锂硫二次电池水性粘结剂
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锂硫电池由于其较高的比容量和能量密度成为新一代可循环高能电池的一个重要选择。粘结剂是硫基复合正极中一个重要的组分,极大地影响着电极的电化学性能。本次研究主要探索了三种水性粘结剂,研究了它们对硫基复合正极材料在二次锂电池中性能的影响。
     首先采用氧化法,将β-环糊精分子中部分羟基氧化成羰基,得到一种新型的粘结剂羰基-β-环糊精,提高了其水溶性,溶解度可达165g/100g水。其粘结强度可达0.197MPa,表现出良好的粘结性能,而且CV测试显示其在0-5伏电压范围内保持性能稳定。将羰基-β-环糊精作为粘结剂用在硫基正极上,电化学测试显示,首次可逆容量高达694.5mAh/g,50次循环后放电容量依然保有655.3mAh/g,可逆放电比容量和稳定性远远优于采用常规粘结剂PVDF、PTFE的硫基正极。SEM图显示羰基-β-环糊精基硫正极在50次循环后,表面平整,没有明显的多硫化物沉淀。
     初步探索了阿拉伯胶和海藻酸钠作为粘结剂对硫基正极性能的影响。采用阿拉伯胶作为粘结剂并用于锂硫电池,在0.2C条件下,首次可逆比容量可达666.7mAh/g, 50次依然可保持603.2mAh/g,循环性能稳定。将海藻酸钠作为粘结剂用于锂硫电池正极中,50次后的循环容量可达482.1mAh/g。
     本此研究结果表明,经过部分氧化有效地提高了β-环糊精的水溶性,作为硫基复合正极材料的粘接剂性能良好。β-环糊精相对价格便宜、使用方便、绿色环保,在高能二次电源领域具有潜在的应用价值。
With the rapid development of high-energy rechargeable batteries, rechargeable lithium-sulfur batteries have attracted more attention. Among the components in the sulfur cathode, the binder plays an important role in improving its electrochemical performance, especially in regards of cycle performances. In this work, three water-soluble binders are applied in sulfur cathode to investigate the effects on the electrochemical performance of lithium-sulfur batteries in detail.
     A new binder, carbonyl-β-cyclodextrin, is prepared through partial oxidation, and some of its physical properties, including viscosity, pH and bonding property are studied detailedly. FT-IR shows that some of hydroxyl groups inβ-cyclodextrin molecule are oxidized to carbonyl groups, which greatly enhances its solubility in water and the solubility is 165g/100g (H2O). The shearing strength is up to 0.197MPa, showing a great bonding property, and CV result indicates that this binder remains stable between 1V and 3V and no electrochemical reaction can be observed. And then it is applied as the binder in sulfur composite. The sulfur cathode expresses a high reversible specific capacity of 694.5mAh/g and remains 655.3mAh/g even after 50 cycles. The results show that sulfur cathode using carbonyl-β-cyclodextrin expresses a higher specific capacity and better stability than that using PTFE or PVDF as the binder. The SEM indicates that a homogeneous distribution can be observed in the cathode after 50 cycles, and no severe aggregation can be found in the cathode.
     Arabic gum and sodium alginate are also initially studied as binders of sulfur composite cathodes to study their effects on the electrochemical performances. Sulfur composite cathode using Arabic gum as the binder shows a high specific capacity of 666.7mAh/g in the first cycle and remains 603.2mAh/g even after 50 cycles. Sodium alginate is also introduced in the sulfur cathode as a binder. And specific capacity of sulfur composite using sodium alginate as the binder is only 482.1mAh/g after 50 cycles.
     From these experiments, it can be concluded that carbonyl-β-cyclodextrin has a good potential application prospect due to its high water solubility, good convenience, low price, environmental friendness and stable electrochemical performances.
引文
[1].谭小金,陈玲蓉,全球电池产业现状与展望,电池工业,2001(06),261-267.
