颞下颌关节生物力学建模及下颌升支矢状劈开截骨术的生物力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
下颌骨与容貌、咀嚼、语言等密切相关,直接影响生活质量、职业、性格、婚姻等,通过颞下颌关节与上颌骨连接在一起。颞下颌关节(TMJ)具有精细的结构和复杂的功能,是人体内唯一的双侧联动关节,共同参与完成咀嚼、吞咽、言语、表情等功能活动。TMJ在功能上为负重关节,下颌运动产生的TMJ负荷对维持关节各组成部分的正常结构和功能具有重要的作用,也与某些TMJ疾病的形成和治疗相关,其中包含了大量的生物力学问题(如TMJ内各结构的相互作用)。TMJ内各结构之间作用的模拟一直是口腔生物力学研究的重点和难点。除了未考虑TMJ或简单地将TMJ内各结构连接在一起形成“死”关节外,一些研究者采用间隙元或接触单元对TMJ内各结构之间的相互作用进行模拟。然而,目前对TMJ的生物力学研究还不系统、全面,没有针对这几种模拟方式的比较研究,究竟哪种方式更符合实际,尚无定论。另外,一些研究者展开了针对关节盘前移位的生物力学研究。除了关节盘前移位外,其它TMJ疾病(如关节盘其他方向的移位、关节盘附着松弛、关节盘穿孔、颞下颌关节强直)也与TMJ内的应力分布相关,而目前还没有针对这些病变的生物力学研究。
     下颌升支矢状劈开截骨术(SSRO)是最早被提出的口内进路正颌外科手术,已成为矫治各类牙颌面畸形的常规术式。大量的研究集中在临床观察和测量以及统计学分析,近年来国内外一些学者展开了对该手术的生物力学研究,包括固定方式的比较及骨愈合后下颌骨的应力分析。由于下颌骨形态结构的变化,包括TMJ在内的整个下颌骨的力学环境不同于术前,以至术后复发和TMJ疾
The temporomandibular joint (TMJ) is between the condyle of the mandible and the mandibular fossa and articular eminence of the temporal bone. The TMJs are the only bilateral linked joints in human body. The bilateral TMJs can do many actions together, such as chew, swallow, speech, expression. The TMJ loads produced by mandibular movement play an important part in the normal configuration and function of the parts in the TMJ, and have relations to the cause and cure of some TMJ diseases. It is obvious that biomechanical researches need to be done on TMJ. So far, simulating the interaction of the parts in the TMJ is still difficult in oral biomechanics. The TMJs were not established or were treated with inactive joints in many mandibular finite element models. In the past 15 years, some researchers established mandibular finite element models, in which the interaction of the parts in the TMJs was simulated using gap elements or contact elements. Nevertheless, there is no comparison among these simulations on the TMJs. Besides, some biomechanical researches on anterior disk displacement were done. Other TMJ diseases, such as disk displacements in other directions, disk perforation and ankylosis of TMJ, also have relations to the stress distributions in TMJs, but few biomechanical researches have been done on them.
     Sagittal split ramus osteotomy (SSRO) is the first intraoral orthognathic surgery, which is used to treat various mandibular malformations, such as mandibular prognathism, retrognathia and micrognathia. Many clinical observations and
引文
1. Thresher RW. The stress analysis of human teeth. 1973,6:443
    2. Tanne K. Three-dimensional finite element analysis for stress in the periodontal tissue by orthodontic forces. Am J Orthod, 1987; 92:499-505
    3. Hylander WL. Experimental analysis of temporomandibular joint reaction force in macaques. Am J Phys Anthropol 1979;51: 433-456
    4. Brehnan K, Boyd RL, Laskin J, et al. Direct measurement of loads at temporomandibular joint in macaca arctoides. J Dent Res. 1981; 60: 1820-1824
    5. Hohl HH, Tucek WH. Measurement of condylar loading forces by instrumented prostheses in the baboon. J Max-fac Surg 1982; 10: 1-7
    6. Boyd RL, Gibbs CH, Mahan PE, et al. Temporomandibular joint forces measured at the condyle of macaca arctoides. Am J Orthod Dentofac Orthop. 1990; 97: 472-477
    7. Farah JW, Craig RG, Meroueh KA. Finite element analysis of a mandibular model. J Oral Rehabil, 1988; 15(6): 615-624
    8. Meijer HJ, Starmans FJ, Bosman F, et al. A comparison of three finite element models of an edentulous mandible provided with implants. J Oral Rehabil, 1993,20:147-157
    9. Tanne K. Biomechanical effect of anteriorly directed extra oral forces on the craniofacial complex: a study using the finite element method. Am J Orthod Dentofac Orthop. 1989; 95(3): 200-204
    10. Tanne K, Tanaka E, Sakuda M. Stress distribution in the TMJ during clenching in patients with vertical discrepancies of the craniofacial complex. J Orofacial Pain. 1995; 9(2): 153-160
    11. Tanne K, Lu YCL, Tanaka E, etal. Biomechanical changes of the mandible from orthopaedic chin cup force studied in a three-dimensional finite element model. Eur J Orthod. 1993; 15(6): 527-533
    12. Tanne K, Tanaka E, Sakuda M. Stress distribution in the temporomandibular joint producdic by orthopedic chin cup forces applied in varying directions: A three-dimensional analytic approach with the finite element method. Am J Orthod Dentofac Orthop. 1996; 110(6): 502-507
    13. Tanaka E, Tanne k, Sakuda M. A three-dimensional finite element model of the mandible including the TMJ and its application to stress analysis in the TMJ during clenching. Med Eng Phys, 1994; 16(4): 316-322
    14. Tanaka E, Rodrigo D.P, Miyawaki Y, et al. Stress distribution in the temporomadibular joint affected by anterior disc displacement: a three-dimensional analytic approach with the finite-element method. J Oral Rehab. 2000; 27: 754-759
    15. Tanaka E, Tanaka M, Watanabe M, et al. Influences of occlusal and skeletal discrepancies on biomechanical environment in the TMJ during maximum clenching: an analytic approach with the finite element method. J Oral Rehab. 2001; 28: 888-894
    16. Tanaka E, Sasaki A, Tahmina K, et al. Mechanical properties of human articular disk and its influences on TMJ loading studied with the finite element method. J Oral Rehab. 2001; 28(3): 273-279
    17. Bidez MW, Berry JL, Theim JM, et al. 3-D finite element model of an edentulous human mandible. ASME Bioeng Div Publ BED. 1990; 17:119-120
