落叶松幼苗对不同形态氮的营养响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
落叶松(Larix gmelinii)是中国东北林区最重要的工业用材树种,而且在北温带森林中具有重要的生态学意义。落叶松的种植区域内气温低、冬季长,氮素矿化速度低,供氮不足常常成为落叶松生长的限制因素。
     本研究采用水培试验培养方法,设置有机态氮(甘氨酸、谷氨酸、赖氨酸)以及NH4+-N、NO3--N不同配比的氮素营养供给,对不同处理能够为落叶松幼苗提供的有机、矿质氮营养,落叶松幼苗的生长对氮素吸收、利用以及对落叶松幼苗根系和叶片中NR和GS氮同化酶活性等方面讲行了研究,结果表明:
     (1)生物量方面无机态氮不同配比处理,以NH4+/NO3-比值为4:0,3:1和1:1时落叶松幼苗总生物量较高;氨基酸态氮处理落叶松幼苗总生物量高于NH4+-N、缺氮处理;落叶松幼苗体内全氮含量大小顺序为:甘氨酸>谷氨酸>硫酸铵>赖氨酸>硝酸钙>缺氮处理;加入生物抑制剂氨基酸处理总生物量、全氮量与未加入生物抑制剂氨基酸处理之间不显著。
     (2)在植株生长方面氨基酸态氮对落叶松幼苗株高和根长的影响都显著高于硫酸铵、硝酸钙处理;加入生物抑制剂氨基酸处理的根长和植株总长度与未加入生物抑制剂的氨基酸处理之间差异不显著。
     (3)对N、P、K养分吸收方面无机态氮不同配比,在完全供应N03--N时,植株体内N浓度最低,其它四个处理植株体内N浓度均较高,随着NH4+-N比例的增加落叶松幼苗体内P的浓度增高,K的浓度下降;甘氨酸、谷氨酸能够显著促进植株吸收N、P、K养分,赖氨酸对促进植株吸收NP的影响与硫酸铵等效,对促进植株吸收K的影响与硝酸钙等效,均高于硫酸铵处理;无论是否加入生物抑制剂的氨基酸态氮处理落叶松幼苗体内的N、P、K浓度大小均为:甘氨酸>谷氨酸>赖氨酸,且加入生物抑制剂的氨基酸处理落叶松幼苗体内N、P、K浓度与未加入生物抑制剂的氨基酸处理之间不显著。
     (4)对矿质氮吸收浓度方面无机态氮不同配比,幼苗吸收NH4+-N的强度以NH4+/NO3-为4:0,3:1时较高,吸收N03--N的强度以NH4+/NO3-为1:3和0:4时较高;氨基酸态氮处理,在同一取样周期内,甘氨酸、谷氨酸态氮供应NH4+-N的能力最高,赖氨酸与硫酸铵供应NH4+-N的能力等效,缺氮处理对落叶松幼苗供应NH4+-N能力最低;对NO3--N的供应能力大小为:甘氨酸>谷氨酸>赖氨酸>硫酸铵>缺氮;在同一取样周期内加入生物抑制剂的氨基酸处理落叶松幼苗吸收NH4+-N、NO3--N浓度与未加入生物抑制剂氨基酸处理之间不显著。
     (5)对酶活性影响方面所有处理的落叶松幼苗根系NR活性高于叶片处理,氨基酸态氮处理的落叶松幼苗根系NR活性明显低于NH4+/NO3-为1:1,1:3和0:4处理,氨基酸态氮处理的幼苗叶片中NR活性低于对照外的其它所有处理;高浓度的NH4+-N(4:0,3:1和1:1)处理条件下GS活性高,三种形态的氨基酸态氮均能促进幼苗根系和叶片GS的活性提高,但甘氨酸使根系和叶片中GS活性分别提高22.5%和24.1%,赖氨酸使二者GS的活性提高18.6%和22.9%,而谷氨酸使根系和叶片中GS活性分别提高43.1%和48.3%,叶片中GS活性在各处理中均高于根系。
     本实验条件下可以得出:落叶松能够吸收有机氮源;在甘氨酸、谷氨酸的条件下生长状况好于在赖氨酸及硫酸铵状况下的生长,明显好于在硝态氮条件下的生长。
Larix gmelinii is the most important industrial tree species in northeast China forest, which has very important ecological meanings in ecosystem. In Larch planted areas, owing to low temperature and long winter, low N mineralization rate, nitrogen deficiencies often becomes the limited factor. The effects of different nitrogen、NH4+/NO3- and their different supply ratios on the growth of Larix gmelinii seedlings were studied by water culture system. Research the supply organic、mineral nutrient for Larix gmelinii, the growth of Larix gmelinii, the absorption and utilization of nitrogen, and Larix gmelinii seedling roots and leaves of the nitrogen with the enzyme activity assay. The results show that:
     (1) In the accumulation of biomass, different supply ratios of mineral N, NH4+/NO3- 4:0, 3:1 and 1:1 with a higher total biomass of larch; amino acids treat total biomass was higher than NH4+-N and ck.; The total nitrogen content in Larix gmelinii show that:Gly>Glu> NH4+-N >Lys>NO3--N>ck, and amino acid treatment significant difference with NO3--N、ck. The total biomass of imputing inhibitor amino acid was higher than amino acid which not imputed inhibitor, and significant difference between the two. Total nitrogen content of imputing inhibitor amino acid significantly higher than amino acid which not imputed inhibitor.
