金属团簇的势能面构建及其反应的分子动力学模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自从分子动力学(Molecular Dynamics, MD)建立以来,它就被广泛应用于复杂体系的反应动力学研究当中。例如最经典的氢气与氟原子的撞击反应,蛋白质折叠等等。然而,应用分子动力学方法对金属簇的物理化学性质研究是一个近年来刚刚兴起的领域,目前研究还较少。作为一个典型例子,金属团簇如铝,金在高温下的动力学表现是目前实验研究多相催化过程中广泛涉及到的热点问题。目前,关于这个问题的研究尚处于初步探索阶段。因此,开展金属团簇如金或铝在高温下的动力学研究不仅可以拓展分子动力学的应用领域,而且可以加深人们对反应过程中催化剂中心变化的认识,为实验上开发新一代有效催化剂提供重要的理论依据。
     由于从头计算的时间成本过高,精准经验势能面的缺乏加上实验手段的局限性,目前人们对于催化剂尺度的金属颗粒的静态结构及动态性质并没有很深入的认识。因此,本论文的主要工作是围绕用分子动力学研究金属团簇展开的,主要以铝和金这两个体系作为模型体系,用分子动力学配合经验势能面为研究手段,研究金属簇在高温下的动力学性质。在此基础上,重点研究了以下几个问题:
     铝纳米簇碰撞的微分截面的模式分析:我们系统性的研究了铝簇撞击的微分截面。通过对撞击参数,反应物产物角动量,中间体形状、温度、角动量,产物分布的分析,归纳总结得出铝簇间撞击的反应规律。我们发现铝簇的反应中间体多为椭球状,并且该反应对产物的选择性受动力学和热力学同时控制。我们基于模拟观察到的铝簇中间体的独特形状,结合微分截面模式的分析,提出了一个新模型来解释铝簇的微分截面模式。基于这一工作,我们发现NPB这一势能面的函数形式在描述金属簇的反应动力学上有良好表现,可以在其他金属簇上开展进一步研究。
     适合金簇计算的密度泛函理论筛选:为了建立构建势能面所需的结构能量库,我们系统性的研究了各类密度泛函理论计算金簇的表现。我们发现对于金元素,相对论效应对于准确计算金簇的结构及能量是至关重要的。我们发现,通过旋轨耦合计算考虑的相对论效应会高估金簇的原子化能,而考虑HF交换能则会低估金簇的原子化能。基于这一发现,我们挑选出了TPSSh作为计算金簇较有效的泛函,并且进一步的研究发现旋轨耦合对于金簇的原子能的校正与金簇大小及其所含金原子的配位数有线性关系。这一发现可能可以用来解释长久以来理论界计算金簇的一大困惑,即金的平面型结构转换至立体结构问题。
     金簇的平面型结构至立体结构的转换:我们通过前期工作所建立的精准数据库与小基组重新计算结果间的比较,确立了用M06和TPSSh这两个方法来计算Au6-Au13,并将所得结果与文献建议的M06-L的计算结果相比较。我们发现在考虑了旋轨耦合效应以后,M06及TPSSh的计算结果在金簇的平面型结构至立体结构的转换上显示出了一致性结果,而相比之下M06-L的结果则较为不确定。并且,我们再一次验证了旋轨耦合显著降低高对称性结构的相对能量,因此使得部分金簇结构倾向于高对称性的结构,说明了旋轨耦合效应对于计算金簇的重要性。并且,通过与仅有的关于Au7实验数据与计算结果间的对比,我们认为Au,可能是中性金簇最后一个平面型结构占主导的簇。
     金簇势能面的初步建立:基于前期工作所得到的精确结构能量数据库以及所确立的计算方法,我们对Au2-Au4进行了势能面扫描,所获得数据通过差分进化算法用于拟合NPB势能面。我们初步获得了比较精确的势能面。
Molecular Dynamics (MD) has been widely applied to the investigation of reaction dynamics of prototype reactions and complex systems, for example H2+F, and protein folding. However, reliable investigation of physical and chemical properties of metal cluster via MD method is still absent. As promising material and catalyst, the dynamic properties of metal clusters like aluminum and gold clusters under high temperature is the hot spot of experiments. Therefore, study of the dynamic properties of metal clusters like gold and aluminum clusters under high temperature will not only broaden the application area of molecular dynamics but also deepen our comprehension of the change of catalysis center during the catalytic process and provide theoretical evidence and knowledge for experimental development of novel catalysts.
     Owing to the expensive cost of ab-initio calculations, the deficiency of accurate classical potential energy surface, and lack of experimental methods, the structure and dynamic properties of metal clusters in the catalytic process are still unclear to us. Thus, this thesis mainly focuses on the collision between of alluminum clusters via molecular dynamics simulation and the building of accurate semi-classical potential energy surface for gold clusters:
     Analysis of differential cross section (DCS) of collisions between aluminum clusters:Through the investigation of correlation between different observable variables, such as angular momentum of products and reactants, the temperature, shape, and angular momentum of the reaction intermediates, and product distribution, we have summarized the general rule of collision between aluminum clusters, which may also be applied to the collisions between other metal clusters. Based on the finding that the intermediate of the collisions is ellipsoid sphere and the selectivity over products is controlled by both kinetic and thermodynamics factors, we proposed a novel model to explain the DCS patterns of aluminum cluster collisions. Moreover, this work shows that NPB, a new form of potential energy surface, is able to describe the dynamics behavior of aluminum clusters well and can be applied to other systems as well.
     Validation of density functional theories for the calculation of gold clusters: In the purpose of building the database required by PES construction, we have systematically studied the performance of various density functional theories for the calculation of gold clusters. It turns out that Spin-Orbit (SO) coupling overestimates the cohesive energy of gold clusters, while Hartree-Fock exchange underestimates the cohesive energy of gold clusters. Due to the cancelling effect between SO effect and HF exchange TPSSh was found to be the best method for gold clusters. Through further study of the relationship between SO correction to atomization energy (ΔESO) and the size of the gold clusters (Natom) and the number of Au-Au bonds (Nbond), a simple linear equation betweenΔESO and Natom and Nbond has been found, which may help to solve the puzzle regarding to the transition point of gold clusters from two-dimensional (2D) structures to three-dimensional (3D) structures.
     Transition of gold clusters from 2D structures to 3D structures:Two methods, M06 and TPSSh which have good performance in the calculations of gold clusters have been used to study Au6-Au13 clusters and the results were compared to those calculated by M06-L which was recommended by previous studies indicating that M06-L can reproduce the 2D-3D transition points of ionic gold clusters observed by experiments. It turns out that SO coupling is very important on the determination of the 2D-3D transition of gold clusters and both M06 and TPSSh give the same result on this issue. However, the performance of M06-L is not very satisfactory. Furthermore, it was also found in the present study that SO coupling prefers high symmetry geometries. Finally, through the comparison between experimental and calculation results, Au7 was found to be the largest neutral gold cluster dominated by planar structures.
     Building of gold potential energy surface:We have scanned the potential energy surface of Au2-Au4 using the accurate SO TPSSh method which was validated in the previous benchmark calculations. The resulting energies were fitting into NPB via differential revolution method. The fitting is very successful and the error is only 0.015 eV/cluster.
引文
[1]Alder, B.J. and T.E. Wainwright, Phase Transition for a Hard Sphere System. The Journal of Chemical Physics,1957.27(5):p.1208-1209.
    [2]Alder, B.J. and T.E. Wainwright, Studies in Molecular Dynamics. I. General Method The Journal of Chemical Physics,1959.31(2):p.459-466.
    [3]Andersen, H.C., Molecular dynamics simulations at constant pressure and/or temperature. The Journal of Chemical Physics,1980.72(4):p.2384-2393.
    [4]Parrinello, M. and A. Rahman, Crystal Structure and Pair Potentials:A Molecular-Dynamics Study. Physical Review Letters,1980.45(14):p.1196-1199.
    [5]Nose, S., A unified formulation of the constant temperature molecular dynamics methods. The Journal of Chemical Physics,1984.81(1):p.511-519.
    [6]Car, R. and M. Parrinello, Unified Approach for Molecular Dynamics and Density-Functional Theory. Physical Review Letters,1985.55(22):p.2471-2474.
    [7]cagin, T. and B.M. Pettitt, Molecular-dynamics with a variable number of molecules. Molecular Physics,1991.72(1):p.169-175.
    [8]Rahman, A., Correlations in the Motion of Atoms in Liquid Argon. Physical Review,1964.136(2A): p. A405-A411.
    [9]Stillinger, F.H. and A. Rahman, Improved simulation of liquid water by molecular dynamics. The Journal of Chemical Physics,1974.60(4):p.1545-1557.
    [10]McCammon, J.A., B.R. Gelin, and M. Karplus, Dynamics of folded proteins. Nature,1977. 267(5612):p.585-590.
    [11]Frenkel, D. and B. Smit, Understanding Molecular Simulation, Second Edition:From Algorithms to Applications (Computational Science Series, Vol 1).2001:Academic Press.
    [12]Jones, J.E., On the Determination of Molecular Fields. Ⅱ. From the Equation of State of a Gas. Proceedings of the Royal Society of London. Series A,1924.106(738):p.463-477.
    [13]Tersoff, J., New empirical approach for the structure and energy of covalent systems. Physical Review B,1988.37(12):p.6991-7000.
    [14]Daw, M.S., S.M. Foiles, and M.I. Baskes, The embedded-atom method:a review of theory and applications. Materials Science Reports,1993.9(7-8):p.251-310.
    [15]Cleri, F. and V. Rosato, Tight-binding potentials for transition metals and alloys. Physical Review B,1993.48(1):p.22-33.
    [16]O.K., A., et al. Tight-Binding Approach to Computational Materials Science, in Materials Research Society.1998. Warrendale, PA.
    [17]Singh, U.C. and P.A. Kollman, A combined ab initio quantum mechanical and molecular mechanical method for carrying out simulations on complex molecular systems:Applications to the CH3C1+Cl-exchange reaction and gas phase protonation of polyethers. Journal of Computational Chemistry,1986.7(6):p.718-730.
    [18]Foiles, S.M., M.I. Baskes, and M.S. Daw, Embedded-atom-method functions for the FCC metal Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Physical Review B,1986.33(12):p.7983-7991.
    [19]Ercolessi, F., M. Parrinello, and E. Tosatti, Simulation of gold in the glue model. Philosophical Magazine A,1988.58(1):p.213-226.
    [20]Oh, D.J. and R.A. Johnson, Simple embedded atom method model for FCC and HCP metals. Journal of Materials Research,1988.3(3):p.471-478.
    [21]Ackland, G.J. and V. Vitek, Many-body potentials and atomic-scale relaxations in noble-metal alloys. Physical Review B,1990.41(15):p.10324-10333.
    [22]Cleri, F. and V. Rosato, Tight-binding potentials for transition-metals and alloys. Physical Review B,1993.48(1):p.22-33.
    [23]Kelchner, C.L., et al., Construction and evaluation of embedding functions. Surface Science,1994. 310(1-3):p.425-435.
    [24]Cai, J. and Y.Y. Ye, Simple analytical embedded-atom-potential model including a long-range force for fcc metals and their alloys. Physical Review B,1996.54(12):p.8398-8410.
    [25]Kallinteris, G.C., et al., Tight-binding interatomic potentials based on total-energy calculation: Application to noble metals using molecular-dynamics simulation. Physical Review B,1997.55(4):p. 2150-2156.
    [26]Gupta, R.P., Lattice relaxation at a metal surface. Physical Review B,1981.23(12):p.6265-6270.
    [27]Daw, M.S. and M.I. Baskes, Semiempirical, quantum-mechanical calculation of hydrogen embrittlement in metals. Physical Review Letters,1983.50(17):p.1285-1288.
    [28]Sutton, A.P. and J. Chen, Long-range finnis Sinclair potentials. Philosophical Magazine Letters, 1990.61(3):p.139-146.
    [29]Grochola, G., S.P. Russo, and I.K. Snook, On fitting a gold embedded atom method potential using the force matching method. Journal of Chemical Physics,2005.123(20):p.204719.
    [30]Luo, S.N., et al., Maximum superheating and undercooling:Systematics, molecular dynamics simulations, and dynamic experiments. Physical Review B,2003.68(13):p.134206.
    [31]Avinc, A. and V.I. Dimitrov, Effective Lennard-Jones potential for cubic metals in the frame of embedded atom model. Computation Materials Science,1999.13(4):p.211-217.
    [32]Jasper, A.W., et al., Analytic Potential Energy Functions for Aluminum Clusters. The Journal of Physical Chemistry B,2004.108(26):p.8996-9010.
    [33]Jasper, A.W., N.E. Schultz, and D.G. Truhlar, Analytic Potential Energy Functions for Simulating Aluminum Nanoparticles. The Journal of Physical Chemistry B,2005.109(9):p.3915-3920.
    [34]Li, Z.H. and D.G. Truhlar, Nanosolids, slushes, and nanoliquids:Characterization of nanophases in metal clusters and nanoparticles. Journal of the American Chemical Society,2008.130(38):p. 12698-12711.
    [35]Li, Z.H. and D.G. Truhlar, Cluster and nanoparticle condensation and evaporation reactions. Thermal rate constants and equilibrium constants of Al-m+Aln-m <-> Al-n with n=2-60 and m=1-8. Journal of Physical Chemistry C,2008.112(30):p.11109-11121.
    [36]Li, Z.H., A.W. Jasper, and D.G. Truhlar, Structures, rugged energetic landscapes, and nanothermodynamics of Al-n (2<= n<= 65) particles. Journal of the American Chemical Society, 2007.129(48):p.14899-14910.
    [37]Li, Z.H., et al., Free energies of formation of metal clusters and nanoparticles from molecular simulations:Al-n with n=2-60. Journal of Physical Chemistry C,2007.111(44):p.16227-16242.
