甲基丙烯酸环氧丙酯致人支气管上皮细胞恶性转化表观遗传机制的探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甲基丙烯酸环氧丙酯(Glycidyl Methacrylate,简称GMA)作为一种聚合用单体,具有良好的防紫外、耐水和耐热等特性,在树脂、涂料、粘合剂、塑料工业中得到广泛应用。已有研究显示,GMA具有致突变性,并可诱导BALB/C 3T3细胞、金仓鼠细胞(SHE)、正常人胚肺成纤维(KMB-13)细胞等多种哺乳类细胞发生恶性转化,具有潜在致癌性。
     表观事件的发生与肿瘤的发生发展密切相关,对肿瘤的诊断和治疗具有重要意义。表观遗传学研究的是基因序列不发生改变的可遗传改变,主要通过DNA甲基化和组蛋白甲基化修饰控制细胞的增殖和分化、维持机体的稳定。其中,DNA甲基化作为肿瘤“二次打击”经典假说的重要补充,已经成为新的研究热点之一。大量实验表明,DNA甲基化水平和模式的紊乱在肿瘤发生发展的不同阶段广泛存在,故研究不同时期基因的表达改变及甲基化状态有着极其重要的意义。
     细胞体外转化试验是研究各种理化因素致癌机制的有效方法。16HBE(human bronchial epithelial cells)细胞是经SV40 Large T抗原永生化的人支气管上皮细胞系,具有正常人呼吸道上皮细胞的形态和功能,该细胞体外易于培养,且裸鼠体内无致瘤性,以其作为转化试验的靶细胞可克服种属和组织学差异,模拟体内细胞受致癌原作用后向肿瘤细胞演变的过程。
     本研究选用16HBE细胞作为靶细胞,在建立低浓度GMA多次染毒诱导16HBE细胞恶性转化模型的基础上,采用“人类全基因组表达谱芯片”分析恶性转化过程中甲基化相关基因的表达差异,并利用实时定量PCR对部分差异表达基因进行验证,同时采用甲基化特异性PCR(MSP)法检测转化不同阶段肿瘤相关基因的甲基化状态,探讨GMA诱导16HBE细胞发生恶性转化的表观遗传机制。
     1.GMA致16HBE细胞恶性转化过程中DNA甲基转移酶及甲基化CpG结合蛋白家族基因表达差异分析
     1.1基因芯片筛选DNA甲基转移酶及甲基化CpG结合蛋白家族表达差异基因
     利用“人类全基因组表达谱芯片”对转化前期(第10代)和转化后期(第30代)细胞的甲基转移酶及甲基化CpG结合域蛋白家族基因的差异表达进行分析,其中甲基转移酶基因包括DNMT1、DNMT3A及DNMT3B,甲基化CpG结合蛋白家族基因包括MBD1、MBD2、MBD3、MBD4、MECP2、Kaiso,结果显示在转化前期细胞中DNMT1、MBD1、MBD3基因与同代龄DMSO溶剂对照组细胞比较信号比值Ratio≥2,表达均上调,其余基因表达未见无明显差异;转化后期细胞中各基因表达与同代龄DMSO溶剂对照组细胞比较均未见明显差异。
     1.2 GMA致16HBE细胞恶性转化过程中DNMT1及MBD1基因表达改变
     对转化前期细胞中DNMT1、MBD1 mRNA表达情况进行进一步研究分析,结果显示:与同代龄DMSO溶剂对照组细胞比较,转化前期细胞中DNMT1及MBD1基因表达分别上调80.60%、79.10%,与芯片结果一致。提示DNA甲基化在细胞恶性转化过程中起着不容忽视的作用,推测DNMT1高表达是GMA致16HBE细胞恶性转化的早期分子事件,DNMT1及MBD1基因可能是多个甲基化相关基因转录表达下调的关键调控点。
     2.GMA致16HBE细胞恶性转化过程中肿瘤相关基因表达差异分析及DNA甲基化状态的研究
     2.1 GMA致16HBE细胞恶性转化过程中肿瘤相关基因表达差异分析
     采用“人类全基因组表达谱芯片”对转化前期、转化后期细胞中肿瘤相关基因表达进行动态分析,结果显示:与DMSO溶剂对照细胞比较,CACNA2D3.LRRC4基因在转化前期、转化后期细胞中表达均下调(0     2.2 GMA致16HBE细胞恶性转化过程中肿瘤相关基因甲基化状态分析
     在以往GMA潜在致癌性研究基础上,根据基因表达差异的程度以及相关文献提供的线索,我们挑选了8个基因(P16、APC、LRRC4、H19、hMSH2、MGMT、CTGF、THBS1),对转化早期(染毒结束)、转化前期、转化后期细胞中这8个基因的甲基化状态进行检测,结果显示P16基因在GMA致16HBE细胞恶性转化不同阶段均出现甲基化现象,可以考虑将其作为GMA致16HBE细胞恶性转化的一个早期敏感指标;hMSH2、CTGF、THBS1基因在转化不同阶段均未出现甲基化现象,提示其并非GMA致16HBE细胞恶性转化的敏感基因;APC、MGMT基因溶剂对照与GMA组均出现不同程度的甲基化,故推断其并非GMA致16HBE细胞恶性转化的特异性基因;LRRC4、H19基因正常对照、溶剂对照与GMA组均出现不同程度的甲基化,其原因尚需进一步研究分析。
     综上所述,本研究分析了GMA致16HBE细胞恶性转化过程甲基化相关基因的表达差异,并检测了恶性转化不同阶段部分肿瘤相关基因的甲基化状态。结果提示DNA甲基化可能是GMA致16HBE细胞发生恶性转化的一种重要机制;DNMTl及MBD1基因是多个甲基化相关基因转录表达下调的关键调控点,其表达改变可能与肿瘤相关基因的甲基化状态相关,而肿瘤相关基因在不同时期的甲基化状态可作为肿瘤发生发展的一个敏感指标,本研究工作为探讨GMA致癌机制及早期分子标志物的筛选提供了基础,同时也为GMA致癌危险度评定、开展分子流行病学监测、制定卫生标准以及职业肿瘤的防治等实际工作提供参考资料。