    [2].姚真东,魏巍,王久林,杨军,锂硫二次电池正极研究进展,物理化学学报,2011,27 (5),1005-1016.
    [3].陈军,陶占良,苟兴龙,化学电源:原理、技术与应用,化学工业出版社,2006
    [4].毕道治,21世纪电池技术展望,电池工业,2002 (004),205-210.
    [5]. Y. Nishi, The development of lithium ion secondary batteries, The Chemical Record, 2001, 1 (5), 406-413.
    [6]. K. Matsumoto, R. Kuzuo, K. Takeya, A. Yamanaka, Effects of CO2 in air on Li deintercalation from LiNi1-x-yCoxAlyO2, Journal of Power Sources,1999, 81, 558-561.
    [7]. Y. Xia, H. Takeshige, H. Noguchi, M. Yoshio, Studies on a Li-Mn-O spinel system (obtained by melt-impregnation) as a cathode for 4 V lithium batteries part 1. Synthesis and electrochemical behaviour of LixMn2O4, Journal of power sources, 1995, 56 (1), 61-67.
    [8]. A. Padhi, K. Nanjundaswamy, J.B. Goodenough, Phospho-olivines as Positive Electrode Materials for Rechargeable Lithium Batteries, Journal of the Electrochemical Society,1997,144(4), 1188-1194.
    [9]. A. Xinping, L. Hai, L. Xiaoyan, L. Qinlin, L. Bingdong,Y. Hanxi, One step ball-milling synthesis of LiFePO4 nanoparticles as the cathode material of Li-ion batteries, Wuhan University Journal of Natural Sciences,2006,11 (3), 687-690.
    [10]. P. Novák, K. Müller, K. Santhanam,O. Haas, Electrochemically active polymers for rechargeable batteries, Chemical reviews,1997,97 (1), 207-282.
    [11]. Siemens Company, Mobile Communications-power, Pictures of the future/Spring, 2002
    [12]. B.D. Katz, L.C. De, M.Y. Chu, S.J. Visco, High Capacity/High Discharge Rate Rechargeable Positive Electrode, US Patent 6200704, 2001-03-13
    [13]. K. Kumaresan, Y. Mikhaylik, R.E. White, A mathematical model for a lithium–sulfur cell, Journal of the Electrochemical Society, 2008, 155 A576-A582.
    [14]. Y. Li, H. Zhan, S. Liu, K. Huang,Y. Zhou, Electrochemical properties of the soluble reduction products in rechargeable Li/S battery, Journal of Power Sources, 2010, 195, 2945-2949.
    [15]. Y.V. Mikhaylik, J.R. Akridge, Polysulfide shuttle study in the Li/S battery system, Journal of the Electrochemical Society, 2004, 151, A1969-A1976.
    [16]. S.E. Cheon, K.S. Ko, J.H. Cho, S.W. Kim, E.Y. Chin, H.T. Kim, Rechargeable Lithium Sulfur Battery, Journal of the Electrochemical Society, 2003, 150, A800-A805.
    [17]. D. Marmorstein, T. Yu, K. Striebel, F. McLarnon, J. Hou, E. Cairns, Electrochemical performance of lithium/sulfur cells with three different polymer electrolytes, Journal of Power Sources, 2000, 89 (2), 219-226.
    [18]. Z. S. Xu, S. Terjea, G. Yordanm, Electrochemical Cells with High Volumetric Density of Electroactive Sulfur-containing Materials in Cathode Active Layers, US Patent 6302928, 2001-10-16.
    [19]. E. Peled, Y. Sternberg, A. Gorenshetein, etc., Lithium-Sulfur Battery: Evaluation of Dioxolane-Based Electrolytes, Journal of the Electrochemical Society, 1989, 136(6), 1621-1625.
    [20].余仲宝,王维坤,王安邦等,电解液对硫电极电化学性能的影响,电池,2006,36(1),3-4.
    [21]. S. S. Jeong, Y. Lim, Y. J. Choi, etc., Electrochemical properties of lithium sulfur cells using PEO polymer electrolytes prepared under three different mixing conditions, Journal of Power Sources, 2007, 174(2), 745-750.
