纳米二氧化钛薄膜材料生物相容性的分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硬骨组织修复材料是生物医用材料的一种,主要应用于诊断、治疗、修复和替换病损骨组织,增进老损骨组织的功能,是一类需求量大,市场前景广泛的材料。目前临床使用的硬骨组织修复材料组要为金属、生物陶瓷、生物玻璃和高分子聚合物支架,其寿命通常为10-15年。这样短的寿命为患者带来不便,也易引起二次痛苦。
     骨植入体在植入生物体后需要发生与周围组织的整合,其过程通常需要成骨细胞的大量粘附。成骨细胞早期大量粘附于植入体,细胞间迅速进行通信,完成细胞增殖、分化和其它生理功能,从而与生物体整合,发挥正常的生理功能。影响成骨细胞在材料表面早期粘附行为的因素包括材料表面的化学构成、拓扑形貌、粗糙度及亲水性等。研究表明,现有硬骨替代材料通常因为成纤维细胞包裹而导致发炎、坏死,使之无法发挥正常功能。而成纤维细胞和成骨细胞在材料表面的粘附比例显示与材料表面粗糙度有关,即材料表面粗糙度大时,成骨细胞易粘附,反之则造成成纤维细胞的大量附着。通过对生物材料表面改性,尤其是对表面粗糙度的改变可以提高成骨细胞在材料表面的粘附,提高植入体的成活率。
     对天然骨组织的研究发现,天然骨表面覆盖一层直径为1nm的胶原颗粒,这使得纳米材料作为骨植入材料的研究得到了强有力的理论支持。钛金属以及其合金材料是生物材料学的研究热点,纳米尺度钛材料显示出相对于其他金属材料的低毒性,受到全世界科学家的瞩目。目前对纳米二氧化钛材料的研究普遍集中于颗粒物质的体内、体外毒性研究,以及合金材料作为骨植入体的相关研究,对于表面覆盖纳米二氧化钛薄膜的钛基底材料的相关研究还较为少见。
     本实验分为两个部分,在第一部分中讨论了表面形貌分别为管状、网状、颗粒状的三种纳米二氧化钛薄膜材料在体外实验中的毒性测试,使用的实验手段包括扫描电子显微镜下观察材料表面粘附细胞的形态和数量,粘附细胞的乳酸脱氢酶泄露和细胞增殖。实验发现三种形貌的纳米二氧化钛薄膜材料中,颗粒状纳米二氧化钛覆盖的薄膜材料相对其他两种材料具有更高的细胞亲和力和较低的乳酸脱氢酶泄露,是相对理想的材料。
     第二部分实验承接第一部分实验的结果,着重讨论了表面覆盖1层、2层、3层、4层纳米二氧化钛颗粒的薄膜材料的生物相容性。实验采用国际流行的Layer-by-Layer自组装技术在纯钛基底表面组装不同层数的纳米二氧化钛颗粒,并使用扫面电子显微镜对材料进行表征,通过接触角分析实验对材料的亲水性进行检测。生物实验部分,采用鼠成骨瘤细胞与四种材料共培养,分别研究了材料表面粘附细胞的形貌和数量,使用荧光染料对粘附细胞内的ROS和DNA进行染色观察,测量了细胞乳酸脱氢酶泄露量和细胞增殖情况。结果发现材料表面粗糙度随着薄膜层数的增加而增大,亲水性也随之增大。而薄膜层数多的材料在生物学研究指标上也表现出优势,即薄膜层数越多,粗糙度越大的材料,其表面粘附细胞数量越多,细胞生长状况约好,受氧化损伤程度低,细胞凋亡和坏死现象少。
Hard bone tissue repair material is a kind of biomedical materials, mainly used in diagnosis, treatment, repair and replacement of osteoporosis, osteoarthritis and other hard tissue diseases and defects, enhance the function of old bone tissue, which is has potential broad market[1,2] Synthetic bioactive materials such as Bioglass, glassceramic A-W, sintered P-tricalcium phosphate (TCP) and sintered hydroxyapatite (HA), due to a variety of problems, could only endure10-15years[3]. Changing for new implants will not only bring indescribable suffering to the patients, but also deteriorate the patients' state of illness.
     Bone implants, after implantation, needs to integrate with the surrounding tissue, and the process usually starts from a large number of osteoblast adhesion[4-6]. After the osteoblast's initial adhesion, cells begin to rapidly send cell to cell communicate, which will help the forward cell proliferation and differentiation, and other physiological function. Many factors could affect the osteoblasts initial behavior, include the chemical composition of the material, surface topology morphology, roughness and hydrophilic, etc. Study shows that the hard bone substitute turn to failure usually because of the fibroblasts package, which will afterwards cause inflammation and necrosis, and finally lead to implant disability[7].