     (2) In terms of plants'growth, effects on plant height and root length of amino acid were higher than NH4+-N and NO3--N; the root length and total length of imputing inhibitor amino acid were lower than amino acid which not imputed inhibitor, between each treatment had no significant difference except gly. But imputing inhibitor amino acid better than amino acid which not imputed inhibitor for height growth.
     (3) The absorption of N、P、K nutrient, different supply ratios of mineral N, when the supply of nitrate completely, Larix gmelinii seedling hold the lowest concentration of potassium,and other treatment plants at high nitrogen concentration, with the increase in the proportion of NH4+-N Larix gmelinii seedlings increased the concentration of P, K concentrations decreased; Glu can significantly promote the absorption of N、P、K nutrients, Lys uptake capacity for NP nutrient was equal to NH4+-N, Lys uptake capacity for K nutrient was equal to NO3--N, imputing inhibitor amino acid or not imputed in Larix gmelinii, N、P、K nutrient concentrations showed:Gly treatment was the highest, the lowest lys. The N、P、K nutrient concentrations in Larix gmelinii of imputing inhibitor amino acid were higher than amino acid which not imputed inhibitor,but had no significant difference.
     (4) The absorption of mineral N, different supply ratios of mineral N, NH4+/NO3- 4:0 and 3:1 with high intensity to absorb NH4+-N, and NH4+/NO3- 1:3 and 0:4 with high intensity to absorb NO3--N; amino nitrogen treatment, in the same sampling period, Glycine and Glu supply capacity of the highest NH4+-N, the supply capacity of Lysine was equal to ammonium, he supply capacity of ck was the lowest. Supply of NO3--N was showed:Gly>Glu>Lys> NH4+-N>ck; the absorption concentration of NH4+-N in imputing inhibitor amino acid was significantly higher than mino acid which not imputed inhibitor(except Lys), but they had no significant difference; imputing inhibitor amino acid or not imputed, supply of NO3--N was showed:Gly>Glu>Lys, and the NO3--N concentration in imputing inhibitor amino acid were higher than mino acid which not imputed inhibitor instead of Lys.
     (5) In terms of enzyme activity, NR activity in the leaves treated by all treatment was lower than which in the roots. NR activity in the leaves treated by Amino nitrogen was lower than NH4+/NO3- 1:1,1:3 and 0:4. NR activity in the leaves treated by Amino nitrogen was lower than all other treatment except control. Under high concentration of NH4+-N cultivation conditions showed a higher GS activity. Three forms of the amino nitrogen can also promote GS activity of root and leaf increased,however, GS activity in roots and leaves of Gly increased by 22.5% and 24.1% separately, of Lys increased by 18.6% and 22.9%, of Glu increased by 43.1% and 48.3%, GS activity in leaves of all treatment were higher than GS activity in roots.
     As can be seen from the above conclusions:Larix gmelinii can absorb organic nitrogen, and under the conditions of supply of amino nitrogen Larix gmelinii seedling growth is better than inorganic nitrogen supply.
引文
[1]Miller A J, Cramer M D. Root nitrogen acquisition and assimilation.Plant and soil,2004, 274:1-36.
    [2]Cai X M, Shang Y C. General Ecology. Beijing:Beijing University Press,1995,29-32.
    [3]Aerts R, Chapin F S. The mineral nutrition of wild plant revisited:a reevaluation of processes and patterns. Adv Ecol. Res,2000,30:1-67.
    [4]Zhang F S, Li X L, Wang J G et al. Environmental Stress and Rhizosp here Nutrition of Plant. Beijing:China Agricultural Press,1998:4-50.
    [5]Wang Q R, Li J Y, Li Z S. Dynamics and prospect on studies of high acquisition of oil unavailable phosphorus by plants. Plant Nutrition and Fertilizer Science,1998,4 (2):107-116.