    [22]. H.S. Ryu, H.J. Ahn, K.W. Kim, etc., Discharge process of Li/PVdF/S cells at room temperature, Journal of Power Sources,2006,153(2), 360-364.
    [23]. J. Wang, S.Y. Chew, Z.W. Zhao, etc., Sulfur-mesoporous carbon composites in conjunction with a novel ionic liquid electrolyte for lithium rechargeable batteries, Carbon, 2008, 46(2), 229-235.
    [24]. A. Hayashi, T. Ohtomo, F. Mizuno, etc., All-solid-state Li/S batteries with highly conductive glass-ceramic electrolytes, Electrochemistry Communications, 2003, 5(8), 701-705.
    [25]. P. Novák, K. Müller, K. Santhanam,O. Haas, Electrochemically active polymers for rechargeable batteries, Chemical reviews,1997,97 (1), 207-282.
    [26]. K. Naoi, Y. Iwamizu, M. Mori,Y. Naruoka, Enhancement of electrochemical performance of disulfide using polyvinylpyridine film, Journal of the Electrochemical Society, 1997, 144, 1185-1188.
    [27].徐国祥,大容量聚合物电极材料在二次锂电池中的应用研究,天津大学,2004
    [28]. T. A. Skotheim, I. P. A. Kovalev, Method of Making Electroactive High Storage Capacity Polycarbon-sulfide Materials and Electrolytic Cells Containing same. US Patent 5690702, 1997-11-25.
    [29]. T. A. Skotheim, I. P. A. Kovalev, Electroactive High Storage CapacityPolycarbon-sulfide Materials and Electrolytic Cells Containing Same. US Patent 5601947, 1997-02-11.
    [30]. T. A. Skotheim, B. Trofimov, M. A. Grigorevna, I. P. Kovalev, Electroactive High Storage Capacity Polyacetylene-co-polysulfur Materials and Electrolytic Cells Containing Same. US Patent 5529860, 1996-06-25.
    [31]. T. A. Skotheim, B. Trofimov, M. A. Grigorevna, I. P. Kovalev, Electroactive high storage capacity polyacetylene-co-polysulfur materials and electrolytic cells containing same. US Patent 6117590, 2000-09-12.
    [32]. K. Daasbjerg, H. Jensen, R. Benassi, F. Taddei, S. Antonello, A. Gennaro, F. Maran, Evidence for Large Inner Reorganization Energies in the Reduction of Diaryl Disulfides: Toward a Mechanistic Link between Concerted and Stepwise Dissociative Electron Transfers?, Journal of the American Chemical Society,1999,121 (8), 1750-1751.
    [33]. N. Oyama, J.M. Pope, T. Sotomura, Effects of adding copper (II) salt to organosulfur cathodes for rechargeable lithium batteries, Journal of the Electrochemical Society,1997,144, L47-L51.
    [34]. E. Shouji, H. Matsui, N. Oyama, Examination of reactivity of protonated and deprotonated 2, 5-dimercapto-1, 3, 4-thiadiazole and its derivatives by electrochemical experiment and semiempirical MO calculation, Journal of Electroanalytical Chemistry, 1996, 417 (1-2), 17-24.
    [35]. J.E. Park, S.G. Park, A. Koukitu, O. Hatozaki, N. Oyama, Electrochemical behavior of the polyaniline-organosulfur composite film containing Ag nanoparticles, Journal of the Electrochemical Society, 2003, 150, A959-A965.
    [36]. L. Xue, J. Li, S. Hu, M. Zhang, Y. Zhou, C. Zhan, Anthracene based organodisulfide positive active materials for lithium secondary battery, Electrochemistry communications, 2003, 5(10), 903-906.
    [37]. Y. Li, H. Zhan, L. Kong, C. Zhan,Y. Zhou, Electrochemical properties of PABTH as cathode materials for rechargeable lithium battery, Electrochemistry communications, 2007, 9 (5), 1217-1221.
