南方4种生物能源树种能源品质的种源差异研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为解决目前世界面临的能源危机,寻找可再生替代能源成为当前社会发展过程中急需解决的重大课题,近年来作为无污染的生物能源越来越受到重视。我国南方地区能源植物资源丰富,因此如何开发南方的生物能源树种资源显得十分迫切。虽然近年来国内学者对我国南方的一些生物能源树种资源的分布、含油量和能源品质进行了研究,初步筛选出了一些适合南方地区种植的生物能源树种。但目前的这些研究多是从同一来源的树种角度进行研究的,而这些生物能源树种由于分布区地形、气候、土壤等条件的不同,这些树种的含油量和能源品质存在较大的地理种源差异,目前的研究忽略了地域不同可能导致能源树种含油量和能源品质的差异,引起能源树种开发利用中存在极大的盲目性,因此如何筛选出含油量高和能源品质好的能源树种种源成为当前能源树种开发利用中急需解决的重大课题。
     有鉴于此,本文在导师课题组对我国南方地区分布的能源植物资源进行调查和筛选基础上,选择南方地区含油量较高的4种生物能源树种乌桕(Sapium sebiferum)、三年桐(Vernicia fordii)、麻疯树(Jatropha curcas)和无患子(Sapindus mukorossi)为研究对象,收集这4个生物能源树种的不同地理种源种子,通过测定4个树种不同地理种源种子形态、苗期形态特征、发芽率、种子含水率、百粒重、含油率、密度、灰分、硫质量分数、水分、酸值、运动黏度等油脂生物柴油理化特性指标,比较生物能源树种不同地理种源之间的差异,筛选含油量高和能源品质好的能源树种种源,为筛选可供生产上应用的生物能源树种和种源提供科学依据。主要研究结果如下:
     1.南方4个生物能源树种不同种源的种子形态存在明显差异。从种子形态上看,三年桐种子最大,乌桕最小。4种不同种源能源树种长、宽、厚种源差异除南平三年桐种子厚与尤溪、河南之间外均达极显著水平。尤溪与河南三年桐种子厚存在显著性差异,河南与南平乌桕种子长之间不存在显著差异,江西与清流乌桕种子长不存在显著差异,江西与南平乌桕种子宽不存在显著差异,南平与清流乌桕种子宽存在显著差异。
     2.南方4个种源生物能源树种不同种源的苗期形态特征存在明显差异。无患子各种源平均苗高、地径、单株叶片数差异不显著,但平均叶长、叶宽以及叶面积差异达极显著水平。三年桐种源平均苗高、地径、单株叶片数、叶长和叶宽差异达极显著水平,平均叶面积差异显著。云南麻疯树种苗平均叶长与广西麻疯树种苗差异显著。乌桕各种源乌桕平均苗高、地径、单株叶片数、叶长、叶宽、叶面积差异均达极显著水平。
     3.南方4个生物能源树种不同种源种子发芽率存在明显差异。尤溪三年桐清水浸种处理的种子发芽率与河南、江西差异均不显著,河南三年桐与永春差异不显著,其他两两比较差异均达到显著水平;尤溪无患子发芽率跟清流差异显著,其他两两对比差异均不显著;江西乌桕与南平、尤溪差异两两显著。江西三年桐高锰酸钾溶液浸种处理种子发芽率与南平、永春差异显著;无患子4个种源种子平均发芽率两两差异均极显著水平;麻疯树种子发芽率种源差异不显著;江西乌桕发芽率与南平差异达极显著水平,河南乌桕发芽率与建瓯、安徽、尤溪两两差异均不显著,南平发芽率与尤溪差异不显著,其他种源种子发芽率两两比较差异均显著。经高锰酸钾溶液浸种方式处理的种子发芽率明显大于用清水处理的种子。
     4.南方4个生物能源树种不同种源种子含油品质存在明显差异。南平无患子含水率与清流、两地麻疯树含水率、尤溪乌桕含水率与河南、江西以及安徽乌桕含水率与南平差异显著,尤溪乌桕与南平、建瓯差异极显著,安徽乌桕与建瓯差异极显著。河南乌桕与尤溪、江西乌桕与南平、两地麻疯树及江西与南平无患子百粒重差异不显著,尤溪与南平三年桐百粒重差异显著,其他各种源树种两两比较差异均极显著。石油醚对乌桕种子油脂提取效果最高;对麻疯树的提取,石油醚与无水乙醇作为提取剂皆适合;石油醚与无水乙醇无疑是三年桐种子油脂提取的最佳选择;对无患子种子油脂提取,无水乙醇是最适合的提取剂,石油醚次之。在种仁含油率上,南平与江西无患子、尤溪与江西无患子、江西无患子与清流、江西三年桐与河南、江西与南平三年桐及尤溪三年桐与河南的含油率存在显著差异。在种壳含油率上,尤溪与清流无患子、广西与云南麻疯树以及尤溪与永春三年桐之间存在显著差异。
     5.南方4个生物能源树种不同种源种子油脂生物柴油理化特性存在明显差异。不同种源乌桕、无患子、三年桐和麻疯树密度都能达到各国生物柴油标准。4个树种不同种源灰分均符合生物柴油标准。乌桕不同种源硫质量分数均达到国家一级柴油标准,未达到其它国家的生物柴油标准;麻疯树不同种源硫质量分数达到了国家优质柴油硫质量分数标准;三年桐不同种源硫质量分数达到国家一级柴油标准,不符合其它国家硫质量分数标准;无患子各种源硫质量分数达到国家优质柴油标准,符合澳大利亚和捷克两国柴油标准。乌桕不同种源水分达到中国、捷克、意大利、欧洲等国柴油标准,与其他国家柴油标准还有差距;麻疯树不同种源水分符合中国、捷克、意大利、欧洲的国柴油标准;三年桐不同种源水分达到国家柴油标准,离法国、德国两国柴油标准差距较大。无患子各种源水分仅达到中国、捷克、意大利、欧洲等国家柴油标准。乌桕各种源酸值只达到中国、美国国家柴油标准;麻疯树、三年桐和无患子各种源酸值达到其它国家的柴油标准。乌桕、麻疯树、三年桐和无患子运动黏度均不符合世界各国的国家柴油标准。