    [38]Pyykko, P., Theoretical chemistry of gold. Angewandte Chemie International Edition,2004.43(34): p.4412-4456.
    [39]Pyykko, P., Theoretical chemistry of gold. Ⅱ. Inorganica Chimica Acta,2005.358(14):p. 4113-4130.
    [40]Pyykko, P., Theoretical chemistry of gold. Ⅲ. Chemical Society Reviews,2008.37(9):p. 1967-1997.
    [41]Rousseau, R., et al., Probing cluster structures with sensor molecules:methanol adsorbed onto gold clusters. Chemical Physics Letters,1998.295(1-2):p.41-46.
    [42]Mejias, J.A., Theoretical study of adsorption of Cu, Ag, and Au on the NaCl(100) surface. Physical Review B,1996.53(15):p.10281-10288.
    [43]Sanchez, A., et al., When gold is not noble:Nanoscale gold catalysts. Journal of Physical Chemistry A,1999.103(48):p.9573-9578.
    [44]Hakkinen, H., et al., Structural, electronic, and impurity-doping effects in nanoscale chemistry: Supported gold nanoclusters. Angewandte Chemie International Edition,2003.42(11):p.1297-1300.
    [45]Perez-Jimenez, A.J., et al., Analysis of scanning tunneling spectroscopy experiments from first principles:The test case of C-60 adsorbed on Au(111). Chemphyschem,2003.4(4):p.388-392.
    [46]Han, Y.K., Structure of Au-8:Planar or nonplanar? Journal of Chemical Physics,2006.124(2):p. 024316.
    [47]Xiao, L., et al., Structural study of gold clusters. Journal of Chemical Physics,2006.124(11):p. 114309.
    [48]Xiao, L. and L.C. Wang, From planar to three-dimensional structural transition in gold clusters and the spin-orbit coupling effect Chemical Physics Letters,2004.392(4-6):p.452-455.
    [49]Bravo-Perez, G., I.L. Garzon, and O. Novaro, Ab initio study of small gold clusters. Journal of Molecular Structure,1999.493:p.225-231.
    [50]Bravo-Perez, G., I.L. Garzon, and O. Novaro, Non-additive effects in small gold clusters. Chemical Physics Letters,1999.313(3-4):p.655-664.
    [51]Olson, R.M., et al., Where does the planar-to-nonplanar turnover occur in small gold clusters? Journal of the American Chemical Society,2005.127(3):p.1049-1052.
    [52]Wilson, N.T. and R.L. Johnston, Modelling gold clusters with an empirical many-body potential. European Physical Journal D,2000.12(1):p.161-169.
    [53]Michaelian, K., N. Rendon, and I.L. Garzon, Structure and energetics of Ni, Ag, and Au nanoclusters. Physical Review B,1999.60(3):p.2000-2010.
    [54]Balasubramanian, K. and D.W. Liao, Is Au6 a circular ring. Journal of Chemical Physics,1991. 94(7):p.5233-5236.
    [55]Wang, J.L., G.H. Wang, and J.J. Zhao, Density-functional study of Au-n(n=2-20) clusters: Lowest-energy structures and electronic properties. Physical Review B,2002.66(3):p.035418.
    [56]Hakkinen, H. and U. Landman, Gold clusters (Au-N,2<= N<= 10) and their anions. Physical Review B,2000.62(4):p. R2287-R2290.
    [57]Remacle, F. and E.S. Kryachko, Small gold clusters Au5<= n<= 8 and their cationic and anionic cousins. Advances in Quantum Chemistry,2004.47:p.423-464.
    [58]Remacle, F. and E.S. Kryachko, Structure and energetics of two-and three-dimensional neutral, cationic, and anionic gold clusters Au-5<= n<=(Z) (Z=0,+/-1). Journal of Chemical Physics,2005. 122(4):p.044304.
    [59]Walker, A.V., Structure and energetics of small gold nanoclusters and their positive ions. Journal of Chemical Physics,2005.122(9):p.094310.
    [60]Femandez, E.M., J.M. Soler, and L.C. Balbas, Planar and cagelike structures of gold clusters: Density-functional pseudopotential calculations. Physical Review B,2006.73(23):p.235433.
    [61]Fernandez, E.M., et al., Trends in the structure and bonding of noble metal clusters. Physical Review B,2004.70(16):p.165403.
    [62]Bonacic-Koutecky, V., et al., Density functional study of structural and electronic properties of bimetallic silver-gold clusters:Comparison with pure gold and silver clusters. Journal of Chemical Physics,2002.117(7):p.3120-3131.
    [63]Gronbeck, H. and P. Broqvist, Comparison of the bonding in Au-8 and Cu-8:A density functional theory study. Physical Review B,2005.71(7):p.073408.
    [64]Gronbeck, H. and W. Andreoni, Gold and platinum microclusters and their anions:comparison of structural and electronic properties. Chemical Physics,2000.262(1):p.1-14.
    [65]Gilb, S., et al., Structures of small gold cluster cations (Au-n(+), n< 14):Ion mobility measurements versus density functional calculations. Journal of Chemical Physics,2002.116(10):p. 4094-4101.
    [66]Furche, F., et al., The structures of small gold cluster anions as determined by a combination of ion mobility measurements and density functional calculations. Journal of Chemical Physics,2002. 117(15):p.6982-6990.
    [67]Hakkinen, H., et al., On the electronic and atomic structures of small Au-N(-) (N=4-14) clusters:A photoelectron spectroscopy and density-functional study. Journal of Physical Chemistry A,2003. 107(32):p.6168-6175.
    [68]Lee, H.M., et al., Geometrical and electronic structures of gold, silver, and gold-silver binary clusters:Origins of ductility of gold and gold-silver alloy formation. Journal of Physical Chemistry B, 2003.107(37):p.9994-10005.
    [69]Fa, W., C.F. Luo, and J.M. Dong, Bulk fragment and tubelike structures of Au-N (N=2-26). Physical Review B,2005.72(20):p.205428.
    [70]Fa, W. and J.M. Dong, Possible ground-state structure of Au-26:A highly symmetric tubelike cage. Journal of Chemical Physics,2006.124(11):p.114310.
    [71]Diefenbach, M. and K.S. Kim, Spatial structure of Au-8:Importance of basis set completeness and geometry relaxation. Journal of Physical Chemistry B,2006.110:p.21639-21642.
    [72]Yoon, B., et al., Size-dependent structural evolution and chemical reactivity of gold clusters. ChemPhysChem,2007.8:p.157-161.
    [73]Bulusu, S., et al., Structural transitions from pyramidal to fused planar to tubular to core/shell compact in gold clusters:Au-n(-) (n=21-25). Journal of Physical Chemistry C,2007.111(11):p. 4190-4198.
    [74]Gu, X., et al., Au-34(-):A fluxional core-shell cluster. Journal of Physical Chemistry C,2007. 111(23):p.8228-8232.
    [75]Kryachko, E.S. and F. Remacle, The magic gold cluster AU(20). International Journal of Quantum Chemistry,2007.107(14):p.2922-2934.
    [76]Lechtken, A., et al., Au-34(-):A chiral gold cluster? Angewandte Chemie International Edition, 2007.46(16):p.2944-2948.
    [77]Komarov, P.V., L.V. Zherenkova, and P.G. Khalatur, Computer simulation of the assembly of gold nanoparticles on DNA fragments via electrostatic interaction. Journal of Chemical Physics,2008. 128(12):p.124909.
    [78]Ren, S.W., Melting of the glasslike 19-atom gold cluster. International Journal of Modern Physics C:Computational Physics and Physical Computation 2009.20(5):p.667-675.
    [79]Verma, V. and K. Dharamvir, Stability of Thin Gold Nano Wires. Journal of Nano Research,2008. 4:p.65-77.
    [80]Rodrigues, D.D.C., et al., Global optimization analysis of CunAum (n+m=38) clusters: Complementary ab initio calculations. Chemical Physics,2008.349(1-3):p.91-97.
    [81]Balucani, N., et al., Dynamics of the insertion reaction C(D-1)+H-2:A comparison of crossed molecular beam experiments with quasiclassical trajectory and quantum mechanical scattering calculations. Physical Chemistry Chemical Physics,2004.6(21):p.4957-4967.
    [82]Qiu, M.H., et al., Observation of Feshbach resonances in the F+H-2-> HF+H reaction. Science, 2006.311(5766):p.1440-1443.
    [83]Althorpe, S.C., et al., Observation and interpretation of a time-delayed mechanism in the hydrogen exchange reaction. Nature,2002.416(6876):p.67-70.
    [84]Che, L., et al., Breakdown of the Born-Oppenheimer approximation in the F+o-D-2-> DF+D reactioa Science,2007.317(5841):p.1061-1064.
    [85]Wang, X.G., et al., The extent of non-Born-Oppenheimer coupling in the reaction of Cl(P-2) with para-H-2. Science,2008.322(5901):p.573-576.
    [86]Balucani, N., et al., Dynamics of the N(D-2)+D-2 reaction from crossed-beam and quasiclassical trajectory studies. Journal of Physical Chemistry A,2001.105(11):p.2414-2422.
    [87]Balucani, N., et al., Crossed molecular beam reactive scattering:from simple triatomic to multichannel polyatomic reactions. International Reviews in Physical Chemistry,2006.25(1-2):p. 109-163.
    [88]Balucani, N., et al., Experimental and theoretical differential cross sections for the N(D-2)+H-2 reaction. Journal of Physical Chemistry A,2006.110(2):p.817-829.
    [89]Balucani, N., et al., Dynamics of the C(D-1)+D-2 reaction:A comparison of crossed molecular-beam experiments with quasiclassical trajectory and accurate statistical calculations. Journal of Chemical Physics,2005.122(23):p.234309.
    [90]Balucani, N., et al., Quantum effects in the differential cross sections for the insertion reaction N(D-2)+H-2. Physical Review Letters,2002.89(1):p.013201.
    [91]Jasper, A.W., et al., in Modern Trends in Chemical Reaction Dynamics:Experiment and Theory, X. Yang and K. Liu, Editors.2004, World Scientific Publishing Company:Singapore, p.329-392.
    [92]Schnieder, L., et al., Experimental studies and theoretical predictions for the H+D2->HD+d reaction. Science,1995.269:p.207-210.
    [93]Alagia, M., et al., Dynamics of the simplest chlorine atom reaction:An experimental and theoretical study. Science,1996.273(5281):p.1519-1522.
    [94]Skouteris, D., et al., van der Waals interactions in the Cl+HD reaction. Science,1999.286(5445):p. 1713-1716.
    [95]Skodje, R.T. and X.M. Yang, The observation of quantum bottleneck states. International Reviews in Physical Chemistry,2004.23(2):p.253-287.
    [96]Yang, X.M., State-to-state dynamics of elementary chemical reactions using Rydberg H-atom translational spectroscopy. International Reviews in Physical Chemistry,2005.24(1):p.37-98.
    [97]Martinez-Nunez, E., et al., Quasiclassical dynamics simulation of the collision-induced dissociation of Cr(CO)(6)(+) with Xe. Journal of Chemical Physics,2005.123(15):p.154311.
    [98]Liu, K.P., Recent advances in crossed-beam studies of bimolecular reactions. Journal of Chemical Physics,2006.125(13):p.132307.
    [99]M.Polanyi, Atomic Reactions.1932, London:Williams and Norgate.
    [100]Herschbach, D.R., Molecular-dynamics of chemical-reactions. Pure and Applied Chemistry,1976. 47(1):p.61-73.
    [101]Herschba.Dr, Reactive scattering-introduction. Faraday Discussions,1973.55:p.233-251.
    [102]Xing, X.P., et al., Structural evolution of Au nanoclusters:From planar to cage to tubular motifs. Physical Review B,2006.74(16):p.165423.
    [103]Johansson, M.P., et al.,2D-3D transition of gold cluster anions resolved Physical Review A, 2008.77(5):p.053202.
    [104]Hakkinen, H., M. Moseler, and U. Landman, Bonding in Cu, Ag, and Au clusters:Relativistic effects, trends, and surprises. Physical Review Letters,2002.89(3):p.033401.
    [105]Boese, A.D., et al., From ab initio quantum chemistry to molecular dynamics:The delicate case of hydrogen bonding in ammonia Journal of Chemical Physics,2003.119(12):p.5965-5980.
    [106]Assadollahzadeh, B. and P. Schwerdtfeger, A systematic search for minimum structures of small gold clusters Au-n (n=2-20) and their electronic properties. Journal of Chemical Physics,2009.131(6): p.064306.
    [107]Bulusu, S. and X.C. Zeng, Structures and relative stability of neutral gold clusters:Au-n (n=15-19). Journal of Chemical Physics,2006.125(15):p.154303.
    [108]Huang, W., et al., Isomer identification and resolution in small gold clusters-art. no.054305. Journal of Chemical Physics,2010.132(5):p.054305.
    [109]Li, X.B., et al., Size dependence of the structures and energetic and electronic properties of gold clusters. Journal of Chemical Physics,2007.126(8):p.084505.
    [110]Olson, R.M. and M.S. Gordon, Isomers of Au8. J Chem Phys; 2007.126(21):p.214310.
    [111]Yang, A., W. Fa, and J. Dong, Geometrical structures and vibrational spectroscopy of medium-sized neutral Aun(n=17-26) clusters. Physics Letters A,2010.374(44):p.4506-4511.
    [112]Huang, W., et al., Isomer identification and resolution in small gold clusters. Journal of Chemical Physics,2010.132(5):p.054305.
    [113]Schwerdtfeger, P. and M. Lein, Theoretical Chemistry of Gold-From Atoms to Molecules, Clusters, Surfaces and the Solid State, in Gold Chemistry:Applications and future directions in the life sciences, F. Mohr, Editor.2009, Wiley:New York. p.183-248.