Glycidyl methacrylate (GMA), as a comonomer, has good characteristics of anti-UV, water resistance and heat resistance, it is widely used in resin, coating, adhesive and plastic industries. Many researches have been reported that GMA has mutagenicity, it could induce malignant transformation in several types of mammalian or human cells. All these results have demonstrated its potential carcinogenicity.
     In vitro cell transformation test is an effective way to study the carcinogenic mechanisms of various physical and chemical factors.16HBE, an SV40 large T antigen-immortalized human airway epithelial cell line, retains the phenotype of the differentiated lineage of the parent. This cell line has contact inhibition and rarely produce tumors when injected into nude mice, which provides us an ideal model for detecting potential carcinogenicity of chemicals and for studying on the mechanisms of malignant transformation.
     Epigenetic, which refers to heritable differences of genes without changing their DNA sequences, is critical in maintaining the stability and integrity of the expression profiles of different cell types by modifying DNA methylation and histone methylation. Epigenetic events have a close relationship with the development and progression of tumors. Many researches showed that the disorder of DNA methylation level and pattern exisited in tumor occurrence and development.
     In vitro malignant transformation model of 16HBE induced by GMA, treated three times at low concentration, had been established. The Agilent whole genome oligo microarray was used to detect the change of the expression of methylation-related genes during malignant transforming stages of 16HBE cells induced by GMA, RT-PCR was used to reexaminate the differentially expressed genes, then DNA methylation patterns of tumor-related genes promoter were determined by methylation-specific PCR (MSP) assay, in order to discuss the epigenetic mechanism of its potential carcinogenicity.
     1. The expressing alteration of DNA methyltransferase enzymes (DNMTs) and methyl-CpG binding proteins genes in malignant transformation of 16HBE cells induced by GMA.
     1.1 Screen the differentially expressed genes of DNMTs and methyl-CpG binding proteins by gene chip during malignant transforming stages of 16HBE cells induced by GMA.