    18. Paydan N, Akay HU, Poyraz CL, et al. Finite element model of a human mandible for investigating joint reactions and bone stresses during mastication. ASME Bioeng Div Publ BED. 1991; 20:163-166
    19. Andersen KL, Mortensen HT, Pedersen EH, et al. Determination of stress levels and profiles in the periodontal ligament by means of an improved three-dimensional finite element model for various types of orthodontic and natural force systems. J Biomed Eng. 1991; 13(4):293-303
    20. Pleschberger M, Rammerstorfer FG, Reiter TJ, et al. Investigations of the influence of different reconstruction methods of a human mandible using 3/D-finite element-analysis. ASME Bioeng Div Publ BED. 1995; 31:241-242
    21. 宋宇峰,王大章,李伟等,人正常下颌升支区应力分布的三维有限元法分析,贵阳医学院学报,2003;28(3):189-191,196
    22. Hart RT, Hennebel VV, Thongpreda N, et al. Modeling the biomechanics of the mandible: a three-dimensional finite element study. J Biomech, 1992; 25: 261-286
    23. Korioth TW, Romilly DP, Hannam AG. Three-dimensional finite element stress analysis of the dentate human mandible. Am J Phys Anthropol 1992; 88: 69–96
    24. Korioth TW, Hannnam AG. Mandibular forces during simulated tooth clenching. J Orofacial Pain. 1994; 8(2): 178-189
    25. Korioth T.W.P, Hannam A.G. Deformation of the human mandible during simulated tooth clenching. J Dent Res. 1994; 73(1): 56-66
    26. 刘路平,由敬舜,徐剑青等,五种咬合情况下颞下颌关节负荷的三维有限元分析,中华口腔医学杂志,1994;29(6):368-371
    27. Norio I, Hiroki K, Koutarou M. Modelling method for an individual human mandible based on x-ray CT data. Nippon Kikai Gakkai Ronbunshu. 1994; 60(574): 2078-2083
    28. Norio I, Michihiko K, Takeshi S, et al. Individual modeling method of a bonebased on the X-ray CT data. JSME Int J Ser C. 1999; 42(2):445-450
    29. Norio I, Michihiko K, Koutarou M. Individual modeling method based on the X-ray CT images (influence of partial volume effect on the modeling). Nippon Kikai Gakkai Ronbunshu A. 2003; 69(1):109-114
    30. Shah SS, Mullen RL, Rudderman RH. Sensitivity of the stress distribution in the human mandible due to changes in muscle forces. Proceedings of the 1994 International Mechanical Engineering Congress and Exposition. 1994; 28: 381-382
    31. Nagahara K, Murata S, Nakamura S, et al. Displacement and stress distribution in the temporomandibular joint during clenching. Angle-Orthod. 1999; 69(4): 372-379
    32. Mutlu-Sagesen L, Toroslu R, Parnas L, et al. A three-dimensional model of the mandible using two-dimensional CT images. Proceedings of 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 2001; 3:2778-2781
    33. 李玲,张睿,于力牛等,基于 CT 断层影像的下颌骨及下牙列三维几何学仿真,上海口腔医学,2000 ;9 (4):235-236,246
    34. 于力牛,张睿,李玲等,模块化牙列三维有限元模型的建立,上海口腔医学,2000;9(4):237-239
    35. 于力牛,常伟,王成焘等,基于实体模型的牙颌组织三维有限元建模问题探讨,机械设计与研究,2002;18(2):59-62
    36. 于力牛,尚鹏,王成焘等,适用于口腔修复学的模块化牙列有限元建模,上海交通大学学报,2002;36(8):1071-1074
    37. 于力牛,叶铭,张富强等,运用模块化方法建立口腔修复有限元模型,机械设计与研究,2002;18(6):58-60
    38. 李玲,薛淼,张富强等,上下颌骨及牙列三维有限元模型的建立,口腔材料器械杂志,2003;12(3):117-120,134
    39. 张富强,魏斌,于力牛等,个性化牙颌组织三维有限元模型库的建立,上海口腔医学,2004;13(2):110-112
    40. Martin Gross, Gidon Arbel. Three-dimensional finite element analysis of the facial skeleton on simulated occlusal loading. J Oral Rehabi. 2001; 28: 684
    41. Arne Wagner, Wolfgang Krach. A 3 - dimensional finite - element analysis investigating the biomechanical behavior of the mandible. Oral Surg Oral Med Oral Pat hol Oral Radiol Endod. 2002; 94: 678
    42. 张杲,王美青,王景杰等,颞下颌关节与咬合关系研究三维有限元模型的建立,口腔颌面修复学杂志,2000;1(4):197-199
    43. 王美青,张杲,王一兵等,七种不同颌型对颞下颌关节应力影响的三维有限元分析,中华口腔医学杂志,2004;39(3):242-244
    44. 张渊,王美青,凌伟,不同牙位加载对颞下颌关节应力分布影响的有限元分析,口腔医学研究,2004;20(4):369-371
    45. 吴立军,廖进民,钟世镇等,咀嚼肌牵动的下颌骨三维有限元建模与数值分析,中国临床解剖学杂志,2004;22(4):408-410
    46. 张宇,裴国献,原林,虚拟人数据的下颌骨快速三维重建方法,中华医学美学美容杂志,2004;10(2):83-85
    47. 张宇,陈明,唐雷等,基于“中国数字人”切片和CT数据重建下颌骨的对比研究,中国临床解剖学杂志,2004;22(4):384-386
    48. Katzberg RW, Dolwick MF, Keith DA, et al. New observations with routine and CT-assisted arthrography in suspected internal derangements of the temporomandibular joint. Oral Surg. 1981; 51:569
    49. Osborn AG, Hanafee WH, Mancuso AA. Normal and pathologic CT anatomy of the mandible. AJR. 1982; 139: 555
    50. Simon DC, Hess ML, Smilak MS, et al. Direct sagittal CT of the temporomandibular joint. Radiology. 1985; 157: 545
    51. Kahl Nieke B, Fischbach R, Gerlach KL. CT analysis of temporomandibular joint state in children 5 years after functional treatment of condylar fractures. Int J Oral Maxillofac Surg. 1994; 23: 332
    52. Wang G, Vannier MW. Stair-step artifacrs in three-dimensional helical CT: An experimental study. Radiology. 1994; 19(1):79
    53. 胡敏,周继林,洪民等,三维重建的临床应用,口腔颌面外科杂志,1993;3:129
    54. 胡敏,周继林,洪民等,颞下颌关节三维影像重建与显示,军医进修学院学报,1995, 16:256
    55. 刘洪臣,刘宁,吴高洪等,颞颌关节 CT 图像计算机三维重建方法的探讨,现代口腔医学杂志,1995,9:17-19
    56. Roberts D, Schenck J, Joseph P, et al. Temporomandibular joint: Magnetic resonance imaging. Radiology. 1985; 155: 829
    57. Helms CA, Kaban LB, McNeill C, et al. Temporomandibular joint: Morphology and signal intensity chatacteristics of the disk at MR imaging. Radiology. 1989l; 172: 817
    58. Khoo VS, Dearnaley DP, Finnigan JD, et al. Magnetic resonance imaging (MRI): considerrations and applicaions in radiotherapy treatment planning. Radiother Oncol. 1997; 42(1):1
    59. 胡凯,周继林,洪民等,建立模拟功能状态下的下颌骨三维有限元模型,口腔颌面外科杂志,1997;7(3):183-186
    60. 胡凯,周继林,刘洪臣等,正常人下颌骨的三维有限元应力分析,军医进修学院学报,1998;19(2):97-100