    [38]. X. Han, C. Chang, L. Yuan, T. Sun, J. Sun, Aromatic Carbonyl Derivative Polymers as High-Performance Li-Ion Storage Materials, Advanced Materials, 2007, 19 (12), 1616-1621.
    [39]. S.E. Cheon, S.S. Choi, J.S. Han, Y.S. Choi, B.H. Jung,H.S. Lim, Capacity fading mechanisms on cycling a high-capacity secondary sulfur cathode, Journal of the Electrochemical Society,2004,151, A2067-A2073.
    [40]. S.R. Chen, Y.P. Zhai, G.L. Xu, Y.X. Jiang, D.Y. Zhao, J.T. Li, L. Huang, S.G. Sun, Ordered mesoporous carbon/sulfur nanocomposite of high performances as cathode for lithium-sulfur battery, Electrochimica Acta,56 (26), 9549-955.
    [41]. Y.J. Choi, Y.D. Chung, C.Y. Baek, K.W. Kim, H.J. Ahn, J.H. Ahn, Effects of carbon coating on the electrochemical properties of sulfur cathode for lithium/sulfur cell, Journal of Power Sources, 2008, 184 (2), 548-552.
    [42]. L.X. Yuan, H.P. Yuan, X.P. Qiu, L.Q. Chen, W.T. Zhu, Improvement of cycle property of sulfur-coated multi-walled carbon nanotubes composite cathode for lithium/sulfur batteries, Journal of Power Sources, 2009, 189 (2), 1141-1146.
    [43]. B. Trofimov, A. Vasiltsov, O. Petrova, A. Mikhaleva, G. Myachina, S. Korzhova, T. Skotheim, Y.V. Mikhailik, T. Vakulskaya, Sulfurization of polymers. 6. Poly (vinylene polysulfide), poly (thienothiophene), and related structures from polyacetylene and elemental sulfur, Russian chemical bulletin, 2002, 51 (9), 1709-1714.
    [44]. L.C. Yin, J.L. Wang, J. Yang,Y.N. Nuli, A novel pyrolyzed polyacrylonitrile-sulfur @ MWCNT composite cathode material for high-rate rechargeable lithium/sulfur batteries, Journal of Material Chemistry, 2011, 21, 6897-6810.
    [45]. B. Zhang, C. Lai, Z. Zhou, X.P. Gao, Preparation and electrochemical properties of sulfur-acetylene black composites as cathode materials, Electrochimica Acta, 2009, 54 (14), 3708-3713.
    [46]. W. Zheng, Y.W. Liu, X.G. Hu,C.F. Zhang, Novel nanosized adsorbing sulfur composite cathode materials for the advanced secondary lithium batteries, Electrochimica Acta, 2006, 51 (7), 1330-1335.
    [47]. C. Lai, X.P. Gao, B. Zhang, T.Y. Yan,Z. Zhou, Synthesis and Electrochemical Performance of Sulfur/Highly Porous Carbon Composites, Journal of Physical Chemistry C, 2009, 113 (11), 4712-4716.
    [48]. X.L. Ji, K.T. Lee, L.F. Nazar, A highly ordered nanostructured carbon-sulfur cathode for lithium-sulfur batteries, Nature Materials, 2009, 8 (6), 500-506.
    [49]. C.D. Liang, N.J. Dudney, J.Y. Howe, Hierarchically Structured Sulfur/Carbon Nanocomposite Material for High-Energy Lithium Battery, Chemistry of Materials, 2009, 21 (19), 4724-4730.
    [50]. X. Zhu, Z. Wen, Z. Gu,Z. Lin, Electrochemical characterization and performance improvement of lithium/sulfur polymer batteries, Journal of Power Sources, 2005, 139 (1-2), 269-273.
    [51]. L.L. Qiu, S.C. Zhang, L. Zhang, M.M. Sun,W.K. Wang, Preparation and enhanced electrochemical properties of nano-sulfur/poly(pyrrole-co-aniline) cathode material for lithium/sulfur batteries, Electrochimica Acta, 2010, 55 (15), 4632-4636.