     The result of gene chip showed that the expressions of DNMT1, MBD1 and MBD3 were up-regulated compared with control group in the transformed 10th-generation (protophase) cells (Ratio>2), no significant differences were observed in the transformed 30th-generation (anaphase) cells.
     1.2 The expressing alteration of DNMT1 and MBD1 during malignant transforming stages of 16HBE cells induced by GMA.
     The expressions of DNMT1 and MBD1 mRNA were detected with RT-PCR in the malignant transformation protophase cells. The result showed that the levels of DNMT1 and MBD1 mRNA were up-regulated by 80.60%,79.10%. Methylation may be play an important role during malignant transformation of 16HBE induced by GMA, DNMT1 and MBD1 play an important role in the inactivation-mechanism of methylation-related genes in malignant transformation of 16HBE induced by GMA.
     2. The expressing alteration and DNA methylation of Tumor-related genes during malignant transforming stages of 16HBE cells induced by GMA.
     2.1 Screen the differentially expression of Tumor-related genes during malignant transforming stages of 16HBE cells induced by GMA.
     The result of gene chip showed that the expressions of CACNA2D3, LRRC4 genes were down-regulated compared with control group in malignant transformation protophase and anaphase cells. The expression of CTGF gene was observed up-regulated expression in malignant transformation protophase cells while down-regulated expression in malignant transformation anaphase cells. The expressions of H19、THBS1 genes were down-regulated in malignant transformation anaphase cells.The mechanisms of expressing alteration of these genes need further study.
     2.2 Analysis DNA methylation of tumor-related genes during malignant transforming stages of 16HBE cells induced by GMA.
     According to the differentially expression of genes and literature, we selected eight genes (P16, APC, LRRC4, H19, hMSH2, MGMT, CTGF, THBS1), DNA methylation patterns of these genes were detected by MSP during malignant transforming stages of 16HBE cells induced by GMA (early stage, protophase, anaphase). The results showed that there was abnormally methylation in CpG island of P16 gene promoter during malignant transforming stages of 16HBE cells induced by GMA, P16 gene can be considered as an early sensitive index of malignant transformation of 16HBE cells induced by GMA. hMSH2, CTGF, THBS1 genes promoter had not occurred methylation, suggesting that they were not sensitive genes during malignant transformation of 16HBE cells. APC, MGMT genes were observed to occur methylaion in solvent control and GMA group, so they were not specific genes during malignant transformation of 16HBE cells. LRRC4, H19 genes need further study.
     In summary, the changes of the expression of methylation-related genes during malignant transforming stages of 16HBE cells induced by GMA were analyzed, and the differentially expressed genes were reexaminated, then DNA methylation patterns of tumor-related genes promoter were determined by MSP.All results showed that methylation may be play an important role during malignant transformation of 16HBE induced by GMA, DNMT1 and MBD1 play an important role in the inactivation-mechanism of methylation-related genes in malignant transformation of 16HBE induced by GMA, and DNA methylation of Tumor-related genes can be considered as an early sensitive index of malignant transformation of 16HBE cells induced by GMA. It provides new cues on carcinogenicity risk evaluation of GMA, epidemiologic monitoring and mechanism study on chemical carcinogenesis.
引文
[1]Jones PA,Laird PW.Cancer epigenetics comes of age.Nat Genet,1999,21(2):163-167.
    [2]Flores-Ramirez N.Characterization and degradation of functionalized chitosan with glycidyl methacrylate. J Biomater Sci Polym Ed,2005,16 (4):473-488.
    [3]高晓蕾,卫冬燕.甲基丙烯酸缩水甘油酯的合成研究.精细与专用化学品,2004,12(21):15-17.
    [4]Yin XJ,Fang FD,Xu JN.Genotoxic and nongenotoxic effects of glycidyl methacrylate on human lung fibroblast cells. Biomed Environ Sci.2003,16 (3):283-294.
    [5]EPA.Chemical Information Collection and Data Development (Testing),Federal Register Enforceable Consent Agreements.EPA,1995.