Finding renewable alternative sources of energy becomes a major issues need to be resolved in the process of social development for solving present energy crisis of all the world, and people pay more and more attention to biological energy which has no pollution. The energy plants resource is rich in the south of China ,so that how to develop biological energy plants resource in the south becomes a exigent problem. Although,some scholars in our country have studied the distribution, oil content and energy quality of southern energy plants, and have preliminary screened some biological energy plants which are suitable for planting in the south. However, these studies are all from the same source plants, and there are many geographical and source differences of these plants’oil content and energy quality for the differences of terrain, climate and soil conditions. The present research has ignored the differences caused by regional disparity and led to a great blindness in the development and utilization of energy plants. Therefore ,how to screen biological energy plants resource which are high oil content and good energy quality becomes a great subject in the development and utilization of energy plants.
     In view of this, this paper takes four different provenances of bio-energy species which have high oil content in the southern regions basis on the comprehensive investigations and screening of energy plants resources in the south of China by our tutor’s project team, and these four plants are Sapium sebiferum ,Vernicia fordii, Jatropha curcas and Sapindus mukorossi, then collect the seeds of different geographical provenances of these four biological energy plants. Compare the geographical provenance differences of different biological energy plants and screen the plants which have high oil content and good energy quality through determining the indexes such as seed morphology, seedling morphology, germination rate, seed moisture content, hundred-grain weight, oil content and physicochemical properties of bio-diesel oil such asdensity, ash content, sulfur content, moisture content, acid value, kinematic viscosity and so on.It will provide the basis for selecting biological energy species and provenances which can be used in production.The main results are as follows:
     1. The seed morphology of the four southern bio-energy species have great differences. Vernicia fordii seed is the largest, Sapium sebiferum is the least in the seed morphology . The length, width, thickness of different provenance of different kinds of energy trees are very significant except the seed thickness of Vernicia fordii between Nanping and Youxi , Henan, when the significant difference of the thickness between Youxi and Henan is found. The seed length of Sapium sebiferum between Henan and Nanping present no significance of difference, when the length between Jiangxi and Qongliu present no significance of difference,too. The seed width of Sapium sebiferum between Jiangxi and Nanping present no significance of difference, when the significant difference of the width between Nanping and Qingliu is found.