    61. 周学军,赵志河,赵美英,樊瑜波,包括下颌骨的颞下颌关节三维有限元模型的建立,实用口腔医学杂志,2000;16(1):17-19
    62. 周学军,赵志河,赵美英,樊瑜波,“颞下颌关节-下颌骨-颏兜矫形系统”三维正交各向异性有限元模型的建立,口腔医学,2004;24(6):325-327
    63. Zhao L, Patel PK, Widera GEO, et al. Validation of a Finite Element Model of Pediatric Patient-Specific Mandible. Proceddings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 2003; 2:1831-1834
    64. Yu Li-Niu, Ye Ming, Wang Cheng-Tao. New method for 3D finite element modeling of human mandible based on CT data. J Dong Hua Univ. 2004; 21(1):29-33
    65. 孙健,张富强,王冬梅等,3 种加载方式下正常人下颌骨三维有限元应力分布分析,上海口腔医学,2004;13(1):41-43
    66. 胡凯,余立锋,邱本胜等,CT与MRI图像融合技术在颅颌面部的应用,解放军医学杂志,2001;26(4):251-253
    67. 胡凯,王卫东,邱本胜等,颅颌面CT与MR图像的配准,中国医学影像学杂志,2002; 10(2):123-125
    68. 胡凯,柳春明,侯康林等,利用CT和MRI融合技术确定咀嚼肌三维肌力向量,解放军医学杂志,2002;27(5):398-400
    69. 胡凯,张晔缨,柳春明等,模拟功能咬合时人颞下颌关节内的应力分布和位移特征,解放军医学杂志,2003;28(1):63-65
    70. 孔亮,胡开进,赵海涛等, 利用薄层CT技术和Matlab软件辅助建立下颌骨三维有限元模型,实用口腔医学杂志,2004, 20 (2):175-177
    71. 孔亮,胡开进,于擘等,Matlab软件辅助建立全牙列下颌骨三维有限元模型,口腔颌面外科杂志,2004;14(1):17-19
    72. 孔亮,胡开进,刘宝林等,5种不同张口位的颞下颌关节区三维有限元模型的建立,口腔医学研究,2005;21(1):35-37
    73. 杨辉,刘洪臣,荣起国,颞下颌关节三维有限元模型的建立,中华口腔医学杂志,1999; 34(5):320
    74. 杨辉,刘洪臣,荣起国,磁共振影像颞下颌关节三维有限元模型的建立,口腔颌面外科杂志,2000;1(1):20-22
    75. 郭宏,刘洪臣,张润荃等,包括颞下颌关节、咀嚼肌、下颌骨及下牙列的三维有限元模型的建立,口腔颌面修复学杂志,2003;4(4):247-249
    76. 郭宏,刘洪臣,张润荃等,正常颞下颌关节应力分布的三维有限元研究,临床口腔医学杂志,2004;20(3):134-137
    77. Buranastidporn B, Hisano M, Soma K. Articular disc displacement in mandibular asymmetry patients. J Med Dent Sci. 2004; 51(1): 75-81
    78. Merouch KA, Watanable F, Mentag PJ. Finite element analysis of partially edentulous mandible rehabilitated with an osteointegrated cylindrical implant. J Implant. 1987; 13(2): 215-238
    79. 胡敏,田晓玲,杨勇琪等,颞下颌关节的三维有限元法研究,军医进修学院学报,1995; 16(3):181-183
    80. 胡敏,周继林,洪民等,髁突应力分布的研究,中华口腔医学杂志,1996;31(4):214-216
    81. Hu M, Zhou J, Hong M, et al. Study on stress distribution of the condyle. Chin Med J (Engl). 1997; 110(10): 811-813
    82. Korioth TWP, Versluis A. Modeling the mechanical behavior of the jaws and their related structures by finite element (FE) analysis. Crit Rev Oral Biol Med. 1997; 8:90-104
    83. Donzelli PS, Gallo LM, Spilker RL, et al. Biphasic finite element simulation of the TMJ disc from in vivo kinematic and geometric measurements. J Biomech. 2004; 37(11):1787-1791
    84. Chen J. Finite element model of the human temporomandibular joint. Proceedings of Winter Annual Meeting of the American Society of Mechanical Engineers. 1991; 20:399-401
    85. Chen J, Xu L, Pidaparu RM. Mechanical analysis of the human temporamandibular joint: a non-linear material method. Proceedings of the 1993 ASME Winter Annual Meeting. 1993; 26:337-340
    86. Chen J, Xu LF. A finite element analysis of the human temporomandibular joint. J Biomech Eng, 1994; 116: 401-407
    87. Chen J, Buckwalter K. Displacement analysis of the temporomandibular condyle from magnetic resonance images. J Biomechanics. 1993; 26(12): 1455–1462
    88. Xu LF, Chen J. Finite element modeling of the human temporomandibular joint. Proceedings of the 1994 International Mechanical Engineering Congress and Exposition. 1994; 28:379-380
    89. Chen J, Akyuz U, Xu LF, et al. Stress analysis of the human temporomandibular joint. Med Eng & Phy. 1998; 20: 565-572
    90. DeVocht JW, Goel VK, Zeitler DL, et al. Finite element model to study the control of disc movement within the temporomandibular joint. Proceedings of the 1995 ASME International Mechanical Engineering Congress and Exposition. 1995; 31: 59-60
    91. Devocht J. W, Goel V. K, Zeitler D. L, et al. A study of the control of disc movement within the temporomadibular joint using the finite element technique. J Oral Maxillofac Surg, 1996; 54: 1431-1437
    92. Devocht JW, Goel VK, Zeitler DL, et al. Experimental validation of a finite element model of the temporomandibular joint. J Oral Maxillofac Surg. 2001; 59(7): 775-778
    93. M. Beek, L.J. van Ruijven, E. Doker, et al. Development of a three dimensional finite element model of the human temporomandibular joint. Proceedings of 11th Conference of the ESB. 1998: 43
    94. M. Beek, J.H. Koolstra, L.J. van Ruijven, et al. Three-dimensional finite element analysis of the human temporomandibular joint disc. J Biomech. 2000;33: 307-316
    95. Beek M, Koolstra J.H, van Ruijven L.J, et al. Three-dimensional finite element analysis of the cartilaginous structures in the human temporomadibular joint. J Dent Res, 2001; 80(10): 1913-1918
    96. Tanaka E, Rodrigo DP, Tanaka M, et al. Stress analysis in the TMJ during jaw opening by use of a three-dimensional finite element model based on magnetic resonance images. Int J Oral Maxillofac Surg. 2001; 30(5): 421-430
    97. Tanaka E, del Pozo R, Sugiyama M, Tanne K. Biomechanical response of retrodiskal tissue in the temporomandibular joint under compression. J Oral Maxillofac Surg 2002;60:546-551
    98. Tanaka M, Tanaka E, Todoh M, et al. Stress analysis of anterior-disc-displaced temporomandibular joint using individual finite element model. JSME Int. J. Ser. C. 2003; 46(4):1400-1408
    99. Del Pozo R, Tanaka E, Tanaka M, et al. Influence of friction at articular surfaces of the temporomandibular joint on stresses in the articular disk: a theoretical approach with the finite element method. Angle Orthod. 2003; 73(3):319-327