    [114]Mantina, M., R. Valero, and D.G. Truhlar, Validation study of the ability of density functionals to predict the planar-to-three-dimensional structural transition in anionic gold clusters. Journal of Chemical Physics,2009.131(6):p.064706.
    [115]Ferrighi, L., B. Hammer, and G.K.H. Madsen,2D-3D transition for cationic and anionic gold clusters:a kinetic energy density functional study. Journal of the American Chemical Society,2009. 131(30):p.10605-10609.
    [116]Zhao, Y. and D.G. Truhlar, A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. Journal of Chemical Physics,2006.125(19):p.194101.
    [117]Tao, J.M., et al., Climbing the density functional ladder:Nonempirical meta-generalized gradient approximation designed for molecules and solids. Physical Review Letters,2003.91(14):p.146301.
    [118]Staroverov, V.N., et al., Comparative assessment of a new nonempirical density functional: Molecules and hydrogen-bonded complexes. Journal of Chemical Physics,2003.119(23):p. 12129-12137.
    [1]Kohn, W., A.D. Becke, and R.G. Parr, Density Functional Theory of Electronic Structure. The Journal of Physical Chemistry,1996.100(31):p.12974-12980.
    [2]Kohn, W., Nobel Lecture:Electronic structure of matter, wave functions and density functionals. Reviews of Modern Physics,1999.71(5):p.1253-1266.
    [3]Jones, R.O. and O. Gunnarsson, The density functional formalism, its applications and prospects. Reviews of Modern Physics,1989.61(3):p.689-746.
    [4]Ziegler, T., Approximate density functional theory as a practical tool in molecular energetics and dynamics. Chemical Reviews,1991.91(5):p.651-667.
    [5]Parr, R. and Y. Weitao, Density-Functional Theory of Atoms and Molecules.1994, New York:Oxford University Press.
    [6]Singnurkar, P., et al., DFT and RAIRS Investigations of Methanol on Cu(110) and on Oxygen-Modified Cu(110). The Journal of Physical Chemistry C,2008.112(36):p. 14034-14040.
    [7]Payne, M.C., et al., Iterative minimization techniques for ab initio total-energy calculations:molecular dynamics and conjugate gradients. Reviews of Modern Physics,1992.64(4):p.1045-1097.
    [8]Mattsson, T.R. and S.J. Paddison, Methanol at the water-platinum interface studied by ab initio molecular dynamics. Surface Science,2003.544(2-3):p. L697-L702.
    [9]Pulay, P. and G. Fogarasi, Geometry optimization in redundant internal coordinates. The Journal of Chemical Physics,1992.96(4):p.2856-2860.
    [10]Thomas, L.H., The calculation of atomic fields. Mathematical Proceedings of the Cambridge Philosophical Society,1927.23(5):p.542-548.
    [11]Fermi, E., Un Metodo Statistico per la Determinazione di alcune Prioprieta dell'Atomo. Rend. Accad. Naz. Lincei 1927.6:p.602-607.
    [12]Hohenberg, P. and W. Kohn, Inhomogeneous Electron Gas. Physical Review, 1964.136(3B):p. B864-B871.
    [13]Kohn, W. and L.J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects. Physical Review,1965.140(4A):p. A1133-A1138.
    [14]Wigner, E., Effects of the electron interaction on the energy levels of electrons in metals. Transactions of the Faraday Society,1938.34:p.678-685.
    [15]Hedin, L. and B.I. Lundqvist, Explicit local exchange-correlation potentials. Journal of Physics C:Solid State Physics,1971.4(14):p.2064-2083.
    [16]Vosko, S.H., L. Wilk, and M. Nusair, Accurate spin-dependent electron liquid correlation energies for local spin density calculations:a critical analysis. Can. J. Phys.,1980.58(8):p.1200-1211.
    [17]Perdew, J.P., K. Burke, and Y. Wang, Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Physical Review B,1996. 54(23):p.16533-16539.
    [18]Wang, Y. and J.P. Perdew, Correlation hole of the spin-polarized electron gas, with exact small-wave-vector and high-density scaling. Physical Review B,1991. 44(24):p.13298-13307.
    [19]Becke, A.D., Density-functional thermochemistry. Ⅱ. The effect of the Perdew--Wang generalized-gradient correlation correction. The Journal of Chemical Physics,1992.97(12):p.9173-9177.
    [20]Kurth, S., J.P. Perdew, and P. Blaha, Molecular and solid-state tests of density functional approximations:LSD, GGAs, and meta-GGAs. International Journal of Quantum Chemistry,1999.75(4-5):p.889-909.
    [21]Ghosh, S.K. and R.G. Parr, Phase-space approach to the exchange-energy functional of density-functional theory. Physical Review A,1986.34(2):p.785-791.
    [22]Becke, A.D. and M.R. Roussel, Exchange holes in inhomogeneous systems:A coordinate-space model. Physical Review A,1989.39(8):p.3761-3767.
    [23]Becke, A.D., A new mixing of Hartree--Fock and local density-functional theories. The Journal of Chemical Physics,1993.98(2):p.1372-1377.
    [24]Lee, S.Y. and Y.S. Lee, Kramers'restricted hartree—fock method for polyatomic molecules using ab initio relativistic effective core potentials with spin—orbit operators. Journal of Computational Chemistry,1992.13(5):p.595-601.
    [25]Lee, Y.S., W.C. Ermler, and K.S. Pitzer, Ab initio effective core potentials including relativistic effects. V. SCF calculations with omega--omega coupling including results for Au[sub 2][sup+], T1H, PbS, and PbSe. The Journal of Chemical Physics,1980.73(1):p.360-366.
    [26]Ermler, W.C., et al., AB initio effective core potentials including relativistic effects. A procedure for the inclusion of spin-orbit coupling in molecular wavefunctions. Chemical Physics Letters,1981.81(1):p.70-74.
    [27]Daw, M.S. and M.I. Baskes, Semiempirical, Quantum Mechanical Calculation of Hydrogen Embrittlement in Metals. Physical Review Letters,1983.50(17):p. 1285-1288.
    [28]Daw, M.S. and M.I. Baskes, Embedded-atom method:Derivation and application to impurities, surfaces, and other defects in metals. Physical Review B,1984.29(12): p.6443-6453.
    [29]Nishitani, S.R., et al., Grain boundary energies of Al simulated by environment-dependent embedded atom method. Materials Science and Engineering A,2001.309-310:p.490-494.
    [30]Ercolessi, F., M. Parrinello, and E. Tosatti, Simulation of gold in the glue model. Philosophical Magazine A,1988.58(1):p.213-226.
    [31]Gupta, R.P., Lattice relaxation at a metal surface. Physical Review B,1981. 23(12):p.6265-6270.
    [32]Tom, et al., Calculation of elastic strain and electronic effects on surface segregation. Physical Review B,1985.32(8):p.5051-5056.
    [33]Sutton, A.P. and J. Chen, Long-range finnis Sinclair potentials. Philosophical Magazine Letters,1990.61(3):p.139-146.
    [34]Foiles, S.M., M.I. Baskes, and M.S. Daw, Embedded-atom-method functions for the FCC metal Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Physical Review B,1986. 33(12):p.7983-7991.
    [35]Johnson, R.A., Analytic nearest-neighbor model for fcc metals. Physical Review B,1988.37(8):p.3924-3931.
    [36]Johnson, R.A., Alloy models with the embedded-atom method. Physical Review B,1989.39(17):p.12554-12559.
    [37]Johnson, R.A., Phase stability of fcc alloys with the embedded-atom method. Physical Review B,1990.41(14):p.9717-9720.
    [38]Baskes, M.I., Modified embedded-atom potentials for cubic materials and impurities. Physical Review B,1992.46(5):p.2727-2742.
    [39]Mei, J. and J.W. Davenport, Free-energy calculations and the melting point of Al. Physical Review B,1992.46(1):p.21-25.
    [40]Mei, J., J.W. Davenport, and G.W. Fernando, Analytic embedded-atom potentials for fee metals:Application to liquid and solid copper. Physical Review B,1991.43(6): p.4653-4658.
    [41]Jasper, A.W., et al., Analytic Potential Energy Functions for Aluminum Clusters. The Journal of Physical Chemistry B,2004.108(26):p.8996-9010.
    [42]Jasper, A.W., N.E. Schultz, and D.G. Truhlar, Analytic Potential Energy Functions for Simulating Aluminum Nanoparticles. The Journal of Physical Chemistry B,2005.109(9):p.3915-3920.
    [43]Tang, M.S., et al., Environment-dependent tight-binding potential model. Physical Review B,1996.53(3):p.979-982.
    [44]Haas, H., et al., Environment-dependent tight-binding model for molybdenum. Physical Review B,1998.57(3):p.1461-1470.
    [45]Tuckerman, M., B.J. Berne, and G.J. Martyna, Reversible multiple time scale molecular dynamics. The Journal of Chemical Physics,1992.97(3):p.1990-2001.
    [46]Sexton, J.C. and D.H. Weingarten, Hamiltonian evolution for the hybrid Monte Carlo algorithm. Nuclear Physics B,1992.380(3):p.665-677.
    [47]E. J. Bylaska, W.A.d.J., N. Govind, K. Kowalski, T. P. Straatsma, M. Valiev, D. Wang, E. Apra, T. L. Windus, J. Hammond, P. Nichols, S. Hirata, M. T. Hackler, Y. Zhao, P.-D. Fan, R. J. Harrison, M. Dupuis, D. M. A. Smith, J. Nieplocha, V. Tipparaju, M. Krishnan, Q. Wu, T. Van Voorhis, A. A. Auer, M. Nooijen, E. Brown, G. Cisneros, G. I. Fann, H. Fruchtl, J. Garza, K. Hirao, R. Kendall, J. A. Nichols, K. Tsemekhman, K. Wolinski, J. Anchell, D. Bernholdt, P. Borowski, T. Clark, D. Clerc, H. Dachsel, M. Deegan, K. Dyall, D. Elwood, E. Glendening, M. Gutowski, A. Hess, J. Jaffe, B. Johnson, J. Ju, R. Kobayashi, R. Kutteh, Z. Lin, R. Littlefield, X. Long, B. Meng, T. Nakajima, S. Niu, L. Pollack, M. Rosing, G. Sandrone, M. Stave, H. Taylor, G. Thomas, J. van Lenthe, A. Wong, and Z. Zhang, NWChem, A Computational Chemistry Package for Parallel Computers, Version 5.1.2007:Pacific Northwest National Laboratory, Richland, Washington 99352-0999, USA.
    [48]M. J. Frisch, G.W.T., H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, Montgomery, Jr., J. A., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09 Revision A.I.
    [49]Zhen Hua Li, A.W.J., David A. Bonhommeau, Rosendo Valero, and Donald G. Truhlar, A molecular dynamics program for performing classical and semiclassical trajectory simulations for electronically adiabatic and nonadiabatic processes for gas phase and materials systems.2007.
    [50]Soler, J.M., et al., The SIESTA method for ab initio order-N materials simulation. Journal of Physics:Condensed Matter,2002.14(11):p.2745-2779.
    [1]Lee, Y.T., Molecular-beam studies of elementary chemical processes. Science,1987.236(4803): p.793-798.
    [2]Casavecchia, P., Chemical reaction dynamics with molecular beams. Reports on Progress in Physics,2000.63(3):p.355-414.
    [3]Casavecchia, P., et al., Probing the dynamics of polyatomic multichannel elementary reactions by crossed molecular beam experiments with soft electron-ionization mass spectrometric detection. Physical Chemistry Chemical Physics,2009.11(1):p.46-65.
    [4]Herschbach, D.R., Molecular-dynamics of elementary chemical-reactions (nobel lecture). Angewandte Chemie International Edition in English,1987.26(12):p.1221-1243.
    [5]Levine, R.D., Molecular reaction dynamics.2005, New York:Cambridge University Press.
    [6]Jasper, A.W., et al., in Modern Trends in Chemical Reaction Dynamics:Experiment and Theory, X. Yang and K. Liu, Editors.2004, World Scientific Publishing Company:Singapore, p.329-392.
    [7]Balucani, N., et al., Dynamics of the insertion reaction C(D-1)+H-2:A comparison of crossed molecular beam experiments with quasiclassical trajectory and quantum mechanical scattering calculations. Physical Chemistry Chemical Physics,2004.6(21):p.4957-4967.
    [8]Qiu, M.H., et al., Observation of Feshbach resonances in the F+H-2-> HF+H reaction. Science, 2006.311(5766):p.1440-1443.
    [9]Althorpe, S.C., et al., Observation and interpretation of a time-delayed mechanism in the hydrogen exchange reaction. Nature,2002.416(6876):p.67-70.
    [10]Che, L., et al., Breakdown of the Born-Oppenheimer approximation in the F+o-D-2-> DF+D reaction. Science,2007.317(5841):p.1061-1064.
    [11]Wang, X.G., et al., The extent of non-Born-Oppenheimer coupling in the reaction of Cl(P-2) with para-H-2. Science,2008.322(5901):p.573-576.
    [12]Balucani, N., et al., Dynamics of the N(D-2)+D-2 reaction from crossed-beam and quasiclassical trajectory studies. Journal of Physical Chemistry A,2001.105(11):p.2414-2422.
    [13]Balucani, N., et al., Crossed molecular beam reactive scattering:from simple triatomic to multichannel polyatomic reactions. International Reviews in Physical Chemistry,2006.25(1-2):p. 109-163.
    [14]Balucani, N., et al., Experimental and theoretical differential cross sections for the N(D-2)+H-2 reaction. Journal of Physical Chemistry A,2006.110(2):p.817-829.
    [15]Balucani, N., et al., Dynamics of the C(D-1)+D-2 reaction:A comparison of crossed molecular-beam experiments with quasiclassical trajectory and accurate statistical calculations. Journal of Chemical Physics,2005.122(23):p.234309.