    [6]Von Wiren N, Gazzarrni S and Frommer W B. Regulation of mineral nitrogen uptake in plants. Plant ararl Soil,1997,196:191-199.
    [7]Turnbull M H, Schmidt S, Erskine P D, Richards S, Stewart G R. Root adaptation and nitrogen source acquisition in natural ecosystems. Tree Physiol,1996,16:941-948.
    [8]Schobert C, Komor E. Amino acid uptake by Ricinus communis roots:characterization and physiological significance. Plant Cell Environ,1987,10:493-500.
    [9]Chapin F S Ⅲ, MoilanenL, Kielland K. Preferential usage of organic nitrogen for growth by a nonmycorrhizal sedge. Nature,1993,361:150-152.
    [10]Kielland K. Amino acid absorption by arctic plants:implications for plant nutrition and nitrogen cycling. Ecology,1994,75:2373-2383.
    [11]JonesD L, Darrah P R. Amino-acid in flux at the soil-root interface of ZeamaysL. and its implications in the rhizosphere. Plant soil,1994,163:1-12.
    [12]Turnbull M H, Goodall R, Stewart G R. The impact of mycorrhizal colonization upon nitrogen source utilization and metabolism in seedlings of Eucalyptus grandis Hill. ex. Maiden and Eucalyptusmaculata Hook. Plant Cell Environ,1995,18:1386-1394.
    [13]Raab T K, Lipson D A, Monson P K. Nonmycorrhizal uptake of amino acidsby roots of the alpine sedge Kobresiamyosuroides:implications for the apine nitrogen cycle. Oecologia,1996,108:488-494.
    [14]Raab T K, Lipson D A, Monson P K. Soil amino acid utilization among the Cyperaceae: Plant and soil processes. Ecology,1999,80:2408-2419.
    [15]Schiller P, Heilmeier H, Hartung W. uptake of amino acids by the aquatic resurrection plant Chamaegigas intrepidus and its implication for N nutrition. Oecologia,1998,117: 63-69.
    [16]Breitzkreuz K E, Shelp B J, Fischer W N, Schwacke R, Rentsch D. Identification and characterization of GABA, proline and quaternary ammonium compound transports from Arabidopsios thaliana. Fed EurBiochem Soc Lett,1999,450:280-284.
    [17]Wallenda T, ReadD J. Kinetics of amino acid uptake by ectomycorrhizal roots. Plant Cell Enviro,1999,22:179-187.
    [18]Nsholm T, Ekblad A, Nordin A, Giesler R, Hgberg M, Hgberg P. Boreal forest plants take up organic nitrogen. Nature,1998,392:914-916.
    [19]Nsholm T, Huss Danell K, Hgberg P. Uptake of organic nitrogen by four agriculturally important plant species. Ecology,2000,81:1155-1161.
    [20]Streeter T C, Bol R, Bardgett R D. Amino acids as a nitrogen source in temperate upland grasslands:the use of dual labeled (C N) glycine to test for direct uptake by dominant grasses. Rapid Communication inMass Spectrometry,2000,14:1351-1355.
    [21]Jones D L, ShannonD. Role of dissolved organic nitrogen(DON) in soil N cycling in grassland soils. SoilBiology & Biochemistry,2004,36:749-756.
    [22]Luo A C, Wu P, WuL H, TaoQ N. Absorption of amino acids by rice (Oryza sativa L.) seedlings. Acta Agriculturae Zhejiangensis,1997,9 (2):62-65.
    [23]Wu L H, Tao Q N. Effects of amino acid N on rice nitrogen nutrition and itsmechanisms. Acta Pedologica Sinica,2000,37(4):464-473.
    [24]MoL Y, Wu L H, Tao Q N. Effects of amino acid N and ammonium N on wheat seedlings under sterile culture. Chinese Journal of Applied Ecology,2003,14(2):184-186.15.
    [25]Michelsen A, Schmidt I K, Jonasson S, Quarmby C, Sleep D. Leaf N abundance of subarctic plants provides field evidence that ericoid, ectomycorrhizal and nonor arbuscular mycorrhizal species access different sourcesof soil nitrogen. Oecologia,1996, 105:53-63.15.
    [26]Michelsen A, Quarmby C, Sleep D, Jonasson S. Vascularplant N natural abundance in heath and forest tundra ecosystems is closely correlated with presence and type of mycorrhizal fungi in roots. Oecologia,1998,115:406-418.
    [27]张彦东,范志强,王庆成等.N素形态对水曲柳幼苗生长影响.应用生态学报,2000,11(5):665-667.
    [28]陆景陵主编.植物营养学.北京:中国农业大学出版社.2001:17-25.