     2. Seedling morphology of the four southern bio-energy species vary significantly in seedling stage. The average seedling height, basal stem and individual leaf number of different Sapindus mukorossi species have no significant difference. But average leaf length, leaf width and leaf area have great significant difference. The average seedling height, basal stem, individual leaf number, leaf length and leaf width of Vernicia fordii species have much significant difference when the average leaf area has significant difference. The average leaf length of Jatropha curcas from Yunnan and Guangxi has significant difference. The average seedling height, basal stem, individual leaf number, leaf length, leaf width and leaf area of Sapium sebiferum species have much significant difference.
     3. The seed germination rate of the four southern bio-energy species vary significantly. The Vernicia fordii’s seed germination rate by water soaking between Youxi and Henan, Jiangxi has no significant difference, Youxi and Yongchun has no significant difference, too. Multiple comparison among other cities have significant difference. The Sapindus mukorossi’s seed germination rate of Youxi and Qingliu has significant difference, multiple comparison among other cities have no significant difference. There are significant correlation between any two among Jiangxi Sapium sebiferum and Nanping,Youxi. The Vernicia fordii’s seed germination rate by potassium permanganate solution soaking between Jiangxi and Nanping, Yongchun has significant difference. Multiple comparison of the average germination rate among four kinds of Sapindus mukorossi has much significant difference and there is no significant difference of provenance difference between two cities’germination rate of Jatropha curcas. Jiangxi Sapium sebiferum and Nanping has much significant difference. Multiple comparison of the germination rate between Henan and Jianou, Anhui,Youxi has no significant difference. Nanping and Youxi has no significant difference, and multiple comparison of other cities has significant difference. We can find that the seeds germination rate by potassium permanganate solution soaking is higher than the seeds treated only water soaking.
     4. The seed oil content of the four southern bio-energy species vary significantly. There is much significant difference of the seed moisture content of Sapindus mukorosi and Jatropha curcas between Nanping and Qingliu, Sapium sebiferum between Youxi and Henan, Jiangxi,Anhui and Nanping .Youxi Sapium sebiferum and Nanping , Jianou has much significant difference. Anhui Sapium sebiferum and Jianou has much significant difference. There is no significant difference of seed hundred-grain weight of Sapium sebiferum between Henan and Youxi,Jiangxi Jatropha curcas between Henan and Nanping, Sapindus mukorossi between Jiangxi and Nanping . Youxi and Nanping Vernicia fordii has significant difference, multiple comparison of other species has much significant difference. The Sapium sebiferum seed oil extraction effect by petroleum ether is the highest. The Jatropha curcas seed oil extraction effect by petroleum ether and pure ethanol is also suitable. The petroleum ether and pure ethanol should be the best selections of Vernicia fordii seed oil extraction. Pure ethanol is the most suitable extraction agent for Sapindus mukorossi seed oil extraction and petroleum ether takes the second place. For the oil content of seed kernel: Nanping and Jiangxi Sapindus mukorossi; Youxi and Jiangxi Sapindus mukorossi; Jiangxi Sapindus mukorossi and Qingliu; Jiangxi Vernicia fordii and Henan; Jiangxi and Nanping Vernicia fordii; Youxi Vernicia fordii and Henan seed kernel oil content has significant difference. For the oil content of seed shell: Youxi and Qingliu Sapindus mukorossi; Guangxi and Yunnan Jatropha curcas; Youxi and Yongchun Vernicia fordii seed shell oil content has significant difference.