    [16]Balucani, N., et al., Quantum effects in the differential cross sections for the insertion reaction N(D-2)+H-2. Physical Review Letters,2002.89(1):p.013201.
    [17]Schnieder, L., et al., Experimental studies and theoretical predictions for the H+D2->HD+d reaction. Science,1995.269:p.207-210.
    [18]Alagia, M., et al., Dynamics of the simplest chlorine atom reaction:An experimental and theoretical study. Science,1996.273(5281):p.1519-1522.
    [19]Skouteris, D., et al., van der Waals interactions in the Cl+HD reaction. Science,1999. 286(5445):p.1713-1716.
    [20]Skodje, R.T. and X.M. Yang, The observation of quantum bottleneck states. International Reviews in Physical Chemistry,2004.23(2):p.253-287.
    [21]Yang, X.M., State-to-state dynamics of elementary chemical reactions using Rydberg H-atom translational spectroscopy. International Reviews in Physical Chemistry,2005.24(1):p.37-98.
    [22]Martinez-Nunez, E., et al., Quasiclassical dynamics simulation of the collision-induced dissociation of Cr(CO)(6)(+) with Xe. Journal of Chemical Physics,2005.123(15):p.154311.
    [23]Muntean, F. and P.B. Armentrout, Guided ion beam study of collision-induced dissociation dynamics:integral and differential cross sections. Journal of Chemical Physics,2001.115(3):p. 1213-1228.
    [24]Espinosa-Garcia, J., Quasi-classical trajectory study of the hydrogen abstraction F+CHD3 reaction:A state-to-state dynamics analysis. Chemical Physics Letters,2008.454(4-6):p.158-162.
    [25]Zhang, D.H., M.A. Collins, and S.Y. Lee, First-principles theory for the H+H2O, D2O reactions. Science,2000.290(5493):p.961-963.
    [26]Truhlar, D.G. and D.A. Dixon, in Atom-Molecule Collision Theory:A Guide for the Experimentalist, R.B. Bernstein, Editor.1979, Plenum Press:New York. p.595-646.
    [27]Liu, K.P., Recent advances in crossed-beam studies of bimolecular reactions. Journal of Chemical Physics,2006.125(13):p.132307.
    [28]M.Polanyi, Atomic Reactions.1932, London:Williams and Norgate.
    [29]Herschbach, D.R., Molecular-dynamics of chemical-reactions. Pure and Applied Chemistry, 1976.47(1):p.61-73.
    [30]Herschbach, D.R., Reactive scattering-introduction. Faraday Discussions,1973.55:p. 233-251.
    [31]Neumark, D.M., et al., Molecular-beam studies of the F+D2 and F+HD reactions. Journal of Chemical Physics,1985.82(7):p.3067-3077.
    [32]Miller, W.B., S.A. Safron, and Herschba.Dr, Molecular-beam kinetics-4-atom collision complexes in exchange-reactions of cscl with KC1 and KI. Journal of Chemical Physics,1972. 56(7):p.3581-3592.
    [33]Jarvis, R.D. and R. Grice, Angular-distributions of reactive scattering arising from persistent complexes with prolate symmetric top transition-states. Molecular Physics,1988.65(5):p. 1205-1216.
    [34]Grice, R., Dynamics of persistent collision complexes in molecular-beam reactive scattering. International Reviews in Physical Chemistry,1995.14(2):p.315-326.
    [35]Rangel, C, et al., Product angular distribution for the H+CD4-> HD+CD3 reaction. Journal of Physical Chemistry A,2006.110(37):p.10715-10719.
    [36]Espinosa-Garcia, J., Quasi-classical trajectory study of the F+CD4 reaction dynamics. Journal of Physical Chemistry A,2007.111(18):p.3497-3501.
    [37]Espinosa-Garcia, J., Role of the C-H stretch mode excitation in the dynamics of the C1+CHD3 reaction:A quasi-classical trajectory calculation. Journal of Physical Chemistry A,2007.111(39): p.9654-9661.
    [38]Espinosa-Garcia, J., Quasi-classical trajectory calculations analyzing the dynamics of the C-H stretch mode excitation in the H+CHD3 reaction. Journal of Physical Chemistry A,2007.111 (26): p.5792-5799.
    [39]Nyman, G. and J. Espinosa-Garcia, Reduced dimensionality quantum scattering calculations on the F+CH4-> FH+CH3 reaction. Journal of Physical Chemistry A,2007.111(47):p. 11943-11947.
    [40]Espinosa-Garcia, J. and J.L. Bravo, State-to-state dynamics analysis of the F+CHD3 reaction: A Quasiclassical trajectory study. Journal of Physical Chemistry A,2008.112(27):p.6059-6065.
    [41]Gu, X.B. and R.I. Kaiser, Reaction dynamics of phenyl radicals in extreme environments:a crossed molecular beam study. Accounts of Chemical Research,2009.42(2):p.290-302.
    [42]Hanley, L., S.A. Ruatta, and S.L. Anderson, Collision-induced dissociation of aluminum cluster ions-fragmentation patterns, bond-energies, and structures for Al-2(+)-Al-7(+). Journal of Chemical Physics,1987.87(1):p.260-268.
    [43]Jarrold, M.F. and J.E. Bower, Collision-induced dissociation of aluminum cluster ions with chemisorbed oxygen, Al-3-26O-l,2+-influence of electronic-structure on stability. Journal of Chemical Physics,1987.87(3):p.1610-1619.
    [44]Jarrold, M.F., J.E. Bower, and J.S. Kraus, Collision-induced dissociation of metal cluster ions-bare aluminum clusters, Aln+(n=3-26). Journal of Chemical Physics,1987.86(7):p.3876-3885.
    [45]Loh, S.K., et al., Collision-induced dissociation of Fe2-10+with Xe-ionic and neutral iron-binding energies. Journal of Chemical Physics,1989.90(10):p.5466-5485.
    [46]Loh, S.K., et al., Collision-induced dissociation processes of Nb-4+and Fe-4+-fission vs evaporation. Journal of Chemical Physics,1988.89(1):p.610-611.
    [47]Gord, J.R., R.J. Bemish, and B.S. Freiser, Collision-induced dissociation of positive and negative copper-oxide cluster ions generated by direct laser desorption ionization of copper-oxide. International Journal of Mass Spectrometry and Ion Processes,1990.102:p.115-132.
    [48]Uggerud, E. and P.J. Derrick, Theory of collisional activation of macromolecules-impulsive collisions of organic ions. Journal of Physical Chemistry,1991.95(3):p.1430-1436.
    [49]Leuchtner, R.E., A.C. Harms, and A.W. Castleman, Aluminum cluster reactions. Journal of Chemical Physics,1991.94(2):p.1093-1101.
    [50]Becker, S., et al., Collision-induced dissociation of stored gold cluster ions. Zeitschrift fuer Physik D:Atoms, Molecules and Clusters,1994.30(4):p.341-348.
    [51]Desainteclaire, P., G.H. Peslherbe, and W.L. Hase, Energy-transfer dynamics in the collision-induced dissociation of Al-6 and Al-13 clusters. Journal of Physical Chemistry,1995. 99(20):p.8147-8161.
    [52]Jiao, C.Q. and B.S. Freiser, Reaction of Nbn(+) (n=2-6) with ethylene in the gas-phase-collision-induced dissociation studies of ionic products. Journal of Physical Chemistry,1995. 99(12):p.3969-3977.
    [53]Venkatesh, R., et al., Thermal collision rate constants for small nickel clusters of size 2-14 atoms. Journal of Chemical Physics,1995.102(19):p.7683-7699.
    [54]Andersson, M., J.L. Persson, and A. Rosen, Reactivity of Fe-n, Co-n, and Cu-n clusters with O-2 and D-2 studied at single-collision conditions. Journal of Physical Chemistry,1996.100(30): p.12222-12234.
    [55]Hase, W.L. and P. de sainte Claire. Simulations of energy transfer in the collision-induced dissociation of Al-6(O-h) clusters by rare-gas impact, in Symposium on Highly Excited Molecules-Relaxation, Reaction, and Structure, at the 212th National Meeting of the American-Chemical-Society.1996. Orlando, Florida.
    [56]Terasaki, A., et al., Fragmentation process of size-selected aluminum cluster anions in collision with a silicon surface. Journal of Chemical Physics,1996.104(4):p.1387-1393.
    [57]Terasaki, A., et al., Fragmentation dynamics of silicon cluster anions in collision with a silicon surface:Contrast to aluminum cluster anions. Chemical Physics Letters,1996.262(3-4):p. 269-273.
    [58]Grushow, A. and K.M. Ervin, Ligand and metal binding energies in platinum carbonyl cluster anions:Collision-induced dissociation of Pt-m(-) and Pt-m(CO)(n)(-). Journal of Chemical Physics,1997.106(23):p.9580-9593.
    [59]Ming, L., et al., Collision dynamics of large argon clusters. Journal of Physical Chemistry A, 1997.101(22):p.4011-4018.
    [60]Saalmann, U. and R. Schmidt, Excitation and relaxation in atom-cluster collisions. Physical Review Letters,1998.80(15):p.3213-3216.
    [61]Svanberg, M., et al., Collision dynamics of large water clusters. Journal of Chemical Physics, 1998.108(14):p.5888-5897.
    [62]Barat, M., et al., Collision induced fragmentation of small ionic sodium clusters:Competition between electronic and impulsive mechanisms. Journal of Chemical Physics,1999.110(22):p. 10758-10765.
    [63]Barat, M., et al., Complete analysis of the Na-3(+) fragmentation in collision with He atoms. Chemical Physics Letters,1999.306(5-6):p.233-238.
    [64]Ingolfsson, O., H. Takeo, and S. Nonose, Electronic shell model contemplation of the dissociation dynamics of Al-8(+):a collision-induced dissociation study. Chemical Physics Letters, 1999.311(6):p.421-427.
    [65]Ingolfsson, O., H. Takeo, and S. Nonose, Energy-resolved collision-induced dissociation of Al-n(+) clusters (n=2-ll) in the center of mass energy range from few hundred meV to 10 eV. Journal of Chemical Physics,1999.110(9):p.4382-4393.
    [66]Kruckeberg, S., et al., Multiple-collision induced dissociation of trapped silver clusters Ag-n(+) (2<=n<=25). Journal of Chemical Physics,1999.110(15):p.7216-7227.
    [67]Spasov, V.A., et al., Measurement of the dissociation energies of anionic silver clusters (Ag-n(-), n= 2-11) by collision-induced dissociation. Journal of Chemical Physics,1999.110(11): p.5208-5217.
    [68]Babikov, D., et al., Fragmentation of Na-3(+) clusters following He impact:Theoretical analysis of fragmentation mechanisms. Journal of Chemical Physics,2000.112(21):p.9417-9426.
    [69]Barat, M., et al., Collision induced fragmentation of small ionic sodium clusters. Ⅱ. Three-body fragmentation. Journal of Chemical Physics,2000.113(3):p.1061-1066.
    [70]Ingolfsson, O., U. Busolt, and K. Sugawara, Energy-resolved collision-induced dissociation of Cu-n(+) (n=2-9):Stability and fragmentation pathways. Journal of Chemical Physics,2000. 112(10):p.4613-4620.
    [71]Spasov, V.A., Y. Shi, and K.M. Ervin, Time-resolved photodissociation and threshold collision-induced dissociation of anionic gold clusters. Chemical Physics,2000.262(1):p.75-91.
    [72]Tai, Y., et al, Fragmentation and ion-scattering in the low-energy collisions of small silver cluster ions (Ag-n(+):n=1-4) with a highly oriented pyrolytic graphite surface. Journal of Chemical Physics,2000.113(9):p.3808-3813.
    [73]Barat, M., et al., Collision induced fragmentation of small ionic alkali clusters. III. Heteronuclear clusters. Journal of Chemical Physics,2001.114(1):p.179-186.
    [74]Vegiri, A. and S.C. Farantos, Cluster collisions of water tetramers:a classical dynamical study. Chemical Physics,2000.262(2-3):p.337-347.
    [75]Tai, Y. and J. Murakami, Surface-induced fragmentation of tin cluster ions on a highly oriented pyrolytic graphite surface. Chemical Physics Letters,2001.339(1-2):p.9-13.
    [76]Tai, Y., et al., Fragmentation of small tin cluster ions (Sn-x(+):x=4-20) in the low-energy collisions with a highly oriented pyrolytic graphite surface. Journal of Chemical Physics,2002. 117(9):p.4317-4322.
    [77]Armentrout, P.B., Threshold collision-induced dissociations for the determination of accurate gas-phase binding energies and reaction barriers, in Modern Mass Spectrometry.2003, Springer Berlin, p.233-262.
    [78]Sizun, M., F.O. Aguillon, and V. Sidis, Influence of electronic transitions on the collision-induced multifragmentation dynamics of Na-4(+) cluster ions. Journal of Chemical Physics,2003.119(24):p.12805-12818.
    [79]Tai, Y, et al., Low-energy surface collision induced dissociation of Ge and Sn cluster ions. European Physical Journal D:Atomic, Molecular, Optical and Plasma Physics,2003.24(1-3):p. 295-298.
    [80]Deng, R. and O. Echt, Hyperthermal collisions of atomic clusters and fullerenes. International Journal of Mass Spectrometry,2004.233(1-3):p.1-12.
    [81]Armentrout, P.B., H. Koizumi, and M. MacKenna, Sequential bond energies of Fe+(CO2)(n), n=1-5, determined by threshold collision-induced dissociation and ab initio theory. Journal of Physical Chemistry A,2005.109(50):p.11365-11375.
    [82]Sizun, M., F. Aguillon, and V. Sidis, Theoretical investigation of nonadiabatic and internal temperature effects on the collision-induced multifragmentation dynamics of Na-5(+) cluster ions. Journal of Chemical Physics,2005.123(7):p.074331.
