ischemia in the rat[J]. Proc Netl Acad Sci, USA, 2001, 98(8):4710-4715
    10 Li Y, Chen J, Chopp M. Cell proliferation and differentiation from epdendymal, subependymal and choroids plexus cells in response to stroke in rat [J]. J Nerrol Sci, 2002, 193(20):137-146
    11 Lendahl U, Zimmerman LB, McKay RD. CNS stem cells express a new class of intermediate filament protein[J]. Cell, 1990, 60(4):585-595
    12 Michalczyk K, Ziman M. Nestin structure and predicted function in cellular cytoskeletal organisation[J]. Histol Histopathol, 2005, 20 (2):665-671
    13 Cai J, Wu Y, Mirua T, et al. Properties of a fetal multipotent neural stem cell (NEP cell) [J]. Dev Biol. 2002,251(2):221-240
    14 Crowe DL, Parsa B, Sinha UK. Relationships between stem cells and cancer stem cells[J]. Histol Histopathol, 2004,19(2):505-509
    15 About I, Laurent-Maquin D, Lendahl U, et al. Nestin expression in embryonic and adult human teeth under normal and pathological conditions[J]. Am J Pathol, 2000, 157(1):287-295
    16 Zhang Q, Qin H, Lang B, et al. Different regions of the mouse Nestin enhancer may function differentially in Nestin expression in an NSC-like cell line and astrocytes[J]. Neurosci Lett, 2005, 379(2): 90-95
    17 Ernst C, Christie BR. Nestin-expressing cells and their relationship to mitotically active cells in the subventricular zones of the adult rat[J]. Eur J Neurosci, 2005, 22(12):3059-3066.
    18 Louis DN, Edgerton S, Thor AD, et al. Prolifereration cell nuclear antigen and kiimmunohistochemistry in brain tumors : a comparative study[J]. Acta Neuropathol, 1991, 81:675-679
    19 Galand P, Degref C. Cyclin/ PNCA immunostaining as an alternative to tritiated thymidine pulse labelling for marking S phase cells in paraffin sections from animal and human tissue [J]. Cell Tissue Kinet, 1989, 22:283-292
    20 Siddall NA, McLaughlin EA, Marriner NL, et al. The RNA-binding protein Musashi is required intrinsically to maintain stem cell identity[J]. Proc Natl Acad Sci USA, 2006, 103(22):8402-8407
    21 Okano H, Kawahara H, Toriya M, et al. Function of RNA-binding protein Musashi-1 in stem cells[J]. Exp Cell Res, 2005, 306(2):349-356
    22 Sugiyama-Nakagiri Y, Akiyama M, Shibata S, et al. Expression of RNA-binding protein Musashi in hair follicle development and hair cycle progression[J]. Am J Pathol, 2006, 168(1):80-92
    23 Pevny LH, Lovell-Badge R. Sox genes find their feet[J]. Curr Opin Genet Dev, 1997, 7(3):338-344
    24 Ngwenya LB, Rosene DL, Peters A. An ultrastructural characterization ofthe newly generated cells in the adult monkey dentate gyrus[J]. Hippocampus, 2008, 18(2):210-220
    25 Eisch AJ, Mandyam CD. Adult neurogenesis: can analysis of cell cycle proteins move us "Beyond BrdU"[J]? Curr Pharm Biotechnol, 2007,8(3):147-165
    26 Cooper-Kuhn CM, Kuhn HG. Is it all DNA repair? Methodological considerations for detecting neurogenesis in the adult brain[J]. Brain Res Dev Brain Res, 2002, 134(1-2):13-21
    27 Duan X, Kang E, Liu CY,et al. Development of neural stem cell in the adult brain[J]. Curr Opin Neurobiol, 2008, 18(1):108-115
    28 Kim SU. Genetically engineered human neural stem cells for brain repair in neurological diseases[J]. Brain Dev, 2007, 29(4):193-201
    29 Gianvito M, Stefano P. Neural stem cells: guardians of the brain[J]. Nat Cell Biol, 2007, 9(9):1031-1034
    30 Lubetzki C, Williams A, Stankoff B. Promoting repair in multiple sclerosis: problems and p rospects[J]. Curr Opin Neurol, 2005, 18(3): 237-244
    31 Trapp BD, Ransohoff R, Rudick R. Axonal pathology in multiple sclerosis: relationship to neurologic disability[J]. Curr Opin Neurol, 1999, 12 (3): 295-302
    32 Lovas G, Szilágyi N, Majtényi K, et al. Axonal changes in chronic demyelinated cervical spinal cord plaques [J]. Brain, 2000, 123(2):308-317
    33 Grigoriadis N, Ben-Hur T, Karussis D, et al. Axonal damage in multiple sclerosis: a complex issue in a complex disease [J]. Clin Neurol Neurosurg, 2004, 106 (3):211-217
    34 Pluchino S, Quattrini A, Brambilla E, et al. Injection of adult neurospheres induces recovery in a chronic model of multiple sclerosis [J]. Nature, 2003, 422 (6933):688-694
    35 Pluchino S, Zanotti L, Rossi B, et al. Neurosphere-derived multipotent precursors promote neuro protection by an immunomodulatory mechanism [J]. Nature, 2005, 436 (7048):266-271
    36 Wada K, Sugimori H, Bhide PG, et al. Effect of basic fibro-last growth factor treatment on brain progenitor cells after permanent focal ischemia in rats[J ]. Stroke, 2003, 34(11):2722-2728
    37 Teramoto T, Qiu J, Plumier JC, et al. EGF amplifies the replacement of parvalbumin-expressing striatal interneurons after ischemia [J]. J Clin Invest, 2003, 111(8):1125-1132
    38唐巍,王键,胡建鹏,等.脑络欣通药物血清与胎牛血清诱导大鼠胚胎神经干细胞分化的比较[J].安徽中医学院学报,2006,25(2):25-28

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700