     Natural bone tissue is a highly organized hierarchical structure which is composed of nano-, micro-, and macro-scale building blocks[8]. Non-collageneous organic proteins, fibrillar collagen and hydroxyapatite crystals which on the surface of bone are all nanoscale structures. From the biomimetic point of view, Ti with its surface coated with nanoscale TiO2may provide a more suitable surface topography for cell functions as it can better mimic the sructure of the natural extracellular matrix. Although all these results implies that nano-sized TiO2may has superior bioactivity and be more suitable for application as a bone substitute than the traditional biomaterials, different types of TiO2were fully researched.
     This research is divided into2parts. In the first part, three types of titanium (Ti) based nanoscale titania (TiO2) were produced by controlling the reaction conditions, including TiO2nanotube, TiO2nanonetwork and TiO2nanoparticle. Human Osteosarcoma cell (MG63) was used in this study to evaluate the bioactivity and cytocompatibility of the new materials. Compared to pure Ti, cell adhesion of the materials coated with nanoscale TiO2was significantly enhanced after24h,48h, and72h of co-incubation, according to SEM photographs. More importantly, compare to the control group, the lactate dehydrogenase (LDH) released into the culture media and the absorbance of MTT showed no obvious difference after72h of co-incubation. Therefore, it is suggested that nanoscale TiO2is a bioactive and cytocompatible biomedical material.
     The second part of the experiment to undertake the first part the result of the experiment, emphasized on the cytocompatibility of4different kind of material which have1larer,2layers,3layers and4layers of TiO2nanofilm. The materials were assembled by the Layer-by-Layer (LBL) self-assembly technique, which has been wildly used to fabricate multilayer thin films of controlled composition, thickness, and architecture. Surface roughness w measured by field emission scanning electron microscopy (SEM). Hydrophilicity was measured using the contact angle meter. Cell attachment to the materials was observed using SEM. Fluorescent dyes were used to observe the generation of reactive oxygen species and DNA damage. Apoptosis was measured through lactate dehydrogenase leakage assay. The2-(4,5-dimethyl-2-thiazol-2-yl)-3,5-diphenyl-2H-tetrazolium (MTT) assay was used to determine the viability of the cells attached to the materials. This new film was found to produce better cell proliferation and function; it is comparatively cytocompatible, and therefore may be a better material for orthopedic surgery.
引文
1. Guo YP, Zhou Y, Jia DC. Fabrication of hydroxycarbonate apatite coatings with hierarchically porous structures[J]. Acta. Biomater.,2008,4:334-342.
    2. Brovanrone CV, Verne E, Appending P. Macroporous bioactive glass-ceramic scaffolds for tissue engineering [J]. J. Mater. Sci. Mater. Med.,2006,11:1069-1078.
    3. Civitelli R. Cell-cell communication in the osteoblast/osteocyte lineage[J]. Arch. Biochem. Biophys.,2008,2:188-92.
    4. Mossman T. Rapid colorimetric assay for cellular growth and survival:application to proliferation and cytotoxicity assays[J]. J. Immunol. Methods, 1983,1-2:55-63.
    5. Smith LO, McCabe LR, Baumann MJ, et al. MC3T3-E1 osteoblast attachment and proliferation on porous hydroxyapatite scaffolds fabricated with nanophases powder[J]. Int. J. Nanomed.,2006,1:189-194.
    6. Bernards MT, Qin CL, Jiang SY, et al. MC3T3-E1 cell adhesion to hydroxyapatite with adsorbed bone sialoprotein, bone osteopontin, and bovine serum albumin[J]. Bone osteopontin, and bovine serum albumin, Colloids Surf. B-Biointerface,2008,64:236-247.
    7. Lincks J, Boyan BD, Blanchard CR, et al. Response of MG63 osteoblast-like cells to titanium and titanium alloy is dependent on surface roughness and composition[J]. Biomaterials,1998,19:2219-2232.
    8. Lanone S, Rogerieux F, Geys J, et al. Comparative toxicity of 24 manufactured nanoparticles in human alveolar epithelial and macrophage cell lines[J]. Toxicol., 2009,6:14.
    9. Marie PJ, Lomri A, Sabbagh A, et al. Culture and behavior of osteoblastic cells isolated from normal trabecular bone surfaces [J]. In Vitro Cellular&Developmental Biology-Plant,1989, 25:373-380.
    10. Kaplan GC, Eilon G, Poser JW, et al. Constitutive biosynthesis of bone gla protein in a human osteosarcoma cell line[J]. Endocrinology, 1985,117(3):1235-1238.
    11. Liu G, H YY u, Zhao JN, et al. Effect of typel collagen on the adhesion, proliferation, and osteoblastic gene expression of bone marrow-derived mesenchymal stem cells[J]. Chinese Journal of Traumatology, 2004, 7(6):358-62.