    100.E. Tanaka, R. del Pozo, M. Tanaka, et al. Three-dimensional finite element analysis of human temporomandibular joint with and without disc displacement during jaw opening. Med Eng & Phy. 2004; 26: 503-511
    101.胡凯,荣起国,方竞等,模拟正中咬合的人颞下颌关节力,医用生物力学,1999;14(2):74-78
    102.胡凯,荣起国,方竞等,人颞下颌关节 CT 三维重建及其有限元实体建模,中国医学影像学杂志,1999;7(2):137-139
    103.胡凯,荣起国,方竞等,髁突软骨对三维非线性模拟人颞下颌关节力的影响,中华医学杂志,2000; 80(2):114-115
    104.Hu K, Rong QG, Fang J, et al. Effects of condylar fibrocartilage on the biomechanical loading of the human temporomandibular joint in a three-dimensional nonlinear finite element model. Med Eng & Phy. 2003; 25: 107-113
    105.胡凯,荣起国,方竞等,人颞下颌关节力的三维非线性有限元模拟,解放军医学杂志,2000;25(2):128-130
    106.胡凯,荣起国,方竞等,关节内接触问题对三维非线性模拟颞下颌关节力的影响,解放军医学杂志,2000;25(6):424-427
    107.周学军,赵志河,赵美英,樊瑜波,下颌骨三维有限元模型的边界约束设计,华西口腔医学杂志,1999;17(1):29-32
    108.周学军,赵志河,赵美英,樊瑜波,下颌前伸时髁突的三维有限元分析,中华口腔医学杂志,1999;34(2):85-87
    109.周学军,赵志河,赵美英,樊瑜波,不同大小颏兜牵引力的下颌骨三维有限元分析,北京口腔医学,2004;12(3):125-129
    110.Castano MC, Zapata U, Pedroza A, et al. Creation of a three-dimensional model of the mandible and the TMJ in vivo by means of the finite element method. Int J Comput Dent. 2002; 5(2-3): 87-99
    111.Trauner R, Obwegeser HL. The surgical correction of mandibular prognathism and retrognathia with consideration of genioplasty. Part I. Surgical procedures to correct mandibular prognathism and reshaping of chin. Oral Surg. 1957; 10: 677-689
    112.Trauner R, Obwegeser HL. The surgical correction of mandibular prognathism and retrognathia with consideration of genioplasty. Part II. Operating methods for micrognathia and distocclusion. Oral Surg. 1957; 10: 899-909
    113.DalPont G. Retromolar osteotomy for correction of prognathism. J Oral Surg Anesth Hosp D Serv. 1961; 19: 42
    114.Hunsuck EE. A modified intraoral sagittal splitting technique for correction of mandibular prognathism. J Oral Maxillofac Surg. 1968; 26: 250
    115.Epker BN. Modifications in the sagittal osteotomy of the mandible. J Oral Surg. 1977; 35: 157
    116.王大章, 李声伟. 改进的口内下颌矢状劈开术:一种理想的小下颌畸形矫正术. 华西口腔医学杂志, 1986; 4 (2):81
    117.王兴,张震康,张熙恩等,下颌升至矢状劈开截骨术在外科正畸中的应用与改进,中华口腔医学杂志,1987;22(1):15,62
    118.Kitajima T, Handa V, Naitoh K: A modification of the sagittal splitting technique ensuring that the osteotomy split lies immediately medial to the lateral cortex. Int J Oral Maxillofac Surg. 17:53, 1989
    119.Choung PH. A new osteotomy for the correction of mandibular prognathism: techniques and rationale of the intraoral vertico-sagittal ramus osteotomy. J Craniomaxillofac Surg. 1992; 20(4): 153
    120.Edwards RC, Paxton MC. Modified sagittal split ramus osteotomy for mandibular setback. J Oral Maxillofac Surg. 1994; 52(5): 524
    121.Marquez IM, Stella JP. Modification of sagittal split ramus osteotomy to avoid unfavorable fracture around impacted third molars. Int J Adult Orthodon Orthognath Surg. 1998; 13(3): 183
    122.Harada K, Kikuchi T, Morishima S, et al. Changes in bite force and dentoskeletal morphology in prognathic patients after orthognathic surgery. Oral Surg Oral Med Oral Patho Oral Radio Endodon. 2003; 95 (6): 649
    123.Kim MJ, Kim SG, Park YW. Positional stability following intentional posterior ostectomy of the distal segment in bilateral sagittal split ramus osteotomy for correction of mandibular prognathism. J Craniomaxillofac Surg. 2002; 30 (1): 35
    124.Nishimura M, Segami N, Sato J, et al. Transitional joint effusion in the mandibular prognathic surgery patient: Intraoral vertical ramus osteotomy versus sagittal split ramus osteotomy. J Oral Maxillofac Surg. 2004; 62 (5): 545
    125.Ogasawara T, Kitagawa Y, Ogawa T, et al. Treatment of severe mandibular prognathism in combination with maxillary hypoplasia: case report. J Craniomaxillofac Surg. 2002; 30 (4): 226
    126.Wolford LM. The sagittal split ramus osteotomy as the preferred treatment for mandibular prognathism. J Oral Maxillofac Surg. 2000; 58: 310
    127.Dolce C, Van Sickels JE, Bays RA, et al. Skeletal stability after mandibular advancement with rigid versus wire fixation. J Oral Maxillofac Surg. 2000; 58 (11): 1219
    128.Emshoff R, Scheiderbauer A, Gerhard S, et al. Stability after rigid fixation of simultaneous maxillary impaction and mandibular advancement osteotomies. Int J Oral Maxillofac Surg. 2003; 32 (2): 137
    129.Pangrazio-Kulbersh V, Berger JL, Kaczynski R, et al. Stability of skeletal Class II correction with 2 surgical techniques: The sagittal split ramus osteotomy and the total mandibular subapical alveolar osteotomy. Am J Orthodon Dentofac Orthope. 2001; 120 (2): 134
    130.Yoshida K, Rivera RS, Kaneko M, et al. Minimizing displacement of the proximal segment after bilateral sagittal split ramus osteotomy in asymmetric cases. J Oral Maxillofac Surg. 2001; 59 (1): 15
    131.Pahkala R, Heino J. Effects of sagittal split ramus osteotomy on temporomandibular disorders in seventy-two patients. Acta Odontologica Scandinavica. 2004; 62(4): 238
    132.Pruitt JW, Moenning JE, Lapp TH, et al. Treatment of painful temporomandibular joint dysfunction with the sagittal split ramus osteotomy. J Oral Maxillofac Surg. 2002; 60 (9): 996
    133.Jones TA, Garg T, Monaghan A. Removal of a deeply impacted mandibular third molar through a sagittal split ramus osteotomy approach. Br J Oral Maxillofac Surg. 2004; 42 (4): 365