    [83]Larregaray, P. and GH. Peslherbe, On the statistical nature of collision and surface-induced dissociation:A theoretical investigation of aluminum clusters. Journal of Physical Chemistry A, 2006.110(4):p.1658-1665.
    [84]Liu, B., et al., Collision-induced dissociation of hydrated adenosine monophosphate nucleotide ions:Protection of the ion in water nanoclusters. Physical Review Letters,2006.97(13): p.133401.
    [85]Waldschmidt, B., M. Turra, and R. Schafer, Surface-induced dissociation as a probe for the energetics and structure of lead clusters. Zeitschrift fuer Physikalische Chemie (Munich),2007. 221(11-12):p.1569-1579.
    [86]Heaton, A.L. and P.B. Armentrout, Experimental and theoretical studies of sodium cation interactions with d-arabinose, xylose, glucose, and galactose. Journal of Physical Chemistry A, 2008.112(41):p.10156-10167.
    [87]McQuinn, K., F. Hof, and J.S. McIndoe, Collision-induced dissociation of protonated nanodroplets. International Journal of Mass Spectrometry,2009.279(1):p.32-36.
    [88]Wang, F. and W.J. Liu, Benchmark four-component relativistic density functional calculations on Cu-2, Ag-2, and Au-2. Chemical Physics,2005.311(1-2):p.63-69.
    [89]Christen, W., et al., The transition from recoil to shattering in cluster-surface impact:An experimental and computational study. International Journal of Mass Spectrometry,1998. 174(1-3):p.35-52.
    [90]Freasier, B.C., et al., Theory of collisional energy-transfer-bromine in low-density inert-gases. Chemical Physics,1986.106(3):p.413-425.
    [91]Li, Z.H., A.W. Jasper, and D.G. Truhlar, Structures, rugged energetic landscapes, and nanothermodynamics of Al-n (2<=n<=65) particles. Journal of the American Chemical Society, 2007.129(48):p.14899-14910.
    [92]Li, Z.H. and D.G. Truhlar, Nanosolids, slushes, and nanoliquids:Characterization of nanophases in metal clusters and nanoparticles. Journal of the American Chemical Society,2008. 130(38):p.12698-12711.
    [93]Erkoc, S., Empirical many-body potential energy functions used in computer simulations of condensed matter properties. Physics Reports,1997.278(2):p.80-105.
    [94]Jasper, A.W., et al., Analytic potential energy functions for aluminum clusters. Journal of Physical Chemistry B,2004.108(26):p.8996-9010.
    [95]Jasper, A.W., N.E. Schultz, and D.G. Truhlar, Analytic potential energy functions for simulating aluminum nanoparticles. Journal of Physical Chemistry B,2005.109(9):p.3915-3920.
    [96]Li, J.H., et al., Interatomic potentials of the binary transition metal systems and some applications in materials physics. Physics Reports,2008.455(1-3):p.1-134.
    [97]Budi, A., et al., Comparison of embedded atom method potentials for small aluminium cluster simulations. Journal of Physics-condensed matter,2009.21(14):p.144206.
    [98]Zhao, M., et al., Valence-bond order (vbo):a new approach to modeling reactive potential energy surfaces for complex systems, materials, and nanoparticles. Journal of Chemical Theory and Computation,2009.5(3):p.594-604.
    [99]Jasper, A.W., N.E. Schultz, and D.G. Truhlar, Transferability of orthogonal and nonorthogonal tight-binding models for aluminum clusters and nanoparticles. Journal of Chemical Theory and Computation,2007.3(1):p.210-218.
    [100]Li, Z.H., et al., Free energies of formation of metal clusters and nanoparticles from molecular simulations:Al-n with n=2-60. Journal of Physical Chemistry C,2007.111(44):p.16227-16242.
    [101]Li, Z.H. and D.G Truhlar, Cluster and nanoparticle condensation and evaporation reactions. Thermal rate constants and equilibrium constants of Al-m+Aln-m <-> Al-n with n=2-60 and m=1-8. Journal of Physical Chemistry C,2008.112(30):p.11109-11121.
    [102]Bhatt, D., et al., Critical properties of aluminum. Journal of the American Chemical Society, 2006.128(13):p.4224-4225.
    [103]Bhatt, D., et al., Phase behavior of elemental aluminum using Monte Carlo simulations. Journal of Physical Chemistry B,2006.110(51):p.26135-26142.
    [104]Frenkel, D. and B. Smit, Understanding Molecular Simulation (Computational Science Series, Vol 1).2001, Salt Lake:Academic Press.
    [105]Zhen Hua Li, A.W.J., David A. Bonhommeau, Rosendo Valero, and Donald G. Truhlar, A molecular dynamics program for performing classical and semiclassical trajectory simulations for electronically adiabatic and nonadiabatic processes for gas phase and materials systems.2007.
    [106]Nose, S., A unified formulation of the constant temperature molecular dynamics methods. The Journal of Chemical Physics,1984.81(1):p.511-519.
    [107]Tuckerman, M., B.J. Berne, and G.J. Martyna, Reversible multiple time scale molecular dynamics. The Journal of Chemical Physics,1992.97(3):p.1990-2001.
    [108]Hoover, W.G, Canonical dynamics-equilibrium phase-space distributions. Physical Review A,1985.31(3):p.1695-1697.
    [109]Brockhaus, P., et al., Stability, evaporation, and temperature of metal clusters. JOURNAL OF NON-CRYSTALLINE SOLIDS,1998.250:p.191-198.
    [110]Stillinger, F.H., Rigorous basis of frenkel-band theory of association equilibrium. Journal of Chemical Physics,1963.38(7):p.1486-1494.
    [111]Napari, I., H. Vehkamaki, and K. Laasonen, Molecular dynamic simulations of atom-cluster collision processes. Journal of Chemical Physics,2004.120(1):p.165-169.
    [112]Parzen, E., Estimation of a probability density-function and mode. Annals of Mathematical Statistics,1962.33(3):p.1065-1076.
    [113]Bookstei.A, Pattern classification and scene analysis-Duda,Ro and Hart,Pe. Library Quarterly,1974.44(3):p.256-258.
    [114]Wand, M.P. and M.C. Jones, eds. Kernel smoothing, vol.60 of monographs on statistics and applied probability.1994, Chapman and Hall:London.
    [115]Team, R.D.C., R:A Language and Environment for Statistical Computing.2008, R Foundation for Statistical Computing:Vienna, Austria.
    [116]Craigmile, P., All of statistics:a concise course in statistical inference. American Statistician, 2005.59(2):p.203-203.
    [117]Venables, W.N. and B.D. Ripley, Modern Applied Statistics with S. Fourth ed.2002, New York:Springer.
    [118]Minturn, R.E., S. Datz, and R.L. Becker, Alkali-atom-halogen-molecule reactions in molecular beams-spectator stripping model. Journal of Chemical Physics,1966.44(3):p. 1149-1159.
    [119]Gerhardt, P., et al., Fast electron dynamics in small aluminum clusters:non-magic behavior of a magic cluster. Chemical Physics Letters,2003.382(3-4):p.454-459.
    [120]Kim, YD., et al., Relaxation dynamics of magic clusters. Physical Review B:Condensed Matter 2004.70(3):p.035421.
    [121]Kresin, V.V. and Y.N. Ovchinnikov, Fast electronic relaxation in metal nanoclusters via excitation of coherent shape deformations. Physical Review B:Condensed Matter 2006.73(11):p. 115412.
    [122]Clemenger, K., Ellipsoidal shell structure in free-electron metal-clusters. Physical Review B: Condensed Matter,1985.32(2):p.1359-1362.
    [123]Li, Z. H.; Truhlar, D. G. manuscript in preparation
    [124]Schultz, N.E., et al., Al nanoparticles:accurate potential energy functions and physical properties, in Multiscale Simulation Methods for Nanomaterials, R.B. Ross and S. Mohanty, Editors.2008, Wiley:Hoboken. p.169-188.
    [125]Iben, I. and M. Livio, Common envelopes in binary star evolution. Publications of the Astronomical Society of the Pacific,1993.105(694):p.1373-1406.
    [126]Hurley, J.R., C.A. Tout, and O.R. Pols, Evolution of binary stars and the effect of tides on binary populations. Monthly Notices of the Royal Astronomical Society,2002.329(4):p.897-928.
    [127]Frauendorf, S.G. and C. Guet, Atomic clusters as a branch of nuclear physics. Annual Review of Nuclear and Particle Science,2001.51:p.219-259.
    [128]Saunders, W.A., Metal-cluster fission and the liquid-drop model. Physical Review A,1992. 46(11):p.7028-7041.
    [129]Souliotis, G.A., et al., Heavy residue formation in 20 MeV/nucleon Au-197-C-12 and Au-197-Al-27 collisions. Physical Review C:Nuclear Physics 1998.57(6):p.3129-3143.
    [130]Souliotis, G.A., et al., Heavy residue formation in 20 MeV/nucleon Au-197+Zr-90 collisions. Nuclear Physics A,2002.705(3-4):p.279-296.
    [131]Tajima, N. and N. Suzuki, Prolate dominance of nuclear shape caused by a strong interference between the effects of spin-orbit and 12 terms of the Nilsson potential. Physical Review C:Nuclear Physics 2001.64(3):p.037301.
    [132]Bohr, A., Rotational motion in nuclei. Reviews of Modern Physics,1976.48(3):p.365-374.
    [1]Pyykko, P., Theoretical chemistry of gold Angewandte Chemie International Edition,2004.43(34):p.4412-4456.
    [2]Pyykko, P., Theoretical chemistry of gold. Ⅱ. Inorganica Chimica Acta,2005. 358(14):p.4113-4130.
    [3]Pyykko, P., Theoretical chemistry of gold. Ⅲ. Chemical Society Reviews,2008. 37(9):p.1967-1997.
    [4]Rousseau, R., et al., Probing cluster structures with sensor molecules:methanol adsorbed onto gold clusters. Chemical Physics Letters,1998.295(1-2):p.41-46.
    [5]Mejias, J.A., Theoretical study of adsorption of Cu, Ag, and Au on the NaCl(100) surface. Physical Review B,1996.53(15):p.10281-10288.
    [6]Sanchez, A., et al., When gold is not noble:Nanoscale gold catalysts. Journal of Physical Chemistry A,1999.103(48):p.9573-9578.
    [7]Hakkinen, H., et al., Structural, electronic, and impurity-doping effects in nanoscale chemistry:Supported gold nanoclusters. Angewandte Chemie International Edition,2003.42(11):p.1297-1300.
    [8]Perez-Jimenez, A.J., et al., Analysis of scanning tunneling spectroscopy experiments from first principles:The test case of C-60 adsorbed on Au(111). Chemphyschem,2003.4(4):p.388-392.
    [9]Han, Y.K., Structure of Au-8:Planar or nonplanar? Journal of Chemical Physics, 2006.124(2):p.024316.
    [10]Xiao, L., et al., Structural study of gold clusters. Journal of Chemical Physics, 2006.124(11):p.114309.
    [11]Xiao, L. and L.C. Wang, From planar to three-dimensional structural transition in gold clusters and the spin-orbit coupling effect Chemical Physics Letters,2004. 392(4-6):p.452-455.
    [12]Bravo-Perez, G., I.L. Garzon, and O. Novaro, Ab initio study of small gold clusters. Journal of Molecular Structure,1999.493:p.225-231.
    [13]Bravo-Perez, G., I.L. Garzon, and O. Novaro, Non-additive effects in small gold clusters. Chemical Physics Letters,1999.313(3-4):p.655-664.
    [14]Olson, R.M., et al., Where does the planar-to-nonplanar turnover occur in small gold clusters? Journal of the American Chemical Society,2005.127(3):p.1049-1052.
    [15]Wilson, N.T. and R.L. Johnston, Modelling gold clusters with an empirical many-body potential. European Physical Journal D,2000.12(1):p.161-169.
    [16]Michaelian, K., N. Rendon, and I.L. Garzon, Structure and energetics of Ni, Ag, and Au nanoclusters. Physical Review B,1999.60(3):p.2000-2010.
    [17]Balasubramanian, K. and D.W. Liao, Is Au6 a circular ring. Journal of Chemical Physics,1991.94(7):p.5233-5236.
    [18]Wang, J.L., G.H. Wang, and J.J. Zhao, Density-functional study of Au-n(n=2-20) clusters:Lowest-energy structures and electronic properties. Physical Review B,2002. 66(3):p.035418.
    [19]Hakkinen, H. and U. Landman, Gold clusters (Au-N,2<=N<=10) and their anions. Physical Review B,2000.62(4):p. R2287-R2290.
    [20]Remacle, F. and E.S. Kryachko, Small gold clusters Au5<=n<=8 and their cationic and anionic cousins. Advances in Quantum Chemistry,2004.47:p.423-464.
    [21]Remacle, F. and E.S. Kryachko, Structure and energetics of two-and three-dimensional neutral, cationic, and anionic gold clusters Au-5<=n<=(Z) (Z=0, +/-1). Journal of Chemical Physics,2005.122(4):p.044304.
    [22]Walker, A.V., Structure and energetics of small gold nanoclusters and their positive ions. Journal of Chemical Physics,2005.122(9):p.094310.
    [23]Fernandez, E.M., J.M. Soler, and L.C. Balbas, Planar and cagelike structures of gold clusters:Density-functional pseudopotential calculations. Physical Review B, 2006.73(23):p.235433.
    [24]Fernandez, E.M., et al., Trends in the structure and bonding of noble metal clusters. Physical Review B,2004.70(16):p.165403.
    [25]Bonacic-Koutecky, V., et al., Density functional study of structural and electronic properties of bimetallic silver-gold clusters:Comparison with pure gold and silver clusters. Journal of Chemical Physics,2002.117(7):p.3120-3131.