    [6]OECD.Environment,health and safety publications series on testing and assessment.(No.31)[R]. OECD,2000.
    [7]Flores-Ramirez N.Characterization and degradation of functionalized chitosan with glycidyl methacrylate.J Biomater Sci Polym Ed,2005,16 (4):473-488.
    [8]唐桂香,欧阳国顺,郝爱功等.甲基丙烯酸环氧丙酯最高容许浓度的制订.解放军医学情报.1994,8(5):274-275.
    [9]GBZ 2-2002.工作场所有害因素职业接触限值.
    [10]张淑琪,许建宁,徐凤丹,等.甲基丙烯酸环氧丙酯对BLAB/c3T3细胞恶性转化的实验研究.卫生研究.1996.25(3):129-133.
    [11]方福德.甲基丙烯酸环氧丙酯致癌性研究进展.国内外医学科学进展,1997,5:34-37.
    [12]许建宁,高惠兰,李忠生,等.甲基丙烯酸环氧丙酯致癌性的研究.中国肿瘤.1998,7(12):22.
    [13]杨俊保,李忠生,许建宁,等.甲基丙烯酸环氧丙酯对金仓鼠胚胎细胞的转化作用.卫生研究,1996,25(5):261-264.
    [14]谭明家,许建宁,李忠生,等.甲基丙烯酸环氧丙酯诱导哺乳类细胞转化的实验研究.卫生研究.1998,27(3):145-148.
    [15]Hunter KW.Host genetics and tumor metastasis.Br J Cancer,2004,90(4):752-755.
    [16]Robertson KD,Jones PA.DNA methylation:past,present and future directions.Carcinogenesis, 2000,21(3):461-467.
    [17]董晖,钟丽,孙兴旺.肿瘤DNA甲基化的临床应用进展.实用癌症杂志.2007,22(5):527-534.
    [18]Issa JP,Baylin SB,Herman JG.DNA methylation changes in hematologic malignancies:biologic and clinical implications.Leukemia,1997,11(S1):S7-11.
    [19]Esteller M. Epigenetics in cancer. N Engl J Med,2008,358 (11):1148-1159.
    [20]杨敏,许建宁,王全凯,等.甲基丙烯酸环氧丙酯致人支气管上皮细胞恶性转化研究[J].中华预防医学杂志,2009,43(3):187-192.
    [21]Lin RK, Hsu HS, Chang JW,et al. Alteration of DNA methyltransferases contributes to 5'CpG methylation and poor prognosis in lung cancer.Lung Cancer.2007,55(2):205-213.
    [22]余小平,张媛,凌文华.甲基化CpG结合蛋白家族(MeCPs)在表遗传中的作用[J].国际遗传学杂志.2006,29(3):196-200.
    [23]杨娜,李智.甲基化CpG结合蛋白家族研究进展[J].国际遗传学杂志.2007,30(6):439-443.
    [24]Belinsky SA,Nikula KJ,Beylin SB,et al.Increased cytosine DNA-methyltransferase actvity is target-cell-specific and an early event in lung cancer.Proc Natl Acad Sci USA,1996,93(9):4045-4050.
    [25]Shin-ichi M, Takahito C, Takashi 0, et al.Expression of DNA methyltransferases DNMT1,3A,and 3B in normal hematopoiesis and in acute and chronic myelogenous leukemia[J].Blood,2001,97(5):1172-1179.
    [26]Robert MF, Morin S, Beaulieu N, et al. DNMT1 is required to maintain CpG methylation and aberrant gene silencing in human cancer cells[J].Nat Genet,2003,33(1):61-65.
    [27]Yuning Xiong, Sean C. Dowdy, Ailing Xue, et al. Opposite alterations of DNA methyltransferase gene expression in endometrioid and serous endometrial cancers[J].Gynecologic oncology,2005,96(3):601-609.
    [28]Sun L, Hui AM, Kanai Y,et al. Increased DNA Methyltransferase Expression Is Associated with an Early Stage of Human Hepatocarcinogenesis[J]. Jpn J Cancer Res,1997, 88(12):1165-1670..