    134.Reyneke JP, Ferretti C. Intraoperative diagnosis of condylar sag after bilateral sagittal split ramus osteotomy. Br J Oral Maxillofac Surg. 2002; 40 (4): 285
    135.Rubens BC, Stoelinga PJW, Blijdorp PA, Schoenaers JAH, Politis C. Skeletal stability following sagittal split osteotomy using monocortical miniplate internal fixation. Int J Oral Maxillofac Surg. 1988; 17: 371
    136.Hu J, Wang DZ, Zou SJ. Effects of mandibular setback on the temporomandibular joint: A comparison of oblique and sagittal split ramus osteotomy. J OralMaxillofac Surg. 2000; 58 (4): 375
    137.Shepherd JP. Screw fixation after mandibular sagittal osteotomy: An intraoral approach. Br J Oral Maxillofac Surg. 1991; 29(5): 325
    138.Kim HC, Essaki S, Kameyama T. Comparison of screw placement patterns on the rigidity of the sagittal split ramus osteotomy: technical note. J Craniomaxillofac Surg. 1995; 23(1): 54
    139.Obeid G, Lindqvist CC. Optimal placement of bicortical screws in sagittal split-ramus osteotomy of mandible. Oral Surg Oral Med Oral Pathol. 1991; 71: 665
    140.Foley WL, Frost DE, Paulin WB, et al. Internal screw fixation: Comparison of placement pattern and rigidity. J Oral Maxillofac Surg. 1989; 47: 720
    141.Berger JL, Pangrazio-Kulbersh V, Bacchus SN, et al. Stability of bilateral sagittal split ramus osteotomy, rigid function versus transosseous wiring. Am J Orthodon Dentofac Orthope. 2000; 118 (4): 397
    142.Ingeborg M. Stability of mandibular advancement after sagittal osteotomy with screw or wire fixation. J Oral Maxillofac Surg. 1990; 48 :108
    143.Hatch JP, Van Sickels JE, Rugh JD, et al. Mandibular range of motion after bilateral sagittal split ramus osteotomy with wire osteosynthesis or rigid fixation. Oral Surg Oral Med Oral Patho Oral Radio Endodon. 2001; 91 (3): 274
    144.Ueki K, Nakagawa K, Takatsuka S, et al. Plate fixation after mandibular osteotomy. International J Oral Maxillofac Surg. 2001; 30 (6): 490
    145.Joos U. An adjustable bone fixation system for sagittal split ramus osteotomy: preliminary report. Br J Oral Maxillofac Surg. 1999; 37 (2): 99
    146.Whitesides LM, Meyer RA. Effect of distraction osteogenesis on the severely hypoplastic mandible and inferior alveolar nerve function. J Oral Maxillofac Surg. 2004; 62 (3): 292
    147.Schendel SA, Linck DW. Mandibular distraction osteogenesis by sagittal split osteotomy and intraoral curvilinear distraction. J Craniofac Surg. 2004; 15 (4): 631
    148.Choi JY, Hwang KG, Baek SH, et al. Original sagittal split osteotomy revisited for mandibular distraction. J Craniomaxillofac Surg. 2001; 29 (3): 165
    149.杨学文,东耀峻,李祖兵等,下颌升支截骨术不同术式对口颌系统功能影响的比较,中华口腔医学杂志,2000;35(3):181
    150.Choi YS, Yun KI, Kim SG. Long-term results of different condylotomy designs for the management of temporomandibular joint disorders. Oral Surg Oral Med Oral Patho Oral Radio Endodon. 2002; 93 (2): 132
    151.Katsumata A, Fujishita M, Ariji Y, et al. 3D CT evaluation of masseter muscle morphology after setback osteotomy for mandibular prognathism. Oral Surg Oral Med Oral Patho Oral Radio Endodon. 2004; 98 (4): 461
    152.Kawamata A, Fujishita M, Ariji Y, et al. Three-dimensional computed tomographic evaluation of morphologic airway changes after mandibular setback osteotomy for prognathism. Oral Surg Oral Med Oral Patho Oral Radio Endodon. 2000; 89 (3): 278
    153.Ueki K, Nakagawa K. Condylar and temporomandibular joint disc positions after mandibular osteotomy for prognathism. J Oral Maxillofac Surg. 2002; 60: 1424; discussed: 1432
    154.程波,东耀峻,杨学文等,双侧升支矢状劈开截骨后退下颌术后骨的稳定性的研究,实用口腔医学杂志,2002;18(4):358
    155.Lee W, Park JU. Three-dimensional evaluation of positional change of the condyle after mandibular setback by means of bilateral sagittal split ramus osteotomy. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2002; 94(3): 305
    156.吕婴,刘郁,下颌前突患者升支矢状劈开截骨术后骨性复发因素的探讨,中华口腔医学杂志,2001;36(5):374
    157.Moenning JE, Bussard DA, LappTH, et al. Comparison of relapse in bilateral sagittal split osteotomies for mandibular advancement: Rigid internal fixation(screws) versus inferior border wiring with anterior skeletal fixation. Int J Adult Orthodon Orthognath Surg. 1990; 5(3): 175
    158.Mehra P, Castro V, Freitas RZ, et al. Complications of the mandibular sagittal split ramus osteotomy associated with the presence or absence of third molars. J Oral Maxillofac Surg. 2001; 59 (8): 854
    159.Yamamoto R, Nakamura A, Ohno K, et al. Relationship of the mandibular canal to the lateral cortex of the mandibular ramus as a factor in the development of neurosensory disturbance after bilateral sagittal split osteotomy. J Oral Maxillofac Surg. 2002; 60 (5): 490
    160.Proffit WR, Turvey TA, Fields HW, et al. The effect of orthognathic surgery on occlusal force. J Oral Maxillofac Surg. 1989; 47: 457
    161.Throckmorton GS, Hohnston CP, Gonyea WJ, et al. A preliminary study of biomechanical changes produced by orthognathic surgery. J Prosthet Dent. 1984;
    51: 252
    162.Throckmorton GS, Buschang PH, Ellis E. Improvement of maximum occlusal forces after orthognathic surgery. J Oral Maxillofac Surg. 1996;54:1080
    163.Ellis E, Throckmorton GS, Sinn DP. Bite forces before and after surgical correction of mandibular prognathism. J Oral Maxillofac Surg. 1996;54:176
    164.杨学文,东耀峻,张国志,下颌升支矢状劈开截骨术后退和前徙下颌骨对合力和咀嚼效能的影响,中华口腔医学杂志,1995;30(1):3