     5. The seed physicochemical properties of bio-diesel oil of the four southern bio-energy species vary significantly. Different kinds of Sapium sebiferum, Sapindus mukorossi, Vernicia fordii and Jatropha curcas can achieve national standards for bio-diesel. The ash content from four kinds of different species also meet the bio-diesel standard. The sulfur content of different Sapium sebiferum meet the national diesel fuel standard, but doesn’t meet other countries’standards for bio-diesel. The sulfur content of different Jatropha curcas meet the national quality standards for sulfur content of diesel. The sulfur content of Vernicia fordii meet the national diesel fuel standards, and doesn’t meet other countries’standards for sulfur content. The sulfur content of Sapindus mukorossi meet national quality standards for diesel in line with Australia and the Czech Republic diesel standards. The moisture content of Sapium sebiferum achieves the China, Czech Republic, Italy, Europe's national diesel standard, but is still lagging behind other countries in diesel standards. The moisture content of Jatropha curcas meet the China, Czech Republic, Italy, Europe's national diesel standard. The moisture content of Vernicia fordii achieves the diesel standards of China, and is still far from France and Germany’s diesel standards. The moisture content of Sapindus mukorossi only achieves the diesel standards of China, Czech Republic, Italy and European. The acid value of Sapium sebiferum only achieves the China and United States National diesel standards. The acid value of Jatropha curcas, Vernicia fordii and Sapindus mukorossi achieve every country's diesel fuel standards. The kinematic viscosity of Sapium sebiferum, Jatropha curcas, Vernicia fordii and Sapindus mukorossi does not meet the national diesel standard around the world.
引文
[1]沈珺珺,迟晓元,杨庆利,等.生物柴油的研究进展[J].中国生物工程杂志, 2006, 26(11): 87-90.
    [2]吴鹏飞,马祥庆,王平.我国发展生物能源树种原料林的潜力和对策[J].亚热带农业研究, 2007, 3(2): 125-128.
    [3]梁磊.能源植物的开发和利用[J].宁夏农林科技, 2006, (5): 75-76.
    [4]蒋剑春.生物质能源应用研究现状与发展前景[J].林产化学与工业, 2002, 22(2): 76-80.
    [5]李俊,许兴.桉树生物质能源的价值研究[J].企业技术开发,2008,27(9):98.
    [6]刘荣章,曾玉荣,翁志辉,等.我国生物质能源开发技术与策略[J].中国农业科技导报,2006,(4).
    [7]蒋剑春,应洁.中国林业生物质能源转化技术产业化趋势[J].林产化学与工业,2005,(21).
    [8]费世民.发展林业生物质能源的战略思考[J].四川林业科技,2008,29(4):29-30.
    [9]匡廷云等.生物质能源技术前瞻[J].太阳能,2004,(4):7-9.
    [10]匡廷云,马克平,白克智.生物质能研发展望[J].中国科学基金,2005,(6):326-330.
    [11]方升左.关于加速发展我国生物质能源的思考[J].北京林业管理干部学院学报,2005,(2):30-34.
    [12]吕文,王春峰,王国胜,等.中国林木生物质能源发展潜力研究(1)[J].中国能源,2005,27(1):21-26.
    [13]张利华,杨颖,高思扬.促进生物质能源发展的政策探讨[J].科学对社会的影响,2007,(4):14-18.
    [14]M. F. Demirbas and Mustafa Balat.Recent advances on the production and utilization trends of biofuels: A global perspective. http://www.sciencedirect.corn.
    [15]R. J. Crookes. Comparative bio-fuel performance in intemal combustion engines. http: //www. elsevier. com/ locate-biombioe.
    [16]管伟萍,肖弥彰,王国槐.油菜作为生物柴油原料的研究进展[J].作物研究,2006,20(5):453-455.
    [17]阮文权,邹华,赵明星等.生物能源开启新能源时代之门[J].生物技术世界,2006,4:86-88.
    [18]谭天伟,王芳,邓立等.生物柴油的生产和应用[J].现代化工,2002,22(2):4-6.
    [19]Dalia Streimikiene.et al.Review of renewable energy use in Lithuania [J]. Renewalble and Sustainable Energy Reviews, 2005,9(1):29-49.
    [20]邓伯龙,石扬文.贵州生物质能源树种资源的开发利用[J].资源开发与市场.2006,22(3):265-266.
    [21]曾淑珍,吴延旭,谢晓敏,张党权,陈鸿鹏.生物质能源树种的研究进展[J].经济林研究,2008,26(4):109-111.
    [22]陶丹,罗嗣件,张露.江西省生物质能源树种的开发利用[J].江西林业科技,2007,(2):54-56.
    [23]蒋剑春.生物质能应用研究现状和发展前景[J].林产化学与工业,2002,22(1):25-29.
    [24]蒋建新,陈晓阳.能源林与林木生物转化能源化研究进展[J].世界林业研究,2005,18(6):40-44.
    [25]龙应忠,吴际友,童方平,等.高热值速生能源树种选育及应用研究进展[J].林业科技开发,2007,21(2):1-4.
    [26]Armstrong, Jones A T, Tubby I. Effects of spacing and cutting cycle on the yield of poplar grown as an energy crop [J]. Biomass and Bioenergy, 1999(17):305-314.
    [27]Kopp R F, White E H, Abrahamson L P, et a1. Willow biomass trials in central New York State [J]. Biomass and Bioenergy, 1993, 5(2): 179-187.
    [28]Christersson L, Sennerhy-Forsse L. Willow and poplar research and plantations in Swedn today[J]. Swedish Unversity of Agricultural Sciences, 1995, 28(2):62-67.
    [29]Granhall U. Biological fertilization [J]. Biomass and Bioenergy, 1994, 6(12):81-91.
    [30]郑传贵.世界石油地缘政治格局新态势与中国石油进口安全[J].北京石油管理干部学院学报,2007,(6): 11-17.
    [31]董继斌.能源社会学[M].山西:书海出版社, 2005,9.
    [32]顾钢,毛宗强,张晶,等.2004年世界能源发展总体态势[J].高科技与产业化,2005, (4): 9-11.
    [33]陈惠.经济全球化背景下中国的国际能源战略和石油外交[J].中国报道, 2006, (5): 28-30.
    [34]皮庆.中石油安全呼唤石油外交[J].中国高科技与产业化, 2005, (3): 58-60.
    [35]郑勇奇.木质生物质能源的开发利用现状与展望[J].林业调查规划, 2007, 32 ( 1): 90-94.
    [36]Graham R L, Downing M, Walsh M E. A framework to assess regional environmental impacts of dedicated energy crop production [J]. Environmental Management, 1996, 20 (4): 475- 485.
    [37]张金源,徐锭明.奥巴马:新的生物能源战略给我们带来什么?[J].中国科技投资,2009,(7):74.
    [38]Cheng ZW. Status quo of production and trade of soybean in America. World Agriculture, 2005,308 (1) ,15- 17.
    [39]贾虎森,许亦农.生物柴油利用概况及其在中国的发展思路[J].植物生态学报, 2006, 30(2): 221-230.
    [40]卢凌霄,周应恒.借鉴国外经验,发展生物质能[J].生态经济,2007(2).
    [41]官巧燕,廖福森,罗栋.国内外生物质能发展综述[J].农机化研究,2007(11).
    [42]Helby P, Rosenqvist H, Roos A. Retreat from Salix2Swedishexperience with energy crop s in the 1990s[J]. Biomass and bioenergy, 2006, 30 (5) : 422 - 427.
    [43]辛欣.未来生物能源的新亮点—生物质能[J].国际资料信息,2005(12).
    [44]陈苏根.树木石油异军突起[J].发明与创新, 2004, (4): 24.
    [45]Dong W. Biodiesel can be obtained from Jatropha curcas L. Energy Research and Information, 2004,20 (2) ,92.
    [46]谷战英,谢碧霞.木质生物能源发展现状与前景的研究[J].经济林研究, 2007, 25(2): 88-91.
    [47]王涛.中国主要生物质燃料油木本能源植物资源概况与展望[J].科技导报, 2005, 23(5): 12-14.
    [48]王欧.中国生物质能源开发利用现状及发展政策与未来趋势[J].中国农村经济,2007(7).
    [49]梁红.我国生物能源产业的发展前景与对策[J].产业观察,2007(5).
    [50]徐忠东.关于开发生物能源的研究[J].安徽农业科学,2005(12).
    [51]陈锦清,黄锐之.油料作物基因工程育种[J].中国生物工程杂志,2004,24(5):24.