    [52]. M.M. Sun, S.C. Zhang, T. Jiang, L. Zhang, J.H. Yu, Nano-wire networks of sulfur-polypyrrole composite cathode materials for rechargeable lithium batteries, Electrochemistry Communications, 2008, 10 (12), 1819-1822.
    [53]. F. Wu, S. Wu, R. Chen, J. Chen, S. Chen, Sulfur-polythiophene composite cathode materials for rechargeable lithium batteries, Electrochemical and Solid-State Letters, 2010, 13 (4), A29-A31.
    [54]. J.L. Wang, J. Yang, J.Y. Xie, N.X. Xu, A Novel Conductive Polymer-Sulfur Composite Cathode Material for Rechargeable Lithium Batteries Advanced Materials, 2002, 4(6), 499-502.
    [55]. J. L. Wang, J. Yang, C.R. Wan, K Du, J.Y. Xie, N.X. Xu, Sulfur Composite Cathode Materials for Rechargeable Lithium Batteries, Advanced Functional Materials, 2003, 48(13), 1861-1867.
    [56].王久林,解晶莹,杨军等,电化学电源正极用单质硫/导电聚合物复合材料及其制备方法,中国发明专利,ZL 02111403.X,2005.
    [57].王久林,二次锂电池用含硫正极材料的制备及电化学性能研究,[学位论文],上海:上海微系统与信息技术研究所,2002.
    [58]. X. Yu, J. Xie, Y. Li, H. Huang, C. Lai, K. Wang, Stable-cycle and high-capacity conductive sulfur-containing cathode materials for rechargeable lithium batteries, Journal of Power Sources,2005,146 (1-2), 335-339.
    [59].喻献国,解晶莹,黄海江,王可,二次锂电池用导电含硫聚合物正极材料的结构表征及电化学性能,中国有色金属学报,2004,14(z2),355-360.
    [60]. W.H. Pu, X.M. He, L. Wang, Z. Tian, C.Y. Jiang,C.R. Wan, Sulfur composite cathode materials: Comparative characterization of polyacrylonitrile precursor, Ionics,2007,13 (4), 273-276.
    [61]. X.M. He, W. Pu, J. Ren, L. Wang, J. Wang, C. Jiang,C. Wan, Charge/discharge characteristics of sulfur composite cathode materials in rechargeable lithium batteries, Electrochimica Acta, 2007, 52 (25), 7372-7376.
    [62]. L. Yuan, H. Yuan, X. Qiu, L. Chen,W. Zhu, Improvement of cycle property of sulfur-coated multi-walled carbon nanotubes composite cathode for lithium/sulfur batteries, Journal of Power Sources, 2009, 189 (2), 1141-1146.
    [63]. Y. Jung, S. Kim, New approaches to improve cycle life characteristics of lithium-sulfur cells, Electrochemistry Communications, 2007, 9 (2), 249-254.
    [64].杨军,解晶莹,王久林,化学电源测试原理与技术,北京,化学工业出社,2006
    [65].黄坤,锂离子电池的工艺探讨,电池,2000,30 (005),217-218.
    [66]. S.C. Han, M.S. Song, H. Lee, H.S. Kim, H.J. Ahn, J.Y. Lee, Effect of multiwalled carbon nanotubes on electrochemical properties of lithium/sulfur rechargeable batteries, Journal of the Electrochemical Society, 2003, 150 (7), A889-A893.
    [67]. E. Roth, D. Doughty, J. Franklin, DSC investigation of exothermic reactions occurring at elevated temperatures in lithium-ion anodes containing PVDF-based binders, Journal of power sources, 2004, 134 (2), 222-234.
    [68]. M. Yoo, C.W. Frank, S. Mori, S. Yamaguchi, Effect of poly (vinylidene fluoride) binder crystallinity and graphite structure on the mechanical strength of the composite anode in a lithium ion battery, Polymer, 2003, 44 (15), 4197-4204.