    165.Kim YG, Oh SH. Effect of mandibular setback surgery on occlusal force. J Oral Maxillofac Surg. 1997; 55: 121
    166.Harada K, Watanabe M, Ohkura K, Enomoto S. Measure of bite force and occlusalcontact area before and after bilateral sagittal split ramus osteotomy of the mandible using a new pressure-sensitive device: a preliminary report. J Oral Maxillofac Surg. 2000; 58(4): 370; discussion: 373
    167.Armstrong JE, Lapointe HJ, Hogg NJ, Kwok AD. Preliminary investigation of the biomechanics of internal fixation of sagittal split osteotomies with miniplates using a newly designed in vitro testing model. J Oral Maxillofac Surg. 2001; 59(2): 191
    168.Anucul B, Waite PD, Lemons JE. In vitro strength analysis of sagittal split osteotomy fixation: Noncompression monocortical plates versus bicortical position screws. J Oral Maxillofac Surg. 1992; 50: 1295-1299
    169.Uckan S, Schwimmer A, Kummer F, et al. Effect of the angle of the screw on the stability of the mandibular sagittal split ramus osteotomy: a study in sheep mandibles. Br J Oral Maxillofac Surg. 2001; 39(4): 266
    170.Dolanmaz D, Uckan S, Isik K, Saglam H. Comparison of stability of absorbable and titanium plate and screw fixation for sagittal split ramus osteotomy. Br J Oral Maxillofac Surg. 2004; 42(2): 127
    171.Wittenberg JM, Wittenberg RH, Hipp JA. Biomechanical properties of absorbable poly-l-lactide plates and screws: a comparison with traditional systems. J Oral Maxillofac Surg. 1991; 49: 512
    172.Ellis E. Mobility of the mandible following advancement and maxillomandibular or rigid internal fixation: An experimental investigation in Macaca Mulatta. J Oral Maxillofac Surg. 1988; 46: 118
    173.Ellis E, Carlson DS, Billups J. Osseous healing of the sagittal ramus osteotomy: a histologic comparison of rigid and nonrigid fixation in Macaca mulatta. J Oral Maxillofac Surg. 1992; 50(7): 718
    174.宋宇峰,王大章,李伟,小下颌畸形矫治术后的生物力学研究,贵阳医学院学报,1997; 22(2):106
    175.宋宇峰,王大章,李伟,猴下颌升支矢状骨劈开前徙术后骨愈合区的X线和光镜研究,临床口腔医学杂志,1998;14(3):137
    176.李伟,宋宇峰,王大章,下颌支矢状劈开前徒与斜行切开后徒术后骨愈合部位的生物力学研究,生物医学工程学杂志,2004;21(1):47
    177.Ayoub AF, Stirrups DR, Moos KF. The stability of bimaxillary osteotomy after correction of skeletal Class II malocclusion. Int J Adult Orthodon Orthognath Surg. 1993; 8(3): 155
    178.Maurer P, Holweg S, Schubert J. The finite-element-analysis of different screw-diameters in the sagittal split osteotomy of the mandible. J Craniomaxillofac Surg. 1999; 27( 6): 365
    179.Maurer P, Holweg S, Knoll WD, Schubert J. Study by finite element method of the mechanical stress of selected biodegradable osteosynthesis screws insagittal ramus osteotomy. Br J Oral Maxillofac Surg. 2002; 40(1): 76
    180.Maurer P, Knoll WD, Schubert J. Comparative evaluation of two osteosynthesis methods on stability following sagittal split ramus osteotomy. J Craniomaxillofac Surg. 2003; 31(5): 284-289
    181.宋宇峰,王大章,李伟等,下颌升支矢状骨劈开术后三维有限元的应力-应变分析,贵阳医学院学报,2003;28(6):471-473,479
    182.吴洪敏,陶书振,下颌升支矢状劈开截骨术矫治下颌前突体会,现代口腔医学杂志,1994;8(4):237-238
    183.归来,口内路径下颌骨升枝矢状劈开截骨术治疗下颌前突畸形,口腔颌面外科杂志,1997;7(2):84-87
    184.朱力,惠永刚,刘兵等,正颌外科和正畸联合治疗下颌前突畸形,实用口腔医学杂志,2002;18(2):151-153
    185.吴俊伟,彭国光,廖少英等,双侧下颌骨升支矢状劈开截骨术治疗下颌前突畸形,广东牙病防治,2004;12(4):252-254
    186.程波,东耀峻,杨学文等,正颌外科和正畸联合治疗发育性下颌骨不对称畸形,中华以学美学美容杂志,2004;10(2):79-82
    187.李祖兵,孙国文,东耀峻等,下颌不对称畸形的正颌外科矫治,华西口腔医学杂志,2004;22(6):484-486
    188.周会喜,薛国初,艾伟健,双侧下颌升支矢状劈开后退术后骨稳定性评价,广东牙病防治,2003;11(4):251-253
    189.华泽权,刘妍琼,宋九余等,下颌升支矢状劈开截骨术后颞下颌关节形态和功能变化,口腔颌面外科杂志,2002;12(4):355,359
    190.刘爱民,张震康,王兴,双颌手术升支截骨后退术后下颌稳定性及与关节关系的研究,口腔颌面外科杂志,2000;10(1):1-4
    191.杨学文,东耀峻,张国志等,下颌升支矢状劈开截骨术后退和前徙下颌骨对下颌运动范围的影响,口腔颌面外科杂志,1994;4(4):203-205
    192.Laskin DM, Ryan WA , Greene CS. Incidence of temporomandibular symptoms in patients with major skeletal malocclusions : a survey of oral and maxillofacial surgery training programs. Oral Surg Oral Med Oral pathol , 1986 , 61 :537-541
    193.Athanasiou AE, Melsen B. Craniomandibular dysfunction following surgical correction of mandibular prognathism. Angle Orthod ,1992 , 62 : 9-14
    194.刘爱民,张震康,王兴,正颌外科治疗对颞下颌关节功能影响的研究,中华口腔医学杂志,2000 ;35 (2):135-137
    195.李勇,欧阳喈,刘磊等,下颌升支矢状截骨后不同固定方法稳定性的体外模型研究,口腔医学研究,2004;20(6):628-630
    196.宋宇峰,李伟,下颌骨前徙术后扫描电镜的组织学研究,贵阳医学院学报,1998;23(3):274-276
    197.Haskell BS, Day ML. Computer modeling of skeleto-muscular forces in orthognathic surgical patients employing MRI and FEM: a pilot study.Proceedings of the 1995 Bioengineering Conference. 1995; 29: 389
    198.Payan Y, Chabanas M, Pelorson X, et al. Biomechanical models to simulate consequences of maxillofacial surgery. C-R-Biol. 2002; 325(4): 407-417
    199.Huiskes R. On the modeling of long bones in structural analyses. J Biomech. 1982; 15:65
    200.Ashman RB, Van Buskirk WC. The elastic properties of a human mandible. Adv Dent Res. 1987; 1: 64-67
    201.王翰章主编,中华口腔科学,2001
    202.Murphy WA, Kaplan PA, Resnick D. Temporomandibular Joint. In: Bone and Joint Disorders. 2002: 1705-1754
    203.康宏,易新竹,陈梦诗,人体颞下颌关节盘拉伸力学实验研究,华西口腔医学杂志,1998;18(3):253-255
    204.Rees LA. The structure and function of the mandibular joint. Brit Dent J. 1954; 96: 125
    205.Pullinger AG, Baldioceda F, Bibb CA. Relationship of TMJ articular soft tissue to underlying bone in young adult condyles. J Dent Res. 1990; 69: 1512–1518
    206.Hansson T, Nordstrom B. Thickness of the soft tissue layers and articular disk in temporomandibular joints with deviations in form. Acta Odontol Scand, 1977;