    [26]Gronbeck, H. and P. Broqvist, Comparison of the bonding in Au-8 and Cu-8:A density functional theory study. Physical Review B,2005.71(7):p.073408.
    [27]Gronbeck, H. and W. Andreoni, Gold and platinum microclusters and their anions: comparison of structural and electronic properties. Chemical Physics,2000.262(1):p. 1-14.
    [28]Gilb, S., et al., Structures of small gold cluster cations (Au-n(+), n< 14):Ion mobility measurements versus density functional calculations. Journal of Chemical Physics,2002.116(10):p.4094-4101.
    [29]Furche, F., et al., The structures of small gold cluster anions as determined by a combination of ion mobility measurements and density functional calculations. Journal of Chemical Physics,2002.117(15):p.6982-6990.
    [30]Hakkinen, H., et al., On the electronic and atomic structures of small Au-N(-) (N=4-14) clusters:A photoelectron spectroscopy and density-functional study. Journal of Physical Chemistry A,2003.107(32):p.6168-6175.
    [31]Lee, H.M., et al., Geometrical and electronic structures of gold, silver, and gold-silver binary clusters:Origins of ductility of gold and gold-silver alloy formation. Journal of Physical Chemistry B,2003.107(37):p.9994-10005.
    [32]Fa, W., C.F. Luo, and J.M. Dong, Bulk fragment and tubelike structures of Au-N (N=2-26). Physical Review B,2005.72(20):p.205428.
    [33]Fa, W. and J.M. Dong, Possible ground-state structure of Au-26:A highly symmetric tubelike cage. Journal of Chemical Physics,2006.124(11):p.114310.
    [34]Diefenbach, M. and K.S. Kim, Spatial structure of Au-8:Importance of basis set completeness and geometry relaxation. Journal of Physical Chemistry B,2006.110:p. 21639-21642.
    [35]Yoon, B., et al., Size-dependent structural evolution and chemical reactivity of gold clusters. ChemPhysChem,2007.8:p.157-161.
    [36]Bulusu, S., et al., Structural transitions from pyramidal to fused planar to tubular to core/shell compact in gold clusters:Au-n(-) (n=21-25). Journal of Physical Chemistry C,2007.111(11):p.4190-4198.
    [37]Gu, X., et al., Au-34(-):A fluxional core-shell cluster. Journal of Physical Chemistry C,2007.111(23):p.8228-8232.
    [38]Kryachko, E.S. and F. Remacle, The magic gold cluster AU(20). International Journal of Quantum Chemistry,2007.107(14):p.2922-2934.
    [39]Lechtken, A., et al., Au-34(-):A chiral gold cluster? Angewandte Chemie International Edition,2007.46(16):p.2944-2948.
    [40]Crespo, O., et al., Experimental and theoretical studies of the d(8)-d(10) interaction between Pd(Ⅱ) and Au(Ⅰ): Bis(chloro[(phenylthiomethyl)diphenylphosphine]gold(I))-dichloropalladiu m(II) and related systems. Inorganic Chemistry,2000.39(21):p.4786-4792.
    [41]Schwerdtfeger, P., H.L. Hermann, and H. Schmidbaur, Stability of the gold(I)-phosphine bond. A comparison with other group 11 elements. Inorganic Chemistry,2003.42(4):p.1334-1342.
    [42]Schwerdtfeger, P., et al., Relativistic effects in gold chemistry.3. gold(I) complexes. Inorganic Chemistry, 1990.29(18):p.3593-3607.
    [43]Quinn, B.M., et al., Electrochemical resolution of 15 oxidation states for monolayer protected gold nanoparticles. Journal of the American Chemical Society, 2003.125(22):p.6644-6645.
    [44]Hakkinen, H., R.N. Barnett, and U. Landman, Gold nanowires and their chemical modifications. Journal of Physical Chemistry B,1999.103(42):p.8814-8816.
    [45]Kruger, D., et al., Towards "mechanochemistry":Mechanically induced isomerizations of thiolate-gold clusters. Angewandte Chemie International Edition, 2003.42(20):p.2251-2253.
    [46]Tachibana, M., et al., Sulfur-gold orbital interactions which determine the structure of alkanethiolate/Au(111) self-assembled monolayer systems. Journal of Physical Chemistry B,2002.106(49):p.12727-12736.
    [47]Yourdshahyan, Y. and A.M. Rappe, Structure and energetics of alkanethiol adsorption on the Au(111) surface. Journal of Chemical Physics,2002.117(2):p. 825-833.
    [48]Gao, Y., N. Shao, and X.C. Zeng, Ab initio study of thiolate-protected Au-102 nanocluster. Acs Nano,2008.2(7):p.1497-1503.
    [49]Li, Y., G. Galli, and F. Gygi, Electronic structure of thiolate-covered gold nanoparticles:Au-102(MBA)(44). Acs Nano,2008.2(9):p.1896-1902.
    [50]Schroder, D., et al., Cationic gold(I) complexes of xenon and of ligands containing the donor atoms oxygen, nitrogen, phosphorus, and sulfur. Inorganic Chemistry,1998.37(4):p.624-632.
    [51]Schwerdtfeger, P., et al., Spectroscopic properties for the ground-states of AuF, AuF+, AuF2, and Au2F2-A pseudopotential scalar relativistic Moller-Plesset and coupled-cluster study. Journal of Chemical Physics,1995.103(1):p.245-252.
    [52]Hrusak, J., et al., Relativistic effects in cationic gold(I) complexes-A comparative study of Ab-initio pseudopotential and density-functional methods. Organometallics, 1995.14(3):p.1284-1291.
    [53]Schroder, D., et al., Experimental and theoretical-studies of gold(I) complexes Au(L)(+) (L=H20, CO, CO, NH3, C2H4, C3H6, C4H6, C6H6, C6F6). Organometallics,1995.14(1):p.312-316.
    [54]Komarov, P.V., L.V. Zherenkova, and P.G. Khalatur, Computer simulation of the assembly of gold nanoparticles on DNA fragments via electrostatic interaction. Journal of Chemical Physics,2008.128(12):p.124909.
    [55]Ren, S.W., Melting of the glasslike 19-atom gold cluster. International Journal of Modern Physics C:Computational Physics and Physical Computation 2009.20(5):p. 667-675.
    [56]Verma, V. and K. Dharamvir, Stability of Thin Gold Nano Wires. Journal of Nano Research,2008.4:p.65-77.
    [57]Rodrigues, D.D.C., et al., Global optimization analysis of CunAum (n+m=38) clusters:Complementary ab initio calculations. Chemical Physics,2008.349(1-3):p. 91-97.
    [58]Foiles, S.M., M.I. Baskes, and M.S. Daw, Embedded-atom-method functions for the FCC metal Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Physical Review B,1986. 33(12):p.7983-7991.
    [59]Ercolessi, F., M. Parrinello, and E. Tosatti, Simulation of gold in the glue model. Philosophical Magazine A,1988.58(1):p.213-226.
    [60]Oh, D.J. and R.A. Johnson, Simple embedded atom method model for FCC and HCP metals. Journal of Materials Research,1988.3(3):p.471-478.
    [61]Ackland, G.J. and V. Vitek, Many-body potentials and atomic-scale relaxations in noble-metal alloys. Physical Review B,1990.41(15):p.10324-10333.
    [62]Cleri, F. and V. Rosato, Tight-binding potentials for transition-metals and alloys. Physical Review B,1993.48(1):p.22-33.
    [63]Kelchner, C.L., et al., Construction and evaluation of embedding functions. Surface Science,1994.310(1-3):p.425-435.
    [64]Cai, J. and Y.Y. Ye, Simple analytical embedded-atom-potential model including a long-range force for fcc metals and their alloys. Physical Review B,1996.54(12):p. 8398-8410.
    [65]Kallinteris, G.C., et al., Tight-binding interatomic potentials based on total-energy calculation:Application to noble metals using molecular-dynamics simulation. Physical Review B,1997.55(4):p.2150-2156.
    [66]Gupta, R.P., Lattice relaxation at a metal surface. Physical Review B,1981. 23(12):p.6265-6270.
    [67]Daw, M.S. and M.I. Baskes, Semiempirical, quantum-mechanical calculation of hydrogen embrittlement in metals. Physical Review Letters,1983.50(17):p. 1285-1288.
    [68]Sutton, A.P. and J. Chen, Long-range finnis Sinclair potentials. Philosophical Magazine Letters,1990.61(3):p.139-146.
    [69]Grochola, G., S.P. Russo, and I.K. Snook, On fitting a gold embedded atom method potential using the force matching method. Journal of Chemical Physics,2005. 123(20):p.204719.
    [70]Luo, S.N., et al., Maximum superheating and undercooling:Systematics, molecular dynamics simulations, and dynamic experiments. Physical Review B,2003. 68(13):p.134206.
    [71]Avinc, A. and V.I. Dimitrov, Effective Lennard-Jones potential for cubic metals in the frame of embedded atom model. Computation Materials Science,1999.13(4):p. 211-217.
    [72]Bishea, G.A. and M.D. Morse, Spectroscopic studies of jet-cooled AgAu and Au2. Journal of Chemical Physics,1991.95(8):p.5646-5659.
    [73]James, A.M., et al., The A'1(U)[-X0(+)(G) system of gold dimer. Journal of Molecular Spectroscopy,1994.168(2):p.248-257.
    [74]Hilpert, K. and K.A. Gingerich, Atomization enthalpies of the molecules Cu3, Ag3, and Au3. Berichte der Bunsen-Gesellschaft Physical Chemistry Chemical Physics,1980.84(8):p.739-745.
    [75]Pyykko, P., Relativity, gold, closed-shell interactions, and CsAu center dot NH3. Angewandte Chemie International Edition,2002.41(19):p.3573-3578.
    [76]Desclaux, J.P. and P. Pyykko, Dirac-Fock one-center calculations-molecules CuH, AgH and AuH including p-type symmetry functions. Chemical Physics Letters,1976. 39(2):p.300-303.
    [77]Pyykko, P. and J.P. Desclaux, Relativity and The periodic system of elements. Accounts of Chemical Research,1979.12(8):p.276-281.
    [78]Pyykko, P., Relativistic effects in structural chemistry. Chemical Reviews,1988. 88(3):p.563-594.
    [79]Christensen, N.E. and B.O. Seraphin, Relativistic band calculation and optical properties of gold. Physical Review B,1971.4(10):p.3321-3344.
    [80]Engel, E. and R. Dreizler, Relativistic density functional theory, in Density Functional Theory Ⅱ.1996, Springer:Berlin, p.1-80.
    [81]Kullie, O., H. Zhang, and D. Kolb, Relativistic and non-relativistic local-density functional, benchmark results and investigation on the dimers Cu-2, Ag-2, Au-2, Rg(2). Chemical Physics,2008.351(1-3):p.106-110.
    [82]E. J. Bylaska, W.A.d.J., N. Govind, K. Kowalski, T. P. Straatsma, M. Valiev, D. Wang, E. Apra, T. L. Windus, J. Hammond, P. Nichols, S. Hirata, M. T. Hackler, Y. Zhao, P.-D. Fan, R. J. Harrison, M. Dupuis, D. M. A. Smith, J. Nieplocha, V. Tipparaju, M. Krishnan, Q. Wu, T. Van Voorhis, A. A. Auer, M. Nooijen, E. Brown, G. Cisneros, G. I. Fann, H. Fruchtl, J. Garza, K. Hirao, R. Kendall, J. A. Nichols, K. Tsemekhman, K. Wolinski, J. Anchell, D. Bernholdt, P. Borowski, T. Clark, D. Clerc, H. Dachsel, M. Deegan, K. Dyall, D. Elwood, E. Glendening, M. Gutowski, A. Hess, J. Jaffe, B. Johnson, J. Ju, R. Kobayashi, R. Kutteh, Z. Lin, R. Littlefield, X. Long, B. Meng, T. Nakajima, S. Niu, L. Pollack, M. Rosing, G. Sandrone, M. Stave, H. Taylor, G. Thomas, J. van Lenthe, A. Wong, and Z. Zhang, NWChem, A Computational Chemistry Package for Parallel Computers, Version 5.1.2007:Pacific Northwest National Laboratory, Richland, Washington 99352-0999, USA.
    [83]Kendall, R.A., et al., High performance computational chemistry:An overview of NWChem a distributed parallel application. Computer Physics Communications,2000. 128(1-2):p.260-283.
    [84]Ross, R.B., et al., Ab-initio relativistic effective potentials with spin-orbit operators.4. Cs through Rn. Journal of Chemical Physics,1994.101(11):p. 10198-10199.
    [85]Rusakov, A.A., et al., Importance of spin-orbit effects on the isomerism profile of Au-3:An ab initio study. Journal of Chemical Physics,2007.127(16):p.164322.
    [86]Fuentealba, P. and Y. Simon-Manso, Basis set superposition error in atomic cluster calculations. Chemical Physics Letters,1999.314(1-2):p.108-113.
    [87]Gruene, P., et al., Structures of neutral Au-7, Au-19, and Au-20 clusters in the gas phase. Science,2008.321(5889):p.674-676.
    [88]Assadollahzadeh, B. and P. Schwerdtfeger, A systematic search for minimum structures of small gold clusters Au-n (n=2-20) and their electronic properties. Journal of Chemical Physics,2009.131(6):p.064306.
    [89]Bulusu, S. and X.C. Zeng, Structures and relative stability of neutral gold clusters: Au-n (n=15-19). Journal of Chemical Physics,2006.125(15):p.154303.
    [90]Li, X.B., et al., Size dependence of the structures and energetic and electronic properties of gold clusters. Journal of Chemical Physics,2007.126(8):p.084505.
    [91]Olson, R.M. and M.S. Gordon, Isomers of Au8. J Chem Phys,2007.126(21):p. 214310.