    [69].周震涛,严燕,表面处理对锂离子电池胶粘剂性能的影响,电池,2000,30 (006), 239-240.
    [70]. W.F. Liu, X.J. Huang, G.B. Li, Z.X. Wang, H. Huang, Z.H. Lu, R.J. Xue, L.Q. Chen, Electrochemical and X-ray photospectroscopy studies of polytetrafluoroethylene and polyvinylidene fluoride in Li/C batteries, Journal of power sources, 1997, 68 (2), 344-347.
    [71]. S.R. Ovshinsky, B. Aladjov, B. Tekkanat, S. Venkatesan,S.K. Dhar, Active electrode composition with conductive polymeric binder, EP Patent 1576682, 2005
    [72]. Z. Chen, L. Christensen, J. Dahn, Study of the mechanical and electrical properties of carbon/poly (vinylidene fluoride–tetrafluoroethylene–propylene) films crosslinked with triethylenetetramine: Possible application as binder for lithium‐ion battery electrodes, Journal of applied polymer science, 2004, 91 (5), 2949-2957.
    [73]. Y.J. Choi, K.W. Kim, H.J. Ahn, J.H. Ahn, Improvement of cycle property of sulfur electrode for lithium/sulfur battery, Journal of Alloys and Compounds, 2008, 449 (1-2), 313-316.
    [74].吴宇平,万春荣,姜长印,锂离子二次电池,化学工业出版社,2002.
    [75].王鸿麟,田金玉,王英杰,锂离子电池,电信技术,1997,11.
    [76].詹晋华,冼巧妍,水溶性粘合剂在锂离子电池电极中的应用,电池,2001,31 (003),123-125.
    [77].张晓正,邓正华,万国祥等,锂离子电池水性粘合剂制备方法,中国,01108524. X [P]. 2005-07-06
    [78].郭雪飞,王成扬,张晓林,王圆方,MCMB/水性粘结剂体系锂离子电池负极制备工艺研究,炭素,2007,4,38-44.
    [79].陈立宝,谢晓华,解晶莹,杨军,粘结剂对锂离子电池硅/碳复合负极材料循环性能的影响,中国储能电池与动力电池及其关键材料学术研讨会论文集,2005.
    [80]. R. Dominko, M. Gaber??ek, J. Drofenik, M. Bele, J. Jamnik, Influence of carbon black distribution on performance of oxide cathodes for Li-ion batteries, Electrochimica acta, 2003, 48 (24), 3709-3716.
    [81]. R. Dominko, M. Gaber??ek, J. Drofenik, M. Bele, S. Pejovnik, A novel coating technology for preparation of cathodes in Li-ion batteries, Electrochemical and Solid-State Letters, 2001, 4, A187-A190.
    [82]. R. Dominko, M. Gaberscek, J. Drofenik, M. Bele, S. Pejovnik,J. Jamnik, The role of carbon black distribution in cathodes for Li ion batteries, Journal of power sources, 2003, 119, 770-773.
    [83].林青云,陈泽伟,任灿,水性粘结剂的制备方法及电池,2006.
    [84].杨峰,陈立宝,李雅琳,王太宏,水性粘结剂对纳米SnO2电化学性能的影响,电池,2008,38 (002),99-102.
    [85]. C. Li, J. Lee, X. Peng, Batteries, Fuel Cells, and Energy Conversion-Improvements of Dispersion Homogeneity and Cell Performance of Aqueous-Processed LiCoO2 Cathodes by Using Dispersant of PAA-NH4, Journal of the Electrochemical Society, 2006, 153 (5), 809.
    [86]. A. Guerfi, M. Kaneko, M. Petitclerc, M. Mori, K. Zaghib, LiFePO4 water-soluble binder electrode for Li-ion batteries, Journal of power sources, 2007, 163 (2), 1047-1052.