    [29]Ng HH,Jeppesen P,Bird A. Active repression of methylated Genes by the chromosomal protein MBD1[J]. Molecular and Cellular Bio,2000,20(4):1394-1406.
    [30]Raffaella Villa, Lluis Morey, Veronica A.Raker,et,al. The methyl-CpG binding protein MBD1 is required for PML-RARa function[J].PANS,2006,103(5)1400-1405.
    [31]傅德良,龙江,金忱,等.利用基因芯片和RT-PCR检测MBD1在胰腺癌中的表达[J].外科理论与实践,2005,10(3):241-244.
    [32]Furukawa Y,Sutheesophon K,Wada T,et,al.Methylation silencing of the Apaf-1 gene in acute leukemia[J]. Mol Cancer Res,2005,3(6):325-334.
    [33]Aira Wanajo,Akane Sasaki,Hiromi Nagasaki,et,al. Methylation of the Calcium Channel-Related Gene,CACNA2D3,Is Frequent and a Poor Prognostic Factor in Gastric Cancer[J].Gastroenterology,2008,135:580-590.
    [34]张祖萍,武明花,唐海林等.5-Aza-CdR对胶质瘤细胞生长及LRRC4基因异常甲基化的影响[J].生物化学与生物物理进展,2009,36(7):904-909.
    [35]Jones PA.Baylin SB.The fundamental role of epigenetic events in cancer.Nat Rev Genet,2002,3(6):415-428.
    [36]Herman JG,Baylin SB.Gene silencing in cancer in association with promoter Hypermethylation.N Engl J Med,2003,349(21):2042-2054.
    [37]Hsu HS,Wen CK,Tang YA,et,al.Promoter hypermethylation is the predominant mechanism in hMLHl and hMSH2 deregulation and is a poor prognostic factor in nonsmoking lung cancer.Clin Cancer Res,2005,11(15):5410-5416.
    [38]Schildhaus HU,Krockel I, Lippert H,et al.Promoter hypermethylation of pl6INK4a,E-cadherin,O6-MGMT,DAPK and FHIT in adenocarcinomas of the esophagus,esophagogastric junction and proximal stomach.Int J Oncol,2005,26(6):1493-1500.
    [39]姚群峰,周宜开.基因启动子异常甲基化及其作为肿瘤生物标志物的研究进展.国外医学分子生物学分册,2003,25(3):162-165.
    [40]Christoph F,Kempkensteffen C,Weikert S,et al.Frequent epigenetic inactivation of p53 target genes in seminomatous and nonseminomatous germ cell tumors.Cancer Lett,2007,247(1):137-142.
    [41]Christoph F,Hinz S,Kempkensteffen C,et al.A gene expression profile of tumor suppressor genes commonly methylated in bladder cancer.J Cancer Res Clin Oncol,2007,133(6):343-349.
    [42]赵丽珍,高君,王永福,等.DNA异常甲基化与胃癌.中国综合临床,2006,22(9):863-864.
    [43]张利平,姚群峰,宁勇.P16、MGMT甲基化在肺癌早期断诊中意义.中国公共卫生,2008,24(1):52-53.
    [44]张文,孙玉鹗,蔡庆等.支气管上皮细胞系BEP2D恶性转化过程中P16基因甲基化改变研究.中国肺癌杂志,2003,6(5):352-355.
    [45]周华蓉,沈建箴,付海英等.巢式MSP法检测恶性血液病细胞株P16基因启动子甲基化状态的研究.中国实验血液学杂志,2006,14(2):375-378.
    [46]邹晓妮,雷毅雄,魏莲.氯化镉诱发16HBE细胞恶性转化不同阶段P16基因甲基化研究.中国热带医学,2008,8(3):401-402.
    [47]潘世杨,张寄南,魏源华等.抑癌基因APC启动子甲基化检测及其在肺癌诊断中的应用.临床检验杂志,2004,22(6):415-418.
    [48]陈勇,陈双勋,张春莲等.宫颈癌APC基因启动子甲基化与其临床病理特征的关系.中国癌症杂志,2009,19(10):755-760.