    [92]Gruber, M., et al., First-principles study of the geometric and electronic structure of Au-13 clusters:Importance of the prism motif. Physical Review B,2008.77(16):p. 165411.
    [93]Peterson, K.A. and C. Puzzarini, Systematically convergent basis sets for transition metals. Ⅱ. Pseudopotential-based correlation consistent basis sets for the group 11 (Cu, Ag, Au) and 12 (Zn, Cd, Hg) elements. THEORETICAL CHEMISTRY ACCOUNTS,2005.114(4-5):p.283-296.
    [94]Wesendrup, R., T. Hunt, and P. Schwerdtfeger, Relativistic coupled cluster calculations for neutral and singly charged Au-3 clusters. Journal of Chemical Physics, 2000.112(21):p.9356-9362.
    [95]Becke, A.D., Density-functional exchange-energy approximation with correct asymptotic-behavior. Physical Review A,1988.38(6):p.3098-3100.
    [96]Lee, C.T., W.T. Yang, and R.G. Parr, Development of the colle-salvetti correlations-energy formula into a functional of the electron-density. Physical Review B,1988.37(2):p.785-789.
    [97]Perdew, J.P., Density-functional approximation for the correlation-energy of the inhomogeneous electron-gas. Physical Review B,1986.33(12):p.8822-8824.
    [98]Perdew, J.P., K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple. Physical Review Letters,1996.77(18):p.3865-3868.
    [99]Perdew, J.P., K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple (vol 77, pg 3865,1996). Physical Review Letters,1997.78(7):p. 1396-1396.
    [100]Perdew, J.P. and Y. Wang, Accurate and simple analytic representation of the electron-gas correlation-energy. Physical Review B,1992.45(23):p.13244-13249.
    [101]Filatov, M. and W. Thiel, A new gradient-corrected exchange-correlation density functional Molecular Physics,1997.91(5):p.847-859.
    [102]Filatov, M. and W. Thiel, A nonlocal correlation energy density functional from a Coulomb hole model. International Journal of Quantum Chemistry,1997.62(6):p. 603-616.
    [103]Hamprecht, F.A., et al., Development and assessment of new exchange-correlation functionals. Journal of Chemical Physics,1998.109(15):p. 6264-6271.
    [104]Boese, A.D., et al., New generalized gradient approximation functionals. Journal of Chemical Physics,2000.112(4):p.1670-1678.
    [105]Boese, A.D. and N.C. Handy, A new parametrization of exchange-correlation generalized gradient approximation functionals. Journal of Chemical Physics,2001. 114(13):p.5497-5503.
    [106]Menconi, G., P.J. Wilson, and D.J. Tozer, Emphasizing the exchange-correlation potential in functional development. Journal of Chemical Physics,2001.114(9):p. 3958-3967.
    [107]Boese, A.D., et al., From ab initio quantum chemistry to molecular dynamics: The delicate case of hydrogen bonding in ammonia Journal of Chemical Physics, 2003.119(12):p.5965-5980.
    [108]Tsuneda, T., T. Suzumura, and K. Hirao, A new one-parameter progressive Colle-Salvetti-type correlation functional. Journal of Chemical Physics,1999.110(22): p.10664-10678.
    [109]Tsuneda, T., T. Suzumura, and K. Hirao, A reexamination of exchange energy functionals. Journal of Chemical Physics,1999.111(13):p.5656-5667.
    [110]Cohen, A.J. and N.C. Handy, Assessment of exchange correlation functionals. Chemical Physics Letters,2000.316(1-2):p.160-166.
    [111]Stephens, P.J., et al., Ab-initio calculation of vibrational absorbtion and circular-dichroism spectra using density-functional forces-fields. Journal of Physical Chemistry,1994.98(45):p.11623-11627.
    [112]Becke, A.D., Density-functional thermochemistry.3. the role of exact exchange. Journal of Chemical Physics,1993.98(7):p.5648-5652.
    [113]Becke, A.D., A new mixing of Hartree-Fock and local density-functional theories. Journal of Chemical Physics,1993.98(2):p.1372-1377.
    [114]Becke, A.D., Density-functional thermochemistry.5. Systematic optimization of exchange-correlation functionals. Journal of Chemical Physics,1997.107(20):p. 8554-8560.
    [115]Wilson, P.J., T.J. Bradley, and D.J. Tozer, Hybrid exchange-correlation functional determined from thermochemical data and ab initio potentials. Journal of Chemical Physics,2001.115(20):p.9233-9242.
    [116]Keal, T.W. and D.J. Tozer, Semiempirical hybrid functional with improved performance in an extensive chemical assessment Journal of Chemical Physics,2005. 123(12):p.121103.
    [117]Schmider, H.L. and A.D. Becke, Optimized density functionals from the extended G2 test set Journal of Chemical Physics,1998.108(23):p.9624-9631.
    [118]Adamo, C. and V. Barone, Toward reliable density functional methods without adjustable parameters:The PBEO model. Journal of Chemical Physics,1999.110(13): p.6158-6170.
    [119]Lynch, B.J., et al., Adiabatic connection for kinetics. Journal of Physical Chemistry A,2000.104(21):p.4811-4815.
    [120]Zhao, Y. and D.G. Truhlar, A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. Journal of Chemical Physics,2006.125(19):p.194101.
    [121]Tao, J.M., et al., Climbing the density functional ladder:Nonempirical meta-generalized gradient approximation designed for molecules and solids. Physical Review Letters,2003.91(14):p.146301.
    [122]Perdew, J.P., et al., Accurate density functional with correct formal properties:A step beyond the generalized gradient approximation. Physical Review Letters,1999. 82(12):p.2544-2547.
    [123]Zhao, Y., N.E. Schultz, and D.G. Truhlar, Exchange-correlation functional with broad accuracy for metallic and nonmetallic compounds, kinetics, and noncovalent interactions. Journal of Chemical Physics,2005.123(16):p.161103.
    [124]Zhao, Y., N.E. Schultz, and D.G. Truhlar, Design of density functionals by combining the method of constraint satisfaction with parametrization for thermochemistry, thermochemical kinetics, and noncovalent interactions. Journal of Chemical Theory and Computation,2006.2(2):p.364-382.
    [125]Zhao, Y. and D.G. Truhlar, Density functional for spectroscopy:No long-range self-interaction error, good performance for Rydberg and charge-transfer states, and better performance on average than B3LYP for ground states. Journal of Physical Chemistry A,2006.110(49):p.13126-13130.
    [126]Van Voorhis, T. and G.E. Scuseria, A never form for the exchange-correlation energy functional. Journal of Chemical Physics,1998.109(2):p.400-410.
    [127]Zhao, Y. and D.G. Truhlar, Hybrid meta density functional theory methods for thermochemistry, thermochemical kinetics, and noncovalent interactions:The MPW1B95 and MPWB1K models and comparative assessments for hydrogen bonding and van der Waals interactions. Journal of Physical Chemistry A,2004. 108(33):p.6908-6918.
    [128]Zhao, Y. and D.G. Truhlar, Design of density functionals that are broadly accurate for thermochemistry, thermochemical kinetics, and nonbonded interactions. Journal of Physical Chemistry A,2005.109(25):p.5656-5667.
    [129]Zhao, Y., B.J. Lynch, and D.G. Truhlar, Development and assessment of a new hybrid density functional model for thermochemical kinetics. Journal of Physical Chemistry A,2004.108(14):p.2715-2719.
    [130]Staroverov, V.N., et al., Comparative assessment of a new nonempirical density functional:Molecules and hydrogen-bonded complexes. Journal of Chemical Physics, 2003.119(23):p.12129-12137.
    [131]Christiansen, P.A., Y.S. Lee, and K.S. Pitzer, Improved abinitio effective core potentials for molecular calculations. Journal of Chemical Physics,1979.71(11):p. 4445-4450.
    [132]Lee, Y.S., W.C. Ermler, and K.S. Pitzer, Abinitio effective core potentials including relativistic effects.1. formalism and applications to Xe and Au atoms. Journal of Chemical Physics,1977.67(12):p.5861-5876.
    [133]Kahn, L.R., P. Baybutt, and D.G. Truhlar, Abinitio effective core potentials-reduction of all-electron molecular-strucuture calculations to calculations involving only valence-electrons. Journal of Chemical Physics,1976.65(10):p. 3826-3853.
    [134]Chang, A.H.H. and R.M. Pitzer, Electronic-structure and spectra of uranocene. Journal of the American Chemical Society,1989.111(7):p.2500-2507.
    [135]Wang, F. and W.J. Liu, Benchmark four-component relativistic density functional calculations on Cu-2, Ag-2, and Au-2. Chemical Physics,2005.311(1-2):p. 63-69.
    [136]Lee, Y.S., et al., Ab initio effective core potentials including relativistic effects. Ⅲ. Ground state Au[sub 2] calculations. Journal of Chemical Physics,1979.70(1):p. 288-292.
    [137]Huber, K.P. and G. Herzberg, Constants of Diatomic Molecules.1979, New York:Van Nostrand-Reinhold.
    [138]Fabiano, E., M. Piacenza, and F. Della Sala, Structural and electronic properties of gold microclusters:assessment of the localized Hartree-Fock method. Physical Chemistry Chemical Physics,2009.11(40):p.9160-9169.
    [139]Balasubramanian, K. and M.Z. Liao, CASSCF/CI calculations of low-lying states and potential-energy surfaces of Au3. Journal of Chemical Physics,1987. 86(10):p.5587-5590.
    [140]Feller, D., Application of systematic sequences of wave-functions to the water dimer. Journal of Chemical Physics,1992.96(8):p.6104-6114.
    [141]Feller, D., The use of systematic sequences of wave-functions for estimating the complete basis set, full configuration-interaction limit in water. Journal of Chemical Physics,1993.98(9):p.7059-7071.
    [142]Mantina, M., R. Valero, and D.G. Truhlar, Validation study of the ability of density functionals to predict the planar-to-three-dimensional structural transition in anionic gold clusters. Journal of Chemical Physics,2009.131(6):p.064706.
    [143]Ferrighi, L., B. Hammer, and G.K.H. Madsen,2D-3D transition for cationic and anionic gold clusters:a kinetic energy density functional study. Journal of the American Chemical Society,2009.131(30):p.10605-10609.
    [144]Schaftenaar, G. and J.H. Noordik, Molden:a pre- and post-processing program for molecular and electronic structures. Journal of Computer-Aided Molecular Design, 2000.14(2):p.123-134.
    [1]Wallace, W.T. and R.L. Whetten, Coadsorption of CO and O-2 on selected gold clusters:Evidence for efficient room-temperature C02 generation Journal of the American Chemical Society,2002.124(25):p.7499-7505.
    [2]Socaciu, L.D., et al., Catalytic CO oxidation by free Au-2(-):Experiment and theory. Journal of the American Chemical Society,2003.125(34):p.10437-10445.
    [3]Herzing, A.A., et al., Identification of active gold nanoclusters on iron oxide supports for CO oxidation. Science,2008.321(5894):p.1331-1335.
    [4]Sanchez, A., et al., When gold is not noble:Nanoscale gold catalysts. Journal of Physical Chemistry A,1999.103(48):p.9573-9578.
    [5]Hakkinen, H., et al., On the electronic and atomic structures of small Au-N(-) (N=4-14) clusters:A photoelectron spectroscopy and density-functional study. Journal of Physical Chemistry A,2003.107(32):p.6168-6175.
    [6]Lee, S.S., et al., CO oxidation on Au-n/TiO2 catalysts produced by size-selected cluster deposition. Journal of the American Chemical Society,2004.126(18):p. 5682-5683.
    [7]Molina, L.M., M.D. Rasmussen, and B. Hammer, Adsorption of O-2 and oxidation of CO at Au nanoparticles supported by TiO2(110). Journal of Chemical Physics, 2004.120(16):p.7673-7680.
    [8]Valden, M., X. Lai, and D.W. Goodman, Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science,1998.281(5383):p. 1647-1650.
    [9]Diemant, T., et al., CO adsorption energy on planar Au/TiO2 model catalysts under catalytically relevant conditions. Journal of Catalysis,2007.252(2):p.171-177.
    [10]Chen, M., et al., On the origin of the unique properties of supported Au nanoparticles. Journal of the American Chemical Society,2006.128(19):p. 6341-6346.
    [11]Cosandey, F. and T.E. Madey, Growth, morphology, interfacial effects and catalytic properties of Au on TiO2. Surface Review and Letters,2001.8(1-2):p. 73-93.
    [12]Fu, Q., H. Saltsburg, and M. Flytzani-Stephanopoulos, Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts. Science,2003.301(5635):p. 935-938.
    [13]Pyykko, P., Theoretical chemistry of gold Angewandte Chemie International Edition,2004.43(34):p.4412-4456.
    [14]Pyykko, P., Theoretical chemistry of gold. Ⅱ. Inorganica Chimica Acta,2005. 358(14):p.4113-4130.
    [15]Pyykko, P., Theoretical chemistry of gold. Ⅲ. Chemical Society Reviews,2008. 37(9):p.1967-1997.
    [16]Schwerdtfeger, P. and M. Lein, Theoretical Chemistry of Gold-From Atoms to Molecules, Clusters, Surfaces and the Solid State, in Gold Chemistry:Applications and future directions in the life sciences, F. Mohr, Editor.2009, Wiley:New York. p. 183-248.
    [17]Hakkinen, H., Atomic and electronic structure of gold clusters:understanding flakes, cages and superatoms from simple concepts. Chemical Society Reviews,2008. 37(9):p.1847-1859.
    [18]Wang, J.L., G.H. Wang, and J.J. Zhao, Density-functional study of Au-n(n=2-20) clusters:Lowest-energy structures and electronic properties. Physical Review B,2002. 66(3):p.035418.