    [29]Lea P J, Irel R J. Nit rogen metabolism in higher plants [C] Singh B K. Plant Amino Acids, Biochemist ry and Biotechnollogy [C]. Marcel Dekker, New York,1999:1-47.
    [30]Lam H M, Coschigano K T, Oliveira I C et al. The molecular genetics of nitrogen assimilation into amino acids in higher plants [J]. Annual Review Plant Physiology Plant Molecular Biology,1996,47:569-593.
    [31]Igor C O, Brears T, Thomas J et al. Overexpression of cytosolic glutamine synt hetase relation to nitrogen, light, and photorespiration [J]. Plant Physiology,2002,129:1170-1180.
    [32]Cren M, Hirel B. Glutamine synt hetase in higher plants:regulation of gene and protein expression from t he organ to the cell [J]. Plant Cell Physiology,1999,40:1187-1193.
    [33]Harrison J, Crescenzo M P, Sene O et al. Does lowering glutamine synt hetase activity in nodules modify nitrogen metabolism and growth of lotus japonicus [J]. Plant Physiology, 2003,133:253-262.
    [34]Claussen W, Lenz F. Effect of ammonium or nitrate nutrition on net hotosynthesis, growth, and activity of the enzymes nitrate reductase and glutamine synthetase in blueberry, raspberry and strawberry. Plant and soil,1999,208:95-102.
    [35]Majerowicz N, Kerbauy G B, Nievola C C et al. Growth and nitrogen metabolism of Catasetum fimbriatum (orchidaceae) grown with different nitrogen sources. Environmental and Experimental Botany,2000,44:195-206.
    [36]周国璋,苏梦云.树木硝酸还原酶的研究概况与应用前景.林业科学研究,1990,3(6):601-607.
    [37]张志猛,万书波,孙奎香等.氮素供应水平对小粒型花生氮代谢及相关酶活性的影响.华北农学报2009,24(2):170-175.
    [38]崔晓阳,宋金凤.原始森林土壤NH4+/NO3-生境特征与某些针叶树种的适应性.生态学报,2005,25(11):3082-3092.
    [39]Kronzucker H J, Glass ADM, Siddiqi M Y et al. Comparative kinetic analysis of ammonium and nitrate acquisition by tropical lowland rice:implications for rice cultivation and yield potential. New Phytol,2000,145:471-476.
    [40]Malagoli M, Cannal A D, Quaggiotti S, Bottacin A(2000). Differences in nitrate and ammonium up take between Scots pine and European larch.Plant and Soil,221,1-3.
    [41]Majerowicz N, Kerbauy G B. Effects of nitrogen forms on dry matter partitioning and nitrogen metabolism in two contrasting genotypes of Catasetum fimbriatum (Orchidaceae). Environmental and Experimental Botany,2002,47:249-258.
    [42]李燕婷,米国华,陈范骏.玉米幼苗地上部/根间氮的循环及其基因型差异.植物生理学报,2001,27(3):226-230.
    [43]Lavoie N, Vezina L, Margolis H A. Absorption and assimilation of nitrate and ammonium ions by jack pine seedlings. Tree Physiology,1992,11:171-183.
    [44]张亚丽,董园园,沈其荣等.不同水稻品种对铵态氮和硝态氮吸收特性的研究,土壤学报,2004,918-923.
    [45]Rothstein D E, Cregg B. Effects of nitrogen form on nutrient uptake and hysiology of Fraser fir (Abies fraseri). Forest ecology and management,2005,219:69-80.
    [46]Thomas W Becker, Elisa Carrayol, Bertrand Hirel. Glutamine synthetase and glutamatede hydrogenase is formsin maize leaves:localization, relative roportion and the irrolein ammonium assimilation ornitrogen transport [J]. Planta,2000, (211):800-806.
    [47]Miflin B J, Habash D Z. The role of glutamine synthetase and glutamate dehydrogenase in nitrogen assimilation and possibilities for improvement in the nitrogen utilization of crops. Journal of Experimental Botany,2002,53(370):979-987.
    [48]Vanoni M A, Curti B. Glutamate synthase:a complex ironsulfur flavoprotein. CMLS Cellar and Molecular Life Sciences,1999,55:617-638.
    [49]Ziegler C, Feraud M, Jouglet T et al. Regulation of promoter activity of ferredoxin-dependent glutamate synthase. Plant Physiology and Biochemistry,2003,41:649-665.
    [50]张智猛,张威,胡文广等.高产花生氮素代谢相关酶活性变化的研究[J].花生学报,2006,35(1):8-12.
    [51]张福锁.植物营养研究新动态(第一卷).北京:北京农业大学出版社.1992.