    [49]Uehara E, Takeuchi S, Tasaka T,et,al. Aberrant methylation in promoter-associated CpG islands of multiple genes in therapy-related leukemia.Int J Oncol,2003,23(3):693-696.
    [50]张祖萍,武明花,唐海林等.5-Aza-CdR对胶质瘤细胞生长及LRRC4基因异常甲基化的影响.生物化学与生物物理进展,2009,36(7):904-909.
    [51]Zhang Q H, Wang L L, Cao L, et al. Study of a novel brain relatively specific gene LRRC4 involved in glioma tumorigenesis suppression using the Tet-on system. Acta Biochim Biophys Sin (Shanghai),2005,37(8):532-540.
    [52]王洁如,李小玲,范松清,等.LRRC4基因表达能降低胶质母细胞瘤细胞系U251生长和成瘤潜能.癌症,2003,22(9):897-902.
    [53]武明花,李小玲,黄琛,等.LRRC4基因在脑胶质瘤细胞系中表达缺失.中南大学学报(医学版),2007,32(2):231-234.
    [54]王洁如,钱骏,董利,等.富亮氨酸重复超家族新成员LRRC4的克隆与在脑瘤中的表达分析.生物化学与生物物理进展,2002,29(2):233-239.
    [55]Baylin SB.DNA methylation and gene silencing in cancer.Nat Clin Pract Oncol,2005,2(S1):4-11
    [56]Corn PG,Kuerbitz SJ,Van Noesel MM,et al.Transcriptional silencing of the p73 gene in acute lymphoblastic leukemia and Burkitt's lymphoma is associated with 5'CpG island methylation.Cancer Res,1999,59(14):3352-3356.
    [57]Leone M,Voso M T,Teofili L,et al.Inhibitors of DNA methylation in the treatment of hematological malignancies and MDS.Clin Immunol,2003,109(1):89-102.
    [58]李瑛,许建宁.DNA错配修复基因hMSH2与肿瘤关联的研究进展.国外医学卫生学分册,2008,35(1):1-5.
    [59]刘莉莉,陈家堃,安社娟,等.结晶型硫化镍及反式-BPDE恶性转化16HBE细胞hMSH2基因甲基化的研究.癌变·畸变·突变,2005,17(3):129-132.
    [60]张功员,刘秋亮,乐晓萍,等.食管癌组织hMSH2 mRNA的表达和启动子区甲基化.第四军医大学学报,2007,28(11):1027-1029.
    [61]Kato K, Hara A, Kuno T,et,al.Aberrant promoter hypermethylation of p16 and MGMT genes in oral squamous cell carcinomas and the surrounding normal mucosa. J Cancer Res Clin Oncol, 2006,132(11):735-743.
    [62]Furonaka 0, Takeshima Y, Awaya H,et,al.Aberrant methylation and loss of expression of O-methylguanine-DNA methyltransferase in pulmonary squamous cell carcinoma and adenocarcinoma.Pathol Int,2005,55(6):303-309.
    [63]Koga Y, Kitajima Y, Miyoshi A, et,al.Tumor progression through epigenetic gene silencing of O(6)-methylguanine-DNA methyltransferase in human biliary tract cancers.Ann Surg Oncol,2005,12(5):354-363.
    [64]Crean JK,Furlong F,Mitchell D,et al.Connective tissue growth factor/CCN2 stimulates actin disassembly through Akt/protein kinase B-mediated phosphorylation and cytoplasmic translocation of p27(Kip-1).FASEB J,2006,20(10):1712-1714.
    [65]Pan LH, Beppu T, Kurose A,et,al.Neoplastic cells and proliferating endothelial cells express connective tissue growth factor (CTGF) in glioblastoma. Neurol Res.2002,24(7):677-683.
    [66]Jiang WG, Watkins G, Fodstad O,et,al.Differential expression of the CCN family members Cyr61, CTGF and Nov in human breast cancer. Endocr Relat Cancer.2004,11(4):781-791.