    [19]Lee, H.M., et al., Geometrical and electronic structures of gold, silver, and gold-silver binary clusters:Origins of ductility of gold and gold-silver alloy formation. Journal of Physical Chemistry B,2003.107(37):p.9994-10005.
    [20]Fernandez, E.M., et al., Trends in the structure and bonding of noble metal clusters. Physical Review B,2004.70(16):p.165403.
    [21]Gilb, S., et al., Structures of small gold cluster cations (Au-n(+), n< 14):Ion mobility measurements versus density functional calculations. Journal of Chemical Physics,2002.116(10):p.4094-4101.
    [22]Furche, F., et al., The structures of small gold cluster anions as determined by a combination of ion mobility measurements and density functional calculations. Journal of Chemical Physics,2002.117(15):p.6982-6990.
    [23]Hakkinen, H., M. Moseler, and U. Landman, Bonding in Cu, Ag, and Au clusters: Relativistic effects, trends, and surprises. Physical Review Letters,2002.89(3):p. 033401.
    [24]Xiao, L., et al., Structural study of gold clusters. Journal of Chemical Physics, 2006.124(11):p.114309.
    [25]Boese, A.D., et al., From ab initio quantum chemistry to molecular dynamics:The delicate case of hydrogen bonding in ammonia Journal of Chemical Physics,2003. 119(12):p.5965-5980.
    [26]Assadollahzadeh, B. and P. Schwerdtfeger, A systematic search for minimum structures of small gold clusters Au-n (n=2-20) and their electronic properties. Journal of Chemical Physics,2009.131(6):p.064306.
    [27]Bulusu, S. and X.C. Zeng, Structures and relative stability of neutral gold clusters: Au-n (n=15-19). Journal of Chemical Physics,2006.125(15):p.154303.
    [28]Fa, W., C.F. Luo, and J.M. Dong, Bulk fragment and tubelike structures of Au-N (N=2-26). Physical Review B,2005.72(20):p.205428.
    [29]Gronbeck, H. and P. Broqvist, Comparison of the bonding in Au-8 and Cu-8:A density functional theory study. Physical Review B,2005.71(7):p.073408.
    [30]Li, X.B., et al., Size dependence of the structures and energetic and electronic properties of gold clusters. Journal of Chemical Physics,2007.126(8):p.084505.
    [31]Olson, R.M. and M.S. Gordon, Isomers of Au8. J Chem Phys,2007.126(21):p. 214310.
    [32]Walker, A.V., Structure and energetics of small gold nanoclusters and their positive ions. Journal of Chemical Physics,2005.122(9):p.094310.
    [33]Yang, A., W. Fa, and J. Dong, Geometrical structures and vibrational spectroscopy of medium-sized neutral Aun (n=17-26) clusters. Physics Letters A, 2010.374(44):p.4506-4511.
    [34]Huang, W., et al., Isomer identification and resolution in small gold clusters. Journal of Chemical Physics,2010.132(5):p.054305.
    [35]Xing, X.P., et al., Structural evolution of Au nanoclusters:From planar to cage to tubular motifs. Physical Review B,2006.74(16):p.165423.
    [36]Johansson, M.P., et al,2D-3D transition of gold cluster anions resolved Physical Review A,2008.77(5):p.053202.
    [37]Shi, Y.K., Z.H. Li, and K.N. Fan, Validation of Density Functional Methods for the Calculation of Small Gold Clusters. Journal of Physical Chemistry A,2010. 114(37):p.10297-10308.
    [38]Mantina, M., R. Valero, and D.G. Truhlar, Validation study of the ability of density functionals to predict the planar-to-three-dimensional structural transition in anionic gold clusters. Journal of Chemical Physics,2009.131(6):p.064706.
    [39]Ferrighi, L., B. Hammer, and G.K.H. Madsen,2D-3D transition for cationic and anionic gold clusters:a kinetic energy density functional study. Journal of the American Chemical Society,2009.131(30):p.10605-10609.
    [40]Ross, R.B., et al., Ab-initio relativistic effective potentials with spin-orbit operators.4. Cs through Rn. Journal of Chemical Physics,1994.101(11):p. 10198-10199.
    [41]Christiansen, P.A., Y.S. Lee, and K.S. Pitzer, Improved abinitio effective core potentials for molecular calculations. Journal of Chemical Physics,1979.71(11):p. 4445-4450.
    [42]Lee, Y.S., W.C. Ermler, and K.S. Pitzer, Abinitio effective core potentials including relativistic effects.1. formalism and applications to Xe and Au atoms. Journal of Chemical Physics,1977.67(12):p.5861-5876.
    [43]Kahn, L.R., P. Baybutt, and D.G. Truhlar, Abinitio effective core potentials-reduction of all-electron molecular-strucuture calculations to calculations involving only valence-electrons. Journal of Chemical Physics,1976.65(10):p. 3826-3853.
    [44]Chang, A.H.H. and R.M. Pitzer, Electronic-structure and spectra of uranocene. Journal of the American Chemical Society,1989.111(7):p.2500-2507.
    [45]Tao, J.M., et al., Climbing the density functional ladder:Nonempirical meta-generalized gradient approximation designed for molecules and solids. Physical Review Letters,2003.91(14):p.146301.
    [46]Staroverov, V.N., et al., Comparative assessment of a new nonempirical density functional:Molecules and hydrogen-bonded complexes. Journal of Chemical Physics, 2003.119(23):p.12129-12137.
    [47]Zhao, Y. and D.G. Truhlar, A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. Journal of Chemical Physics,2006.125(19):p.194101.
    [48]Perdew, J.P., K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple. Physical Review Letters,1996.77(18):p.3865-3868.
    [49]Perdew, J.P., K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple (vol 77, pg 3865,1996). Physical Review Letters,1997.78(7):p. 1396-1396.
    [50]Adamo, C. and V. Barone, Toward reliable density functional methods without adjustable parameters:The PBE0 model. Journal of Chemical Physics,1999.110(13): p.6158-6170.
    [51]Peterson, K.A. and C. Puzzarini, Systematically convergent basis sets for transition metals.Ⅱ. Pseudopotential-based correlation consistent basis sets for the group 11 (Cu, Ag, Au) and 12 (Zn, Cd, Hg) elements. Theoretical Chemistry Accounts,2005.114(4-5):p.283-296.
    [52]Hay, P.J. and W.R. Wadt, Abinitio effective core potentials for molecular calculations-potentials for K to Au including the outermost core orbitals. Journal of Chemical Physics,1985.82(1):p.299-310.
    [53]Roy, L.E., P.J. Hay, and R.L. Martin, Revised Basis Sets for the LANL Effective Core Potentials. Journal of Chemical Theory and Computation,2008.4(7):p. 1029-1031.
    [54]Ehlers, A.W., et al., A set of f-polarization functions for pseudo-potential basis-sets of the transition-metals Sc-Cu, Y-Ag and La-Au. Chemical Physics Letters, 1993.208(1-2):p.111-114.
    [55]E. J. Bylaska, W.A.d.J., N. Govind, K. Kowalski, T. P. Straatsma, M. Valiev, D. Wang, E. Apra, T. L. Windus, J. Hammond, P. Nichols, S. Hirata, M. T. Hackler, Y. Zhao, P.-D. Fan, R. J. Harrison, M. Dupuis, D. M. A. Smith, J. Nieplocha, V. Tipparaju, M. Krishnan, Q. Wu, T. Van Voorhis, A. A. Auer, M. Nooijen, E. Brown, G. Cisneros, G. I. Farm, H. Fruchtl, J. Garza, K. Hirao, R. Kendall, J. A. Nichols, K. Tsemekhman, K. Wolinski, J. Anchell, D. Bernholdt, P. Borowski, T. Clark, D. Clerc, H. Dachsel, M. Deegan, K. Dyall, D. Elwood, E. Glendening, M. Gutowski, A. Hess, J. Jaffe, B. Johnson, J. Ju, R. Kobayashi, R. Kutteh, Z. Lin, R. Littlefield, X. Long, B. Meng, T. Nakajima, S. Niu, L. Pollack, M. Rosing, G. Sandrone, M. Stave, H. Taylor, G. Thomas, J. van Lenthe, A. Wong, and Z. Zhang, NWChem, A Computational Chemistry Package for Parallel Computers, Version 5.1.2007:Pacific Northwest National Laboratory, Richland, Washington 99352-0999, USA.
    [56]Kendall, R.A., et al., High performance computational chemistry:An overview of NWChem a distributed parallel application. Computer Physics Communications,2000. 128(1-2):p.260-283.
    [57]Soler, J.M., et al., The SIESTA method for ab initio order-N materials simulation. Journal of Physics:Condensed Matter,2002.14(11):p.2745-2779.
    [58]Xiao, L. and L.C. Wang, From planar to three-dimensional structural transition in gold clusters and the spin-orbit coupling effect Chemical Physics Letters,2004. 392(4-6):p.452-455.
    [59]Gruene, P., et al., Structures of neutral Au-7, Au-19, and Au-20 clusters in the gas phase. Science,2008.321(5889):p.674-676.
    [60]Rusakov, A.A., et al., Importance of spin-orbit effects on the isomerism profile of Au-3:An ab initio study. Journal of Chemical Physics,2007.127(16):p.164322.
    [61]Fa, W., C. Luo, and J. Dong, Bulk fragment and tubelike structures of Au_{N} (N=2-26). Physical Review B,2005.72(20):p.205428.
    [62]Yoon, B., et al., Size-dependent structural evolution and chemical reactivity of gold clusters. ChemPhysChem,2007.8:p.157-161.
    [63]Bulusu, S., et al., Structural transitions from pyramidal to fused planar to tubular to core/shell compact in gold clusters:Au-n(-) (n=21-25). Journal of Physical Chemistry C,2007.111(11):p.4190-4198.
    [64]Bishea, G.A. and M.D. Morse, Spectroscopic studies of jet-cooled AgAu and Au2. Journal of Chemical Physics,1991.95(8):p.5646-5659.
    [65]James, A.M., et al., The A'1(U)[-XO(+)(G) system of gold dimer. Journal of Molecular Spectroscopy,1994.168(2):p.248-257.
    [1]Schmidbauer, H., Gold:chemistry, biochemistry and technology.1999, Chichester, U.K.:John Wiley & Sons.
    [2]Foiles, S.M., M.I. Baskes, and M.S. Daw, Embedded-atom-method functions for the FCC metal Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Physical Review B,1986.33(12):p.7983-7991.
    [3]Ercolessi, F., M. Parrinello, and E. Tosatti, Simulation of gold in the glue model. Philosophical Magazine A,1988.58(1):p.213-226.
    [4]Oh, D.J. and R.A. Johnson, Simple embedded atom method model for FCC and HCP metals. Journal of Materials Research,1988.3(3):p.471-478.
    [5]Ackland, G.J. and V. Vitek, Many-body potentials and atomic-scale relaxations in noble-metal alloys. Physical Review B,1990.41(15):p.10324-10333.
    [6]Cleri, F. and V. Rosato, Tight-binding potentials for transition-metals and alloys. Physical Review B, 1993.48(1):p.22-33.
    [7]Kelchner, C.L., et al., Construction and evaluation of embedding functions. Surface Science,1994. 310(1-3):p.425-435.
    [8]Cai, J. and Y.Y. Ye, Simple analytical embedded-atom-potential model including a long-range force for fcc metals and their alloys. Physical Review B,1996.54(12):p.8398-8410.
    [9]Kallinteris, G.C., et al, Tight-binding interatomic potentials based on total-energy calculation: Application to noble metals using molecular-dynamics simulation. Physical Review B,1997.55(4):p. 2150-2156.
    [10]Gupta, R.P., Lattice relaxation at a metal surface. Physical Review B,1981.23(12):p.6265-6270.
    [11]Daw, M.S. and M.I. Baskes, Semiempirical, quantum-mechanical calculation of hydrogen embrittlement in metals. Physical Review Letters,1983.50(17):p.1285-1288.
    [12]Sutton, A.P. and J. Chen, Long-range finnis sinclair potentials. Philosophical Magazine Letters, 1990.61(3):p.139-146.
    [13]Grochola, G., S.P. Russo, and I.K. Snook, On fitting a gold embedded atom method potential using the force matching method Journal of Chemical Physics,2005.123(20):p.204719.
    [14]Luo, S.N., et al., Maximum superheating and undercooling:Systematics, molecular dynamics simulations, and dynamic experiments. Physical Review B,2003.68(13):p.134206.
    [15]Avinc, A. and V.I. Dimitrov, Effective Lennard-Jones potential for cubic metals in the frame of embedded atom model. Computation Materials Science,1999.13(4):p.211-217.
    [16]Mei, J. and J.W. Davenport, Free-energy calculations and the melting point of AL Physical Review B,1992.46(1):p.21-25.
    [17]Mei, J., J.W. Davenport, and G.W. Fernando, Analytic embedded-atom potentials for fcc metals: Application to liquid and solid copper. Physical Review B,1991.43(6):p.4653-4658.
    [18]Daw, M.S. and M.I. Baskes, Semiempirical, Quantum Mechanical Calculation of Hydrogen Embrittlement in Metals. Physical Review Letters,1983.50(17):p.1285-1288.
    [19]Daw, M.S. and M.I. Baskes, Embedded-atom method:Derivation and application to impurities, surfaces, and other defects in metals. Physical Review B,1984.29(12):p.6443-6453.
    [20]Feoktistov, V., Differential Evolution:In Search of Solutions.2006:Springer.
    [21]Peterson, K.A. and C. Puzzarini, Systematically convergent basis sets for transition metals. Ⅱ. Pseudopotential-based correlation consistent basis sets for the group 11 (Cu, Ag, Au) and 12 (Zn, Cd, Hg) elements. Theoretical Chemistry Accounts,2005.114(4-5):p.283-296.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700