    35:281
    207.Linn FC. Lubrication of animal joints. J Bone Joint Surg. 1989; 49: 1079
    208.Osborn JW, Baragar FA. Predicted and observed shapes of human mandibular condyles.J Biomech, 1992; 25: 967-974
    209.Forster H, Fisher J. The influence of continuous sliding and subsequent surface wear on the friction of the articular cartilage. Proc Inst Mech Eng. 1999; 213: 329-345
    210.Forster H, Fisher J. The influence of loading time and lubricant on the friction of the articular cartilage. Proc Inst Mech Eng. 1996; 210: 109-119
    211.康宏,易新竹,陈孟诗等,人体颞下颌关节外侧壁囊-韧带复合结构生物力学研究,生物医学工程学杂志,1999;18(1):25-28
    212.Muralidhar S, Jagota A, Bennison SJ. Mechanical behaviour in tension of cracked glass bridged by an elastomeric ligament. Acta Mater. 2000; 48: 4577–4588
    213.Roychowdhury A, Pal S. 3-D FEM analysis of single and multiple screw-root dental implant fixed in a mandible. Crit Rev Biomed En. 1998; 26(5): 359
    214.Van Essen NL, Raghu R, Clarke R, et al. Modelling the human jaw. Proceedings of the 2002 IEEE Engineering in Medicine and Biology 24th Annual Conference and the 2002 Fall Meeting of the Biomedical Engineering Society. 2002; 3:2497-2498
    215.Maughan RJ, Waston JS, Weir J. Strength and cross-sectional area of human skeletal muscle. J Physiol. 1983; 33: 37
    216.Pruim GJ, ten Bosch JJ, de Jongh HJ. Jaw muscle EMG activity and static loading of the mandible. J Biomech. 1978; 11: 389-395
    217.Pruim GJ, de Jongh HJ, ten Bosch JJ. Forces acting on the mandibile during bilateral static bites at different bite force level. J Biomech. 1980;13:755-763
    218.Hatcher DC, Faulkner MG, Hay A. Development of mechanical and mathematic models to study temporomandibular joint loading. J Prosthet Dent. 1986; 55: 377-384
    219.dos Santos JJ, Blackman RB, Nelson SJ. Vectorial analysis of the static equilibrium of forces generated in the mandible in centric occlusion, group function, and balanced occlusion relationships. J Prosthet Dent. 1991; 65: 557-567
    220.Spencer MA. Force production in the primate masticatory system: electromyographic tests of biomechanical hypotheses. J Human Evolution. 1998; 34: 25–54
    221.T.Kuboki, Y.Takenami, K.Maekawa, et al. Biomechanical caculation of human TM joint loading with jaw opening. J Oral Rehabil. 2000; 27:940-951
    222.Hattori Y, Satoh C, Seki S, et al. Occlusal and TMJ loads in subjects with experimentally shortened dental arches. J Dent Res. 2003; 82(7): 532-536
    223.Gingerich PD. The human mandible: Level, link, or both. Am J Phy Anthropol. 1979; 51: 135-137
    224.Hata Y, Watanable F, Fukuda, et al. Stress analysis of intramobile element by three-dimensional finite element. J Dent Res. 1992; 71(3): 117-125
    225.Meijer HJA, Staimans FJM, Steen WHA, et al. Location of implants in the interforminal region of the mandible and the consequences for the design of the superstructure. J Oral Rehabil. 1994; 21(1): 47-56
    226.Weijs WA. Biomechanical model of the analysis of form: a study of the manmalian masticatory apparatus. Am Zool. 1980; 20:707
    227.Weijs WA, Hillen B. Relationship between the physiological cross-section of the human jaw muscles and their cross-section area in computer tomograms. Acta Anat. 1984; 118:129-138
    228.Weijs WA, Hillen B. Cross-sectional areas and estimated intrinsic strength of the human jaw muscles. Acta Morph Neerl, 1985; 23:267-274
    229.Osborn JW, Baragar FA. Predicted pattern of human muscle activity during clenching derived from a computer assisted model: symmetric vertical bite forces. J Biomech 1985;18:599–612
    230.Koolstra JH, Van Eijden TMGJ, Weijs WA, et al. A three-dimensional mathematical model of the human masticatory system predicting maximum possible bite forces. J Biomech, 1988; 21(7): 563-576
    231.Koolstra JH, van Eijden TMGJ, van Spronsen PH, et al. Computer assisted estimation of lines of action of human masticatory muscels reconstruction in vivo by means of magnetic resonance imaging of parallel sections. Arch Oral Biol. 1990; 35(7):549-556
    232.Koolstra JH, van Eijden TMGJ. Application and validation of a three-dimensional mathematical model of the human masticatory system in vivo. J Biomech. 1992; 25(2):175-187
    233.Koolstra JH, Van Eijden TMGJ. Three-dimensional dynamical capabilities of the human masticatory muscles. J Biomech. 1999; 32: 145-152
    234.Faulkner MG, Hatcher DC, Hay A. A three-dimensional investigation of temporomandibular joint loading. J Biomech, 1987; 20(10): 997-1002
    235.Trainor PGS, McLachlan KR, McCall WD. Modelling of forces in the human masticatory system with optimization of the angulations of the joint loads. J Biomech. 1995; 28(7): 829-843
    236.Langenbach GEJ, Hannam AG. The role of passive muscle tensions in a three-dimensional dynamic model of the human jaw. Arch Oral Biol. 1999; 44: 557-573
    237.Peck CC, Langenbach GEJ, Hannam AG. Dynamic simulation of muscle and articular properties during human wide jaw opening. Arch Oral Biol. 2000; 45: 963–982
    238.Nitzan DW. Intraarticular pressure in the functioning human temporomandibular joint and its alteration by uniform elevation of the occlusal plane. J Oral Maxillofac Surg. 1994; 52: 671-679
    239.Boyd RL, Gibbs CH, Mahan PE, et al. Temporomandibular joint forces measured at the condyle of Macaca arctoides. Am J Orthod Dentofacial Orthop. 1990; 97: 472–477