    [67]Kikuchi R, Tsuda H, Kanai Y,et,al. Promoter hypermethylation contributes to frequent inactivation of a putative conditional tumor suppressor gene connective tissue growth factor in ovarian cancer. Cancer Res,2007,67(15):7095-7105.
    [68]Chiba T, Yokosuka O, Fukai K,et,al.Identification and investigation of methylated genes in hepatoma. Eur J Cancer,2005,41(8):1185-1194.
    [69]张友才,陈永平,李骥,等.凝血栓蛋白1基因异常甲基化与大肠腺癌关联.实用癌症杂志,2005,20(6):588-592.
    [70]朱介之,王波,洪凡真,等.子宫内膜癌组织中THBS1基因启动子区域CpG岛甲基化状况的研究.中华妇产科杂志,2006,41(10):719-720.
    [71]Kanai Y, Ushijima S, Kondo Y,et,al.DNA methyltransferase expression and DNA methylation of CpG islands and peri-centromeric satellite regions in human colorectal and stomach cancers. Int J Cancer.2001,91(2):205-212.
    [72]Kim JH, Jung EJ, Lee HS,et,al.Comparative analysis of DNA methylation between primary and metastatic gastric carcinoma. Oncol Rep,2009,21(5):1251-1259.
    [1]周宗灿.毒理学基础[M].2版.北京:北京医科大学出版社,2000:110.
    [2]ILLONA MARIA DE BRITO SA STOPPELLI, SILVIO CRESTANA. Pesticide Exposure and Cancer among Rural Workers from Bariri, Sao Paulo State, Brazil[J]. Environment International,2005,31:731-738.
    [3]Cancer Assessment Review Committee Health Effects Division Office of Pesticide Programs. Evaluation of the Carcinogenic Potential of Malathion. (Final Report)[R], Washington:Cancer Assessment Review Committee Health Effects Division Office of Pesticide Programs,2000.
    [4]Cancer Assessment Review Committee Health Effects Division Office of Pesticide Programs. Evaluation of the Carcinogenic Potential of Ziram. (Final Report)[R]. Washington:Cancer Assessment Review Committee Health Effects Division Office of Pesticide Programs,2000.
    [5]Cancer Assessment Review Committee Health Effects Division Office of Pesticide Programs. Third Evaluation of the Carcinogenic Potential of Permethrin. (Final Report)[R], Washington:Cancer Assessment Review Committee Health Effects Division Office of Pesticide Programs,2002.
    [6]Cancer Assessment Review Committee Health Effects Division Office of Pesticide Programs. Third Evaluation of the Carcinogenic Potential of Clodinafop-Propargyl. (Final Report)[R], Washington:Cancer Assessment Review Committee Health Effects Division Office of Pesticide Programs,1999.
    [7]Cancer Assessment Review Committee Health Effects Division Office of Pesticide Programs. Evaluation of the Mode of Action of Acetochlor for Nasal Olfactory Epithelium Tumors in Rats and its Relevance to Human Cancer Risk Assessment. (Final Report)[R]. Washington:Cancer Assessment Review Committee Health Effects Division Office of Pesticide Programs,2004.
    [8]ANDREOTTI G, FREEMAN LE, HOU L, et al. Agricultural Pesticide Use and Pancreatic Cancer Risk in the Agricultural Health Study Cohort[J]. Int J Cancer.2009,124(10):2495-2500.
    [9]DELANCEY JO, ALAVANJA MC, COBLE J, et al. Occupational Exposure to Metribuzin and the Incidence of Cancer in the Agricultural Health Study[J]. Ann Epidemiol.2009,19(6):388-395.
    [10]NDONG J R, BLANCHET P, MULTIGNER L. Pesticides and Prostate Cancer:Epidemiological Data[J]. Bull Cancer,2009,96(2):171-180.
    [11]MADHU ANAND, JYOTI SINGH, PRATEEK K, et al. Concentration of Organochlorine Pesticides in Blood, Tumor and Adipose Tissue and Breast Cancer Risk:An Indian study[J]. Toxicology Letters,2008,180(1): S164-S165.
    [12]MILLS P K, YANG R C. Agricultural Exposures and Gastric Cancer Risk in Hispanic Farm Workers in California[J]. Environ Res,2007,104(2):282-289.
    [13]MICHAEL NASTERLACK. Pesticides and Childhood Cancer:An Update[J]. Int J Hyg Environ Health,2007, 210:645-657.
    [14]CLARY T, RITZ B. Pancreatic Cancer Mortality and Organochlorine Pesticide Exposure in California, 1989-1996[J]. Am J Ind Med,2003,43(3):306-313.
    [15]ABDALLA M H, GUTIERREZ-MOHAMED M L, FARAH I O. Association of Pesticide Exposure and Risk of Breast Cancer Mortality in Mississippi[J]. Biomed Sci Instrum.2003,39:397-401.
    [16]王以燕,许建宁,胡洁.美国EPA对农药致癌可能性的评估[J].农药,2009,48(6):462-466.
    [17]ELLIOT GORDON. Captan:Transition from'B2'to'Not Likely'. How Pesticide Registrants Affected the EPA Cancer Classification Update[J]. J Appl Toxicol,2007,27:519-526.
    [1]董琳,李瑛,王全凯,等.甲基丙烯酸环氧丙酯致人支气管上皮恶性转化细胞DNA修复基因点突变的研究[J].癌变·畸变·突变,2009,21(1):1-5.
    [2]杨 敏,许建宁,王全凯,等.甲基丙烯酸环氧丙酯致人支气管上皮细胞恶性转化研究[J].中华预防医学杂志,2009,43(3):187-192.
    [3]Ozren Bogdanovic·Gert Jan C. Veenstra. DNA methylation and methyl-CpG binding proteins: developmental requirements and function[J]. Chromosoma,2009,118:549-565.
    [4]Shin-ichi M, Takahito C, Takashi 0, et al.Expression of DNA methyltransferases DNMT1,3A,and 3B in normal hematopoiesis and in acute and chronic myelogenous leukemia[J].Blood,2001,97(5):1172-1179.
    [5]Robert MF, Morin S, Beaulieu N, et al. DNMT1 is required to maintain CpG methylation and aberrant gene silencing in human cancer edls[J].Nat Genet,2003,33(1):61-65.
    [6]Yuning Xiong, Sean C. Dowdy, Ailing Xue, et al. Opposite alterations of DNA methyltransferase gene expression in endometrioid and serous endometrial cancers[J].Gynecologic oncology,2005,96(3):601-609.
    [7]Sun L, Hui AM, Kanai Y,et al. Increased DNA Methyltransferase Expression Is Associated with an Early Stage of Human Hepatocarcinogenesis[J].Jpn J Cancer Res,1997,88(12):1165-1670..
    [8]Ng HH, Jeppesen P, Bird A. Active repression of methylated Genes by the chromosomal protein MBD1[J]. Molecular and Cellular Bio,2000,20(4):1394-1406.
    [9]Raffaella Villa, Lluis Morey, Veronica A.Raker,et,al. The methyl-CpG binding protein MBD1 is required for PML-RARα function[J].PNAS.2006,103(5):1400-1405.
    [10]傅德良,龙江,金忱,等.利用基因芯片和RT-PCR检测MBD1在胰腺癌中的表达[J].外科理论与实践,2005,10(3):241-244.
    [11]Furukawa Y,Sutheesophon K,Wada T,et,al.Methylation silencing of the Apaf-1 gene in acute leukemia[J]. Mol Cancer Res,2005,3(6):325-334.
    [12]Aira Wanajo,Akane Sasaki.Hiromi Nagasaki,et,al. Methylation of the Calcium Channel-Related Gene,CACNA2D3,Is Frequent and a Poor Prognostic Factor in Gastric Cancer[J].Gastroenterology,2008,135:580-590.
    [13]张祖萍,武明花,唐海林等.5-Aza-CdR对胶质瘤细胞生长及LRRC4基因异常甲基化的影响[J].生物化学与生物物理进展,2009,36(7):904-909.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700