    [52]孙羲主编.植物营养原理,北京:中国农业出版社.1997:70-85.
    [53]吴平,印莉萍,张立平.植物营养分子生理学.北京:科学出版社.2001:1-102.
    [54]Allen S, Raven J A, Sprent J I. The role of long-distance transports in intracellular pH regulation in Phaseolus vulgaris grown with ammonium or nitrate as nitrogen source, or inoculated. J Exp Bot,1988,39(202):513-528.
    [55]GulatiA, Jaiwal P K. Effect of NaCl on nitrate reductitase, glutamate dehydrogenase and glutamate in V ignaradiata Calli [J]. B io Plant,1996,38:177-183.
    [56]Robin S A, SladeA P, Fore G G, Phillips R, Radcliffe R G, Stewart G R. The role of GDH in plant nitrogen metabolism [J]. Plant Physiol,1991,95:509-516.
    [57]Reinhold L. Kaplan A. Membrane transport of sugars and amino acids. Annu Rev plant physiol,1984,35:45-83.
    [58]Fischer W F. Andre B. Rentsch D. Krolkiewicz S. Tegeder M, Breitkreutz K. Frommer W B. Amino acid transport in plants. Trends Plant Sci.,1998,3:188-195.
    [59]Schiller P, Heilmeier H, Hartung W, uptake of amino acids by the aquatic resurrection plant Chamaegigas intrepidus and its implication for N nutrition. Oecologia,1998,117: 63-69.
    [60]Bretzkreuz K E, Shelp B J, Fischer W N, Schwacke R, Rentsch D, Identification and characterization of GABA, praline and quaternaty ammonium compound transports from Arabidopsios thaliana. Fed Eur Biochem Soc Lett,450:280-284.
    [61]Chapin FS Ⅲ, Moilanen L., Kielland K. Preferential use of organic nitrogen for growth by a non-mycorrhizal arctic sedge. Nature,1993,361:150-153.
    [62]吴良欢,陶勤南.水稻氨基酸态氮营养效应及其机理研究.土壤学报,2000,37(4):464-473.
    [63]莫良玉,吴良欢,陶勤南.无菌条件下小麦氨基酸态氮及氨态氮营养效应研究.应用 生态学报,2003,14(2):184-186.
    [64]Raab T K, Terry N. Carbon, Nitrogen, and Nutrient Interactions in Beta vulgaris. as Influenced by Nitrogen Source, NO3- versus NH4+. Plant Physiol.1995,107:575-584.
    [65]张彦东,白尚斌.氮素形态对树木养分吸收和生长的影响.应用生态学报,2003,14:2044-2048.
    [66]王华静,吴良欢,陶勤南.氮形态对植物生长和品质的影响及其机理.科技通报,2005,21:50-55.
    [67]Knoepp J D, Turner D P, Tingey D T. Effects of ammonium and nitrate on nutrient up take and activity of nitrogen assimilating enzymes in western hem lock.Forest Ecology and Management,1993,59:179-191.
    [68]Warren C R, Adams M A.Possible cause of slow growth of nitrate-supplied Pinus pinaster. Canadian Journal of Forest Research,2002,32:569-580.
    [69]Miller A J, Cramer M D. Root nitrogen acquisition and assimilation.Plant and soil,2004, 274:1-36.
    [70]Mahmood T, Woitke M, Gimmler H, et al. Sugar exudation by roots of kallar grass [Leptochloa fusca (L.) Kunth] is strongly affected by the nitrogen source. Planta,2002, 214:887-894.
    [71]曹翠玲,李秀生.氮素形态对作物生理特性及生长的影响.华中农业大学学报,2004,23:581-586.
    [72]Zou C, Shen J, Zhang F et al..Impact of nitrogen form on iron uptake and distribution in maize seedlings in solution culture. Plant and soil,2001,235:143-149.
    [73]Lawlor D W. Carbon and nitrogen assimilation in relation to yield:mechanisms are the key to understanding production systems. Journal of Experimental Botany, Vol.53, No. 370.
    [74]Lambers H., M. L.Cambridge, H. Konings, T. L. Pons.1990. Cause and Consequence of Vatiation in Growth and Productivity of Higher Plant. SPB Acdemic Publishing bv., The Hague. pp30.
    [75]Kronzucher H J, Siddiqi M Y, Glass ADM.Conifer root discrimination against soil nitrate and the ecology of forest succession.Nature,1997,385:59-61.
    [76]Serna M D, Legaz B F and Primo millo E. The influence of nitrogen concentration and ammonium/nitrate ratio on N-uptake, mineral composition and yield of citrus. Plant and Soil,1992,147:13-23.