    12.孔丽君,敖强,奚静等MC3T3-E1细胞在纳米羟基磷灰石/壳聚糖复合支架上 的增殖和分化[J].生物工程学报,2007,23(2):262-267.
    13. Molly M, Julian S, George H, et al. Exploring an d Engineering the Cell Surface Interface[J]. Science,2005,310:135-138.
    14. Khadra M, Ronold HJ, Lyngstadaas SP, et al. Low-level laser therapy stimulates bone-implant interaction: an experimental study in rabbits[J]. Clin. Oral. Impl. Res., 2004,15:325-232.
    15. Khadra M, Kasem N, Ellingsen JE, et al. Enhancement of bone formation in rat calvarial bone defects using low level laser therapy[J]. Oral. Surg. Oral. Med. Oral. Pathol. Oral. Radiol. Endodontics.,2004,97:693-700.
    16. Huinan L, Hilal Y, Celaletdin E, et al. An in vitro evaluation of the Ca/P ratio for the cytocompatibility of nano-to-micron particulate calcium phosphates for bone regeneration[J]. Acta-Biomaterials, 2008,4:1472-1479.
    17. Peng L, Eltgroth ML, LaTempa TJ, Grimes CA, Desai TA. The effect of TiO2 nanotubes on endothelial function and smooth muscle proliferation[J]. Biomaterials, 2009,30:1268-1272.
    18. Park J, Bauer S, Schmuki P, von der Mark K. Narrow window in nanoscale dependent activation of endothelial cell growth and differentiation on TiO2 nanotube surfaces[J]. Nano letters,2009,9:3157-3164.
    19. Oh S, Brammer KS, Moon KS, Bae JM, Jin S. Influence of sterilization methods on cell behavior and functionality of osteoblasts cultured on TiO2 nanotubes [J]. Materials Science and Engineering C, 2011, in press.
    20. Berridge MV, Herst PM, Tan AS. Tetrazolium dyes as tools in cell biology:new insights into their cellular reduction[J]. Biotechnol. Annu. Rev., 2005,11:127-152.
    21. Mendonca G, Mendonca DB, Simoes LG, et al. The effects of implant surface nanoscale features on osteoblast-specific gene expression[J]. Biomaterials, 2009, 30:4053-4062.
    22. Morton D, Jaffin R, Weber HP, et al. Immediate restoration and loading of dental implants:clinical considerations and protocols[J]. Int. J. Oral. Maxillofac. Implants. 2004,19:103-108.
    23. Yamamoto A, Honma R, Sunita M, et al. Cytotoxicity evaluation of ceramic particles of different sizes and shapes[J]. Biomed. Mater. Res. A. 2004, 2:244-256.
    24. Wang XY, Li YC, Xiong JY, et al. Porous TiNbZr alloy scaffolds for biomedical applications[J]. Acta Biomater, 2009, 5:3616-3624.
    25. Balasundaram G, Sato M, Webster TJ. Using hydroxyapatite nanoparticles and decreased crystallinity to promote osteoblast adhesion similar to functionalizing with RGD[J]. Biomaterials,2006,27(14):2798-2805.
    26. Huang HH, Pan SJ, Lu FH. Surface electrochemical impedance in situ monitoring of cell-cultured titanium with a nano-network surface layer[J]. Scripta Materialia, 2005, 53:1037-1042.
    27. Hasenbein ME, Andersen TT, Bizics R. Micropatterned surfaces modified with select peptides promote exclusive interaction with osteoblasts [J]. Biomaterials, 2002,23:3937-3942.
    28. He J, Zhou W, Zhou X, Zhong X, Zhang X, Wan P, Zhu B, Chen W. The anatase phase of nanotopography titania plays an important role on osteoblast cell morphology and proliferation[J]. Journal of Materials Science Materials in Medicine, 2008,19:3465-3472.
    29. Sakai N, Prasad GK, Ebina Y, et al. Layer-by-layer assembled TiO2 nanoparticle/PEDOT-PSS composite films for switching of electric conductivity in response to ultraviolet and visible light[J]. Chem. Mater.,2006, 18:3596-3598.
    30. Wang XY, Liu SF, Xie LP, et al. Pinctada fucata mantle gene 3 (PFMG3) promotes differentiation in mouse osteoblasts (MC3T3-E1) [J]. Comp. Biochem. Physiol. B: Biochem.Mol.Biol.,2011,158:173-180.
    31. Oh S, Brammer KS, Li YS. Stem cell fate dictated solely by altered nanotube dimension[J]. Proc. Natl. Acad. Sci. U. S. A.,2009,7:2130-2135.
    32. Bjursten LM, Rasmusson L, Oh S, et al. Titanium dioxide nanotubes enhance bone bonding in vivo[J]. J. Biomed. Mater. Res. A.,2010,3:1218-1224.
    33. Webster TJ, Ergun C, Doremus RH, et al. Specific proteins mediate enhanced osteