受水患威胁矿井安全开采技术及工程对策
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
华北煤田水文地质条件复杂。随着开采深度的不断加大,很多矿山受到不同程度的突水威胁。水患威胁矿井安全开采理论与技术研究,是目前采矿工程研究的热点和难点。本文采用现场调查、理论分析和数值模拟相结合的方法,对单侯矿三采区的水文地质条件、开采过程中的围岩变形及动态响应特征以及突水风险性进行了分析,并提出了工程对策措施。
     本文以开滦(集团)蔚州矿业有限公司单侯矿为工程背景,基于三采区地震勘探资料及精查地质报告,对矿井含水层进行了划分,并进行了水文地质条件分析。为直观显示采区内的含水层、隔水层和煤层的空间对应关系,基于大量地质钻孔编录数据,应用SURPAC软件构建了三采区水文地质三维可视化模型,圈定了各个含水层的体积和面积,并对主要含水层与邻近煤层的距离进行了统计分析。基于上述研究,应用MIDAS/GTS-FLAC~(3D)耦合建模技术,构建了三采区数值计算模型,对于三采区内即将开采的1煤层和5煤层,在考虑含水层影响条件下,通过流固耦合计算,分析了不同回采顺序条件下,采场岩体的非线性力学响应和流场变化特征,优化并提出了合理的回采顺序。通过分析矿井历年突水历史记录,分析了受断层构造影响、下伏承压水巷道施工突水的原因。通过对不同承压水压、不同隔水层厚度、不同断层断距和不同断层倾角等工况进行数值模拟分析,揭示了各个因素诱发突水的机理,并初步圈定了不同情况下保安煤柱宽度。最后,应用AHP层次分析方法,对影响三采区突水因素进行了权重分析和突水风险性预测评估,并提出了相应工程对策。
     进行受水患威胁矿井的突水机理分析和突水预测研究,为三采区的安全开采提供理论基础和技术支撑,对保障矿井的安全高效开采,无疑具有重要的理论意义和工程实用价值。
The hydrogeology conditions of North China Coalfield are complex.With the miningdepth increasing, a lot of mine in varying degrees are under the threat of sudden flooding.The theory and technology research of mine safety mining under flood threat has alsobeen the hot spots of research. This paper studies hydrogeological conditions in the miningarea, water-inrush risk analysis, deformation and dynamic response characteristics duringthe mining process by combining numerical simulation and theoretical analysis methods.
     Taking No.3mining region of Danhou coal mine in Yu County of Hebei Province asengineering background, based on two-dimensional seismic data and geological data, theaquifers are defined by the analysis of the hydrogeological conditions. In order to showthe relative relations of the aquifers impermeable stratum and coal seams in space visually,,based on the geological logging data, the3D visual hydrogeology model of No.3miningregion is obtained by using SURPAC. The impermeable layer thickness contour mapsnearby5&1coal seams working areas and impermeable layer ranges were given bystatistical analysis and calculation, the area and volume of the flow field were determined,and the rational mining sequence was proposed. In combination with the hydrological andgeological analysis and the3D visualization model, the numerical calculation model ofmining area is built through the MIDAS/GTS-FLAC3Dcoupled modeling technology. Forthe5&1coal seams1to be mine in mining region, considering the influence of aquifers,the nonlinear mechanical response characteristics and variation of fluid are studied underdifferent mining sequences, through the fluid-solid coupling calculation. After Referenceto the water-inrush history in the mining area, the causes of water-bursting in tunnelconstruction period are studied under the influences of the fault structure and the confinedwater. Through the change of bearing water pressure, thickness of impermeable layer, faultthrow and dip angle of fault factors, numerical simulation analysis is carried out indifferent conditions. The fundamental mechanism which every factors induce water-inrushby is revealed, and the widths of security coal pillar are briefly delineated under differentconditions. Finally, by using the AHP method, the factors which can induce water-inrush in No.3mining region are analyzed in weight, and the engineering countermeasures areput forward after water-inrush risk evaluation.
     The study on water-inrush analysis and prediction, which can provide theoreticalbasis and technical support for mining safely of the mining region and the safeguard ofhigh efficiency mining,undoubtedly has important realistic meaning and practical value.
引文
[1]朱由军,高明青.浅谈煤矿水害超前预防[J].山东煤炭科技,2008,(5):162-163.
    [2]廖永红.浅谈矿井防治水工作[J].石河子科技,2009,(3):98-102.
    [3]王玉钦,杨永利,余荣强等.直接顶板为强岩溶含水层巷道掘进防治水技术[J].2009(3):98-102.
    [4] Wolkersdorfer C, Bowell R. Contemporary reviews of mine water studies in Europe[J],MineWater and the Environment,2004(23):161.
    [5] Salis M, Ducksterin L. Mining under a limestone aquifer in southern Sardinia: a multiobjectiveapproach[J]. Geotechnical and Geological Engineering,1983,1(4):357-374.
    [6] Kuzentsov S V., Troflmov V A.. Hydrodynamic effect of coal seam compression[J]. Journal ofMining Science,2002,39(3):205-212.
    [7]魏久传,李白英.承压水上采煤安全性评价[J].煤田地质与勘探,2000,28(4):57-59.
    [8]靳德武,陈健鹏,王延福等.煤层底板突水预报人工神经网络系统的研究[J].西安科技学院学报,2000,20(3):214-217.
    [9]王连国,宋扬.煤层底板突水突变模型[J].工程地质学报,2002,8(2):160-163.
    [10]武强,董东林,傅耀军.煤矿开采诱发的水环境问题研究[J].中国矿业大学学报,2002,31(1):19-22.
    [11]冯利军.基于Rough集理论的矿井突水规则获取[J].煤田地质与勘探,2003,31(1):38-40.
    [12]谢兴华,速宝玉,高延法等.矿井底板突水的水力劈裂研究[J].岩石力学与工程学报,2005,24(6):987-993.
    [13]李晓昭,罗国煜,陈忠胜.地下工程突水的断裂变形活化导水机制[J].岩土工程学报,2002,24(6):695-700.
    [14]胡耀青,严国超,石秀伟.承压水采煤突水监测预报理论的物理与数值模拟研究[J].岩石力学与工程学报,2008,27(1):9-15.
    [15]王作宇,刘鸿泉,王培彝等.承压水上采煤学科理论与实践[J].煤炭学报,1994,19(1):42-48.
    [16]缪协兴,陈荣华,白海波.保水开采隔水关键层的基本概念及力学分析[J].煤炭学报,2007,32(6):561-564.
    [17] Wang J A., Park H D.. Fluid permeability of sedimentary rocks in a complete stress-strainprocess[J]. Engineering Geology,2002,63(2):291-300.
    [18]朱珍德,胡定.裂隙水压对岩体强度的影响[J].岩土力学,2000,21(1):64-67.
    [19]郑少河,朱维申,王书法.承压水采煤的固流耦合问题研究[J].岩石力学与工程学报,2000,19(7):421-424.
    [20]尹尚先,武强,王尚旭.北方岩溶陷落柱的充水特征及水文地质模型[J].岩石力学与工程学报,2005,24(1):77-82.
    [21] Valko P, Economides M J. Propagation of hydraulically induced fractures a continuum damagemechanics approach [J]. International Journal of Rock Mechanics and Mining Sciences andGeomechanics Abstracts,1994,31(3):221-229.
    [22]李利平,路为,李术才等.地下工程突水机理及其研究最新进展[J].山东大学学报,2010,40(4):104-110.
    [23]管恩太.演马庄煤矿断层突水特征及其预测预报方法[J].煤炭工程,2005(7):43-46.
    [24]陈伟君.雅泸高速公路泥巴山隧道及断层涌突水预测研究[D].2009.西南交通大学.
    [25]卜万奎,茅献彪.断层倾角对断层活化及底板突水的影响研究[J].岩石力学与工程学报,2009,28(2):386-393.
    [26]董东林,王焕忠,武彩霞等.断层及滑动构造复合构造区煤层顶板含水层渗流特征及突水危险性分析[J].岩石力学与工程学报,2009,28(2):374-378
    [27]白海波,茅献彪,吴宇等.高压奥灰水大型逆断层下盘煤层安全开采研究[J].岩石力学与工程学报[J],2009,8(2):247-252.
    [28]常军.煤层顶底板突水事故风险系统安全性评价[J].淮南职业技术学院学报,2008,8(26):8-10.
    [29]范益群,沈秀芳,乔宗昭.隧道及地下工程设计系统的风险管理[J].地下工程与隧道2007:24(1):98-103.
    [30]李景龙,李术才,李树忱.地下工程的风险分析研究[J].地下空间与工程学报,2008,4(5):835-839.
    [31]路美丽,刘维宁,罗富荣等.隧道与地下工程风险评估方法研究进展[J],工程地质学报,2006,14(4):462-469.
    [32]张国亮,张振刚.地下工程施工中的风险分析[J].西部探矿工程,2005(3):214-215.
    [33]陈龙珠,龙小梅.基坑工程中土钉和水泥土墙支护系统的FTA安全评估[C].全国地铁与地下工程技术风险管理研讨会论文集,2005.
    [34]鲁海峰,袁宝远,姚多喜.带压开采煤层底板突水安全可靠性分析[J],水文地质工程地质,2010,37(6):1-5.
    [35]李景龙,李术才,李树忱.地下工程的风险分析研究[J].地下空间与工程学报,2008,4(5):835-839.
    [36]许江涛,邓寅生,文广超等.事故树分析法在矿井水害防治中的应用[J].2009,29(4):405-408.
    [37] Reilly J, Brown J. Management and control of cost and risk for tunneling and infrastructureprojects [A]. Proceedings of world tunnel congress and13the IT Assembly Singapore[C].2004,B18.
    [38]郑承忠.福建海湾地区灾害地质特征与工程风险控制[J].自然灾害学报,2005,14(4):108-114.
    [39]余琼芳,陈迎松.模糊数学中隶属函数的构造策略[J].漯河职业技术学院学报,2003,2(1):12-15.
    [40]李利平,路为,李术才.地下工程突水机理及其研究最新进展[J].山东大学学报,2010,40(3):105-108.
    [41]陈红江,李夕兵,刘爱华.煤层底板突水量的距离判别分析预测方法[J].煤炭学报,2009,34(4):487-490.
    [42]郭花利.基于Skyline技术的油藏管理三维可视化应用研究[D].西安:长安大学学位论文,2010:45-48.
    [43]缪彬.计算机技术在油气勘探研究中的应用[J].信息技术,2009(3):170-172.
    [44]杨海平,魏翔,慎乃齐.基于钻孔数据的采空区三维模型可视化[J].矿业研究与开发,2009,(12):29-32.
    [45]朱良峰,潘信,吴信才.三维地质建模及可视化系统的设计与开发[J].岩土力学,2006,27(5):828–832.
    [46]杨巨文,周宇.基于SURPAC软件的胜利东二矿煤层实体模型[J].露天采矿技术,2010,(2):60-63.
    [47]伍伟,秦德先,任卓隽.基于Surpac的坑道与采空区模型建立及其应用[J].有色金属,2009,61(4):5-9.
    [48]李海华,张瑞新.应用Surpac软件进行露天矿采矿工程的可视化[J].2004,13(1):64-67.
    [49]陈佩佩,叶勇,张守仁.矿山工程软件Surpac Vision在煤矿中的应用[J].煤炭科学技术,2002,30(3):98-101.
    [50]彭康,李夕兵,彭述权.三山岛金矿中段盘区间合理回采顺序动态模拟选择[J].矿冶工程,2010,30(3):8-11.
    [51]王树仁,王金安,刘淑宏等.大倾角厚煤层综放开采颗粒元分析[J].北京科技大学学报,2006,28(9):808-811.
    [52]朱国辉,肖建新.复杂水文地质条件下的矿山安全开采技术进行了研究与实践[J].金属矿山,2009(10):21-31.
    [53]李夕兵,刘志祥,彭康.金属矿滨海基岩开采岩石力学理论与实践[J].岩石力学与工程学报,2010,29(10):1945-1953.
    [54] Yi-ming WANG, Ai-xiang WU, Xue-song CHEN, Bao-hua YANG, Yong-ding SU. New miningtechnique with big panels and stopes in deep mine [J]. Original Research Article Transactions ofNonferrous Metals Society of China.2008,18(1):183-189.
    [55] Barton N, Pandey S K.. Numerical modeling of two stoping methods in two Indian mines usingdegradation of c and mobilization of φ based on Q-parameters [J]. Original Research ArticleInternational Journal of Rock Mechanics and Mining Sciences.2011,48(7):1095-1112.
    [56] Yaohua Zhang, Hani S. Mitri. Elastoplastic stability analysis of mine haulage drifts in the vicinityof mined stopes [J]. Original Research Article International Journal of Rock Mechanics andMining Sciences.2008,45(4):574-593.
    [57] Ghoreishi-Madiseh SA., Hassani F, Mohammadian A, Abbasy F. Numerical modeling of thawingin frozen rocks of underground mines caused by backfilling [J]. Original Research ArticleInternational Journal of Rock Mechanics and Mining Sciences.2011,48(7):1068-1076.
    [58] Yi-ming WANG, Ai-xiang WU, Xue-song CHEN, Bao-hua YANG, Yong-ding SU. New miningtechnique with big panels and stopes in deep mine [J]. Original Research Article Transactions ofNonferrous Metals Society of China.2008,18(1):183-189.
    [59] Lian-guo Wang, Yu Wu, Jian Sun. Three-dimensional numerical simulation on deformation andfailure of deep stope floor [J]. Original Research Article Procedia Earth and Planetary Science.2009,1(1):577-584.
    [60]曹明,吕广忠,王志国.金厂峪地下采场回采顺序弹塑性数值模拟分析[J].金属矿山,2004,(12):23-25.
    [61]沈慧明,许振华,朱利平.残矿回采顺序优化与复杂采空区稳定性的有限元模拟研究[J].中国矿业,2011,20(1):78-81.
    [62]王树仁,张海清. MIDAS/GTS-FLAC3D耦合建模新方法及其应用[J].土木建筑与环境工程,2010,32(1):12-16.
    [63]王树仁,何满潮,武崇福等.复杂条件下边坡工程稳定性研究[M].北京:科学出版社,2007.
    [64]左友东,徐国盛,刘树根等.层次分析法在盆地勘探方案优选中的应用[J].成都理工学院学报,2009,29(3):306-308.
    [65]杜丽娜.用层次分析法进行多属性决策[J].甘肃联合大学学报,2007,21(5):108-110.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700