    [52]Gucci G, Vendramin G G. Delineation of genetic zones in the European Norway spruce natural range: preliminary evidence. Mol. Ecol., 2000, 9(7):923-934.
    [53]Hamrick J K. Isozymes, analysis of genetic structure of plant populations. In Soltis D, Soltis P. Isozymes in Plant Biology. Washington: Dioscorides Press. 1989.
    [54]Grant V. The Evolutionary Press: A Critical Study of Evolutionary Theory. New York: Columbia University Press. 1991.
    [55]杨敏生.欧洲刺槐种源群体遗传结构和多样性[J].生态学报, 2004,24(12):2700-2706.
    [56]Bobala M S. Restriction fragment variation in the nuclear ribosomal DNA repeat unit within and between Picea rubens and Picea matiana.Can.J.For.Res. 1992,22: 255-263.
    [57]Beech RN, Strobeck C. Structure of the intergenic spacer region from the ribosomal RNA gene family of white spruce (Picea glauca).Plant Mol.Biol., 1993,22(5):887-892.
    [58]Bucci G, Vendramin G G. Assessing the genetic divergence of Pinus leucodermis Ant. Endangered populations: Use of molecular markers for conservation purposes. Theor Appl Genet., 1997, 95:1138-1146.
    [59]Bergman F, Mejnartowicz L. A reciprocal relationship between the genetic diversity at two metabolically-linked is ozyme loci in several conifer species. Genetica, 2000, 110(1):63-73.
    [60]楚秀丽.不同种源青钱柳苗年生长及叶内含物含量研究[J].南京林业大学,2010, 2:1.
    [61]梁有旺.不同种源香椿种子及苗木差异性分析[J].南京林业大学,2007,4:1.
    [62]廖锦峰.浅谈桐棉松优质种源的保护和利用[J].广西林业,2008,5:1-3.
    [63]刘利玲.木麻黄不同种源抗旱性遗传变异的研究[J].防护林科技,2007,1:2.
    [64]何小勇,柳新红,袁德义,等.不同种源翅荚木的抗寒性[J].林业科学,2007,4:3.
    [65]范丽颖,任军,林玉梅,等.花楸种子发芽特性的种源变异[J].东北林业大学学报,2007,9:5.
    [66]吴丽华.福建省南平市室内观叶植物调查研究[J],林业勘察设计(福建),2003,(2):74-78.
    [67]Alina Dawidowicz-Grzegorzewska, Ultrastructure of carrot seeds during matriconditioning with micro-eel E, Annals of Botany.1997, 79:535-545.
    [68]Spitzer E, Lott NA.Protein bodies in umbelliferous seeds I structure. Canadian Journal of Botany.1982, 60: 1381-1391.
    [69]高修吾,杨浩然,吴艳霞.植物油脂检验折光指数测定法[J].国家标注局,1985,(1):103.
    [70]彭丽彬,张家鸿,米方田.红凉伞的形态特征、物候节律及生长发育特性[J].西部林业科学,2008,37(1):78.
    [71]汪敏华,周静,崔键.红壤水分条件对春季柑橘叶片生长形态及营养元素累积的影响[J].浙江林学院学报2009,26(1):18.
    [72]彭丽彬.红凉伞种子质量及萌发实验研究[J].西部林业科学,2006,35(2):71-73.
    [73]郑科,郎南军,张荣贵,等.云南红河州膏桐的资源分布及生长结实状况调查[J].西部林业科学,2007,36(2):101-104.
    [74]单长卷,刘遵春.土壤水分对嘎拉苹果幼苗水分生理特性和生长特征的影[J].西北林学院学报,2006,21(2):42-44.
    [75]李文华,吴万兴,张忠良,等.土壤水分对仁用杏水分和生长特征的影响[J].西北农林科技大学学报:自然科学版,2003,31(4):139-144.
    [76]王彦荣.GB-T 2930.8-2001牧草种子检验规程水分测定[S].北京:中国标准出版社,2001-3-14.
    [77]郭艳娇,项有志.油脂水分两种测试方法的对比[J].明胶科学与技术,2004,24(4):182-183.
    [78]李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,1999,(1):66-68.