    [87]. Z. Cai, Y. Liang, W. Li, L. Xing,Y. Liao, Preparation and performances of LiFePO4 cathode in aqueous solvent with polyacrylic acid as a binder, Journal of power sources,2009,189 (1), 547-551.
    [88].王雅丹,王剑,牟其勇,李永伟,牟其鲁,水性粘结剂制备LiMn2O4电极的电化学性能,电源技术,2007 (9),14-17.
    [89]. J. Guo, C. Wang, A polymer scaffold binder structure for high capacity silicon anode of lithium-ion battery, Chemical Communications,2010, 46 (9), 1428-1430.
    [90]. N.S. Choi, Y.G. Lee, J.K. Park, Effect of cathode binder on electrochemical properties of lithium rechargeable polymer batteries, Journal of Power Sources, 2002, 112 (1), 61-66.
    [91]. S.E. Cheon, S.S. Choi, J.S. Han, Y.S. Choi, B.H. Jung, H.S. Lim, Capacity fading mechanisms on cycling a high-capacity secondary sulfur cathode, Journal of theElectrochemical Society, 2004, 151, A2067-A2073.
    [92]. N. Kim, C. Lee, J. Seo, W. Lee,Y. Roh, Correlation between positive-electrode morphology and sulfur utilization in lithium-sulfur battery, Journal of Power Sources, 2004, 132 (1-2), 209-212.
    [93]. J. Sun, Y. Huang, W. Wang, Z. Yu, A. Wang, K. Yuan, Application of gelatin as a binder for the sulfur cathode in lithium-sulfur batteries, Electrochimica Acta, 2008, 53 (24), 7084-7088.
    [94]. J. Sun, Y. Huang, W. Wang, Z. Yu, A. Wang, K. Yuan, Preparation and electrochemical characterization of the porous sulfur cathode using a gelatin binder, Electrochemistry Communications, 2008, 10 (6), 930-933.
    [95]. L.B. Salem, C. Bosquillon, L. Dailey, L. Delattre, G. Martin, B. Evrard,B. Forbes, Sparing methylation of [beta]-cyclodextrin mitigates cytotoxicity and permeability induction in respiratory epithelial cell layers in vitro, Journal of Controlled Release, 2009, 136 (2), 110-116.
    [96]. W. Zhang, L. Qin, X.W. He, W.Y. Li, Y.K. Zhang, Novel surface modified molecularly imprinted polymer using acryloyl-[beta]-cyclodextrin and acrylamide as monomers for selective recognition of lysozyme in aqueous solution, Journal of Chromatography A, 2009, 1216 (21), 4560-4567.
    [97]. T. Takeo, T. Hoshii, Y. Kondo, H. Toyodome, H. Arima, K. Yamamura, T. Irie, N. Nakagata, Methyl-beta-cyclodextrin improves fertilizing ability of C57BL/6 mouse sperm after freezing and thawing by facilitating cholesterol efflux from the cells, Biology of reproduction, 2008, 78 (3), 546-551.
    [98]. P. Huang, W. Xu, S.I. Yoon, C. Chen, P.L.G. Chong,L.Y. Liu-Chen, Cholesterol reduction by methyl-[beta]-cyclodextrin attenuates the delta opioid receptor-mediated signaling in neuronal cells but enhances it in non-neuronal cells, Biochemical pharmacology, 2007, 73 (4), 534-549.
    [99]. L. Zheng, L. Xiong, J. Li, X. Li, J. Sun, S. Yang,J. Xia, Synthesis of a novel [beta]-cyclodextrin derivative with high solubility and the electrochemical properties of ferrocene-carbonyl-[beta]-cyclodextrin inclusion complex as an electron transfer mediator, Electrochemistry Communications, 2008, 10 (2), 340-345.
    [100]. I. Kovalenko, B. Zdyrko, A. Magasinski, B. Hertzberg, Z. Milicev, R. Burtovyy, I. Luzinov, G. Yushin, A Major Constituent of Brown Algae for Use in High-Capacity Li-Ion Batteries, Science, 2011, 334 (6052), 75-79.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700