    [77]Peuke D A and Tischner R. Nitrare uptake and reduction of aseptically culticated spruce seedings, Picea abies (L.) Karst. Journal of Sxperimint Botany,1991,239:723-728.
    [78]Pilbeam D J, Kirkby E A. some aspects of the utilization of nitrate and ammonium by plants. in Mengel K, Pilbeam D J (eds). Nitrogen metabolism of plants. Oxford: Clarendon Press,1992,55-70.
    [79]Crawford N. M.1995. Nitrate:nutrient and signal for plant growth. Plant Cell,7:859-868.
    [80]马新明,王志强,王小纯等.氮素形态对不同专用型小麦根系及氮素利用率影响的研究.应用生态学报,2004,15(4):655-658.
    [81]王艳,米国华,陈范骏等.玉米氮素吸收的基因型差异及其与根系形态的相关性.生态学报,2003,23(2):297-302.
    [82]乔云发,苗淑杰,韩晓增.氮素形态对大豆根系形态性状及释放H+的影响.大豆科学,2006,3:265-269.
    [83]郭亚芬,米国华,陈范骏等.局部供应硝酸盐诱导玉米侧根生长的基因型差异.植物营养与肥料学报2005,11(2):155-159.
    [84]Zhang H and Forde B. An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture. Science,1998,279:407-409.
    [85]史正军,樊小林.作物对氮素养分高效吸收的根系形态学研究进展.广西农业生物科学,2003,22(3):225-229.
    [86]Raab T K, Lipson D A, Monson P K. Soil amino acid utilization among the Cyperaceae: Plant and soil processes. Ecology,1999,80:2408-2419.
    [87]Nasholm T, Ekblad A, Nordin A, Giesler R, Hogberg M, Hogberg P, Boreal forest plants take up organic nitrogen.Nature,1998,392:914-916.
    [88]罗安程·植物的有机营养·植物营养生态生理和遗传学(第六章),张福锁主编·北京:中国科学技术出版社,1993,138-149.
    [89]Webster G-Incorporation of radioactive glutamic acid into the proteins of higher plants-Plant Physiol,1954,29 (3):382-385.
    [92]Chapin FS Ⅲ, Moilanen L., Kielland K. Preferential use of organic nitrogen for growth by a non-mycorrhizal arctic sedge. Nature,1993,361:150-153.
    [93]Keltjens WG, Van Ulden PSR. Effects of Al on nitrogen(NH4+and NO3-)uptake, nitritereduct Ase activity and proton release in two sorghum cultivars differing in Al tolemmce. Plant and soil,1987,104:227-234.
    [94]Olsthoorn AFM, Keltjens W G, Van Baren B et al. Influences of ammonium on fine root development and rhizosphere pH of Douglas fir seedling in sand. Plant and Soil,1991, 133:75-81.
    [95]Lipson David, Nasholm Torgny. The unexpected versatility of plants:organic nitrogen use and availability in terrestrial ecosystems. Oecologia,2001,128:305-316.
    [96]Aber J D, Nadelhoffer K J, Steudler P. Nitrogen saturation in northern forest ecosystems [J]. Bioscience.1989,39:378-386.
    [97]Turnbull M H, Schmid T S, Erskine P D et al. Root adaptation and nitrogen source acquisition in natural ecosystems [J]. Tree Physiology,1996,16:941-948.
    [98]VesseyJ K, Henry L T, Chaillous et al. Root-zone acidity affects relative uptake of nitrate and ammonium from mixed nitrogen sources [J]. Journal of Plant Nutr.,1990,13:95-116.
    [99]Miller P M, Eddleman L M, Miller J M. The response of juvenile and small adult western juniper (Juniperus occidentalis) to nitrate and ammonium fertilization [J]. Can.J. Bot., 1991,69:2344-2352.
    [100]赵秀兰,郑绍建,王勤等.氮素形态对营养液pH值及磷锌和磷铁间颉颃作用的影响[J].西南农业大学学报,1998,20(1):1-4.
    [101]司江英,王晓丽,陈冬梅等.不同pH和氮素形态对作物幼苗生长的影响[J].扬州大学学报(农业与生命科学版),2007,28(3)68-71.
    [102]Knoepp J D, Turner D P, Tingey D T. Effects of ammonium and nitrate on nutrient up take and activity of nitrogen assimilating enzymes in western hem lock [J]. Forest Ecology and Management,1993,59:179-191.
    [103]Nelson L E, Selby R. The effect of nitrogen sources and iron levels on the growth and composition of Sitka spuce, and Scots pine [J], Plant and Soil,1974,41:573-588.
    [104]国家林业局发布,中华人民共和国林业行业标准森林土壤分析方法[M],北京:中国标准出版社,1999.
    [105]鲁如坤主编.土壤农业化学分析方法[M].北京:中国农业科技出版社,1999.
    [106]中国土壤学会农业化学专业委员会编,土壤农业化学常规分析方法[M].北京:科学出版社,1983.
    [107]Ruan J Y, Zhang F S, Ming H W. Effect of nitrogen form and phosphorus source on the growth, nutrient uptake and rhizosphere soil property of Camellia sinensis L [J]. Plant and Soil,2000,223:63-71.
    [108]Gahoonla T S. Influence of root-induced pH on the solubility of soil aluminum in the rhizosphere [J]. Plant and Soil,1993,149:289-291.
    [109]罗安程,吴平,吴良欢等.稻苗对氨基酸吸收特性的研究[J].浙江农业学报,1997,9(2):62-65.
    [110]莫良玉,吴良欢,陶勤南.高温胁迫下水稻氨基酸态氮与铵态氮营养效应研究[J].‘植物营养与肥料学报2002,8(2):157-161.
    [111]Schimel J P, Chapin F S Ⅲ. Tundra plant uptake of amino acid and NE4+ nitrogen in situt plants compete well for amino acid N [J]. Ecology,1996,77(7):2142-2147.
    [112]Kielland K. Amino acid absorption by arctic plants:implications for plant nutrition and nitrogen cycling [J]. Ecology,1994,75:2373-2383.
    [113]崔晓阳.植物对有机氮源的利用及其在自然生态系统中的意义[J].生态学报,2007,27(8):3500-3512.
    [114]Nasholm T, Huss-Danell K, Hogber G P. Uptake of organic nitrogen in the field by four agriculturally important plant species [J]. Ecology,2000,81(4):1155-1161.
    [115]Murphy D V, Macdonld A J, Stockdale E A et al. Soluble organic nitrogen in agricultural soils [J]. Biol. Fert. Soils,2000,30:374-387.
    [116]Schmid T S, Stewart G R. Waterlogging and fire impact on nitrogen availability and utilization in a subtropical wet heathland (wallum) [J]. Plant Cell Environ.,1997,20:1231-1241.
    [117]Nashol M T, Ekblad A, NORDIN A et al. Boreal forest plants take up organic nitrogen [J]. Nature,1998,392:914-916.
    [118]Lambers H, Chapin S F, Pons T. Plant physiological ecology. New York:Springer,1998.
    [119]Nygren P, Vaillant V, Desfontaines L et al. Effects of nitrogen sources and defoliation on growth and iological dinitrogen fixation of Gliricidia Sepium seedlings. Tree Physiology, 2000,20:33-40.
    [120]Stribley D P, Read D J. The biology of mycorrhizae in the Ericaceae:Ⅶ. The relationship between mycorrhizal infection and the capacity to utilize simple and complex organic nitrogen sources. New phytol,1980,86:365-371.
    [121]Bajwa R, Read D J. The biology of mycorrhizae in the Ericaceae:Ⅸ. peptides as nitrogen sources for the ericoid endophyte and for mycorrhizal and non-mycorrhizal plants. New phytol,1985,101:459-167.
    [122]Abuzinadah R A, Read D J. The role of proteins in the nitrogen nutrition of ectomycorrhizal plants Ⅳ. The utilization of peptides by birch (Betula pedula L.) infected with different mycorrhizal fungi. New phytol,1989,112:55-60.
    [123]王华静,吴良欢,陶勤南.氨基酸部分取代硝态氮对小白菜硝酸盐积累的影响,中国环境科学.2004,24(1):19-23.
    [124]葛体达,唐冬梅,芦波等.番茄根际分泌物、木质部和韧皮部汁液组分对矿质氮和有机氮营养的响应,园艺学报2008,351:39-46.
    [125]沈同,王镜岩.生物化学[M].北京:高等教育出版社,1989.381.
    [126]李海航,潘瑞炽.青霉素在高等植物中的作用[J].植物生理学通讯,1987,(5):1-6.
    [127]谢德明.川芎喷施西林研究初报[J].中国中药杂志,1994,19(2):76-77.
    [128]汤菊香,任永信,蒋爱凤.KH2PO4和Penicilin对小麦老化种子发芽及幼苗生长的影响.麦类作物学报,2001,21(4):61-63.
    [129]刘萍,齐付国,丁义峰等.青霉素和氨苄青霉素对小麦种子发芽及幼苗生理生化的影响[J].华北农学报,2004,19(3):66-68.
    [130]刘萍,李春喜,姜丽娜等.钾盐、植物生长调节剂和西林对小麦生理及产量的影响[J].河南职技师院学报,1999,27(1):1-3.
    [131]刘萍,李春喜,姜丽娜等.西林对小麦生理活性及产量的影响[J].麦类作物(现已更名为麦类作物学报),1998,18(3):27-29.
    [132]刘萍,齐付国,丁义峰等.氨苄西林钠对小麦旗叶衰老及产量因素的影响[J].河南农业科学,2004,(5):11-15.
    [133]Rygiewicz P T and Bledsoe C S. Effects of pretreatment conditions on ammonium and nitrate uptake by Douglas-fir seedlings. Tree Physiol,1986,1:145-150.
    [134]Troelstra SR and Blacquiere T. Growth, ionic balance, proton excretion, and nitrate reductase activity in Alnus and Hippophae supplied with different sources of nitrogen. Plant Soil,1986,91:381-384.
    [135]Finlay R D, E k H, Odham G et al. Uptake, translocation, and assimilation of nitrogen from 15N-labelled ammonium and nitrate source by intact ectomycorrhizal systems of Fagus sylvatica infected with Paxillus involutus. New Phytol,1989,113:47-55.
    [136]Lambers H, Chapin F S, Pons T L. Plant physiological ecology. New York:Springer-Verlag New York Inc,1998.252-253.
    [137]Chrispeels M J, Crawford N M, Schoreder J L Proteins for transport of water and mineral nutrients across the membranes of plant cells [J]. Plant Cell,1999,11:661-675.
    [138]Frommer W B, Kwatr M, Hirner B, Fisher W N, Hummel S, Ninnemann O Transportersfor nitrogenous compounds in plants [J]. Plant Mol Biol,1994,26:165-167.
    [139]Cren M, Hirel B Glulamine synthetase in higher plant:Regulation of gene and protein expression from the organ to the cell [J]. Plant Cell Physiol1,1999,40:187-193.
    [140]李常健,林清华.2001.高等植物谷氨酞胺合成酶研究进展.生物学杂志.18(4):1-3.
    [141]李合生.植物生理生化实验原理和技术(硝酸还原酶的测定).北京:高等教育出版社,2000,127-128.
    [142]汤章城等.现代植物生理学实验指南(谷氨酰胺合成酶的测定).中国科学院上海植物生理研究所,1999,157-158
    [143]Larcher W. Physiological Plant Ecology. Third Edition. New York:Springer,1995.190-191
    [144]Tischner R. Nitrate uptake and reduction in higher and lower plants Plant, Cell & Environment,2000,23 (10):1005-1024
    [145]Ritsuko I, Kumab K, Miyatab T et al. Nitrogen-assimilating enzymes in land plants and algae:hylogenic and physiological perspectives. Physiologia Plantarum,2002,116 (1): 1-11.
    [146]陈微,张德颐.植物组织中硝酸还原酶的提取测定和纯化.植物生理学通讯,1980(4):45-49.
    [147]Campbell W H. Nitrate reductase and its role in nitrate assimilation inplants. Physiol Plant,1988(74):214-219.
    [148]师进霖等.氮素形态对黄瓜幼苗生长及氮代谢酶活性影响.中国农学通报,2009,25(22):225-227.
    [149]封克,汪小丽,陈平等.水稻苗期不同时段NO3-吸收特点及其受NH4+的影响[J].中国农业科学,2003,36(3):307-312.
    [150]Aslma M, Tarvis R L, Ralns D W. Differential effect of amino acid nitrate uptake and reduction systems in barley roots.Plant Scinece,2001,160(2):219-228.
    [151]Deng M, Moueruax T, Chere I et al. Eeffcts of niortgen metbaolites on the regulation and expression of tobacco nitrate reductase. Plant Physiology Biochemistry,1991,29(3): 239-247.
    [152]Li X Z, Lasron D E, Glibetie M et al. Effect of glutamine on the induction of niarte reduetase. Physiologia Planratum.1995,93(4):740-744.
    [153]Lam H M, Coschigano K T, Oliveira I C et al. The Molecular-Genetics of Nitrogen Assimilation into Amino Acids in Higher Plants. Annu Rev Plant Physiol Plant Mol Biol, 1996,47:569-593.
    [154]曹翠玲,李生秀,苗芳.氮素对植物某些生理生化过程影响的研究进展[J].西北农业大学学报,1999,27(4):96-102.
    [155]祁倩倩,罗奥,刘志生等.大豆氮代谢酶作用机理及锰水平对其影响研究进展[J].黑龙江八一农垦大学学报,2008,20(6):12-15.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700