    240.Korioth TW, Johann AR. Influence of mandibular superstructure shape on implant stresses during simulated posterior biting. J Prosth Dent. 1999; 82 (1): 67-72
    241.Ho MH, Lee SY, Chen HH, etal. Three-dimensional finite element analysis of the effects of posts on stress distribution in dentin. J Prosthet Dent. 1994; 72: 367
    242.Kamelchuk LS, Major PW. Degenerative disease of the temporomandibular joint. J Orofacia Pain. 1995; 9: 168-180
    243.Dolwick MF, Katzberg RW, Helms CA, et al. Anthrotomographic evalution of the temporomandibular joint. J Oral Surg. 1979; 37: 793-799
    244.Mongini F. Remodeling of the mandibular condyle in the adult and its relationship to the condition of the dental arches. Acta Anat(Basel). 1972;82: 437
    245.Dijgraaf LC, de Bont LGM, Boering G, et al. The structure, biochemistry and metabolism of osteoarthritic cartilage: a review of the literature. J Oral Maxillofac Surg. 1995;53:1182-1192
    246.Nitzan DW. The process of lubrication impairment and its involvement in temporomandibular joint disc displacement: a theoretical concept. J Oral Maxillofac Surg. 2001; 59: 36-45
    247.洪民,周继林,黄继贤等,关节外调整术治疗颞下颌关节结构紊乱与肌功能失调,中华口腔医学杂志,1991;26:109
    248.Erkmen E, Simsek B, Yucel E, et al. Three-dimensional finite element analysis used to compare methods of fixation after sagittal split ramus osteotomy: setback surgery-posterior loading. Bri J Oral Maxillofac Surg. 2005; 43(2): 97-104
    249.Mongini F. Condylar remodeling after occlusal therapy. J Prosthet Dent. 1980; 43: 568-577
    250.Ishida T, Soma K, Miura F. Stress distribution in mandible induced by occlusal forces in different horizontal mandibular position. Nippon Kyosei Shika Gakkai Zasshi. 1988; 47:767-779
    251.O’Ryan F, Epker BN. Temporomandibular joint function and morphology: observation on the spectra of normalcy. Oral Surg, 1984; 58: 272
    252.牛峰,归来,张智勇等,口内进路的下颌升支矢状劈开截骨术,中华整形外科杂志,2002;18(S1):104-107
    253.杨壮群,虎小毅,王正辉等,模拟下颌骨骨折内固定以及骨折愈合进程的三维有限元模型的建立,中国口腔颌面外科杂志,2004;2(1):48-51
    254.Ingervall B, Ridell A, Thilander B. Changes in activity of the temporal, masseter and lip muscles after surgical correction of mandibular prongathism. Int J Oral Surg. 1989; 47: 457
    255.Barbenel JC. The biomechanics of the temporomandibular joint: a theoretical study. J Biomech. 1972; 5: 251
    256.Standlee JP, Caputo AA, Ralph JP. The condyle as a stress-distributing component of the temporomandibular joint. J Oral Rehabil. 1981; 8: 391-400
    257.Osborn JW. The disc of the human temporomandibular joint: design, function and failure. J Oral Rehabil. 1985; 12: 279–293
    258.Scapino RP, Canham PB, Finlay HM, et al. The behaviour of collagen fibres in stress relaxation and stress distribution in the jaw-joint disc of rabbits. Arch Oral Biol. 1996; 41: 1039–1052
    259.Oberg T, Carlsson GE, Fajers CM. The temporomandibular joint: A morphologic study on a human autopsy material. Acta Odontol Scand. 1971; 29: 349
    260.Insuka SI, Niwa KI. Direct measurement of the TMJ loading in monkey using amicropressure sensor composed of hydroxyapatite/lead-zirconate-titanate laminated ceramics. Dent Japan. 1998; 34(1): 81-83
    261.Vollmer D, Meyer U, Joos D, et al. Experimental and finite element study of a human mandible. J Craniomaxillofac Sug. 2000; 28(2): 91-96
    262.孙庚林,周健,李滨飞等,6种咬合负载情况下下颌体骨折坚强内固定的三维有限元分析,中国口腔颌面外科杂志,2004年;2(4):282-285
    263.Chabanas M, Luboz V, Payan Y. Patient specific finite element model of the face soft tissues for computer-assisted maxillofacial surgery. Med Image Anal. 2003; 7(2): 131-151
    264.Solberg WK, Hansson TL, Nordstrom B. The temporomandibular joint in young adults at autopsy: A morphologic classification and evaluation. J Oral Rehabil. 1985; 12: 303-321
    265.McNamara JAJ, Carlson DS. Quantitative analysis of temporomandibular joint adaptations to protrusive function. Am J Orthod. 1979; 76: 593-611
    266.Bouwman JP, Kerstens HC, Tuinzing DB. Comdylar resorption in orthognathic surgery: the role of intermaxillary fixation. Oral Surg Oral Med Oral Pathol. 1994; 78: 138
    267.Scheerlinch JP, Stoelinga PJ, Blijdorp PA, et al. Sagittal split advancement osteotomies stabilize with miniplates: A 25 years following up. Int J Oral Maxillofac Surg. 1994; 23: 127
    268.Mongini F, Calderale PM, Barberi G. Relationship between stucture and the stress patterns in the human mandible. J Dent Res. 1979; 58:2334-2337
    269.Oberg T, Carlsson GE, Fajers CM. The temporomandibular cartilage to mechanical injury. Bone Joint Surg(Am). 1982; 64: 460-466
    270.Lai WF, Bowley J, Burch JG. Evaluation of shear stresss of the human temporomandibular joint disc. J Orofac Pain. 1998; 12:153
    271.Arnerr GW, Milam B, Gottesman L. Progressive mandibular retrusion-idiopathic condylar resorption. Am J Orthod Dentofac Orthop. 1996; 110: 117
    272.Stegenga B, Dijkstra PU, deBont LG, etal. Temporomandibular joint osteoarthrosis and interanal deragement. Int Dent J. 1990; 40: 347
    273. Stratmann U, Schaarschmidt K, Santamaria P. Morphometric investigation of condylar cartilage and disc thickness in the human temporomandibular joint: significance for the definition of osteatthrotic changes. J Oral Pathol Med. 1996; 25: 200-205

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700