    [79]景芸.三种青冈属苗木的生理特性研究[J] .江西农业大学学报(自然科学版),2004,11(2):188-190.
    [80]沈国舫.森林培育学[M].中国林业出版社,2005,(5):133.
    [81]宗文杰,刘坤,卜海燕,等.高寒草甸51种菊科植物种子大小及其对种子萌发的影响研究[J].兰州大学学报(自然科学版),2006,42(5):1.
    [82]赵月林.石油醚测定脱脂棉及纱布油脂含量[J],苏盐科技,2005,(3):5-36.
    [83]贾良智,周俊.中国油脂植物[M],科学出版社,1987,(1):567.
    [84]Knowles P F. Safqflower [A]. In: Bbeleu GB, Ashri A, Downney RK. Oil Crops of the World [M]. McCraw-Hill, 1989.363-374.
    [85]李桂华主编.油料油脂检验与分析[M].北京:化学工业出版社,2006.
    [86]李昌珠,蒋丽娟,程树棋.生物柴油—绿色能源[M].北京:化学工业出版社,2006.
    [87]姚向君,田宜木.生物质能源资源清洁转化利用技术[M].北京:化学工业出版社,2005.
    [88]林铎清,邢福武.中国非粮生物柴油能源植物资源的初步评价[J].中国油脂,2009,34(11):1-6.
    [89]吕鹏梅,袁振宏,廖翠萍,等.生物柴油标准分析与制定研究[J].现代化工,2006,26(12):8-12.
    [90]Biofuel Systems Group Ltd. Biodiesel standards [ S/ OL ]. [ 2006 - 08 -01 ]. http :/ / www. biofuelsystems. com/ specification. htm.
    [91]豪彦. GB/ T 19147—2003《车用柴油》和EN 590《车用柴油》标准的比较[J ].汽车与配件,2003 ,30: 35 - 36.
    [92]Gryglewicz S. Rapeseed oil methyl esters preparation using heterogeneous catalysts [J]. Bioresource Technology, 1999, 70: 249-253.
    [93]Cao B, Gao H D.The study of biological characters of Simmondisa chinensis seeds[J].Seed,2002,5:41-42.
    [94]栗宏林,张志翔,张鑫.小桐子不同产地种子性状及苗期生长差异研究[J].干旱区资源与环境,2010,2(24):204.
    [95]王仕玉,萧凤回.滇产17种石斛的种子形态[J].中国中药杂志,2010,4(35):423-425.
    [96]于世河,崔建国,王行轩,等.不同产地红松种子形态特征的差异[J].辽宁林业科技,2006.5:12-14.
    [97]Raquel GR, Keith RP, MalcolmER et al. Effect of seed size and testa colour on saponin content of Spanish lentil seed[J].Food Chem,1997,58(3):223-226.
    [98]魏胜利,王文全,秦淑英,等.甘草种源种子形态与萌发特性的地理变异研究[J].中国中药杂志,2008,8(3):869-872.
    [99]张静,杨文钰,陈兴福.川泽泻种子形态和发芽特性研究[J].中国中药杂志,2009,1(34):26-29.
    [100]刘大学,夏良耀,陈文华;等.生物柴油与石化柴油的理化特性及质量标准比较[J].内燃机,2009(5).
    [101]耿莉敏.生物柴油/柴油混合燃料的理化性能分析与喷雾特性改善[D].长安大学,2009.
    [102]亢淑娟.地沟油生物柴油和酸化油生物柴油降黏及发动机台架实验研究[D].山东农业大学,2010.
    [103]董胜武.芸芥生物柴油及其车用特性研究[D].吉林大学,2007.
    [104]孙智谋,周旭,刘丽萍.生物质能源的研究与发展[J].粮食与饲料工业,2009,(2).
    [105]王俊志.生物质油料能源树种浅述[J].国土绿化,2008,(8).
    [106]马开.甘肃林木资源开发潜力评价[D].甘肃农业大学,2009.
    [107]王平.福建生物能源树种的调查和筛选研究[D].福建农林大学,2008.
    [108]万劲.杨树无性系及重阳木木质能源性状的研究[D].南京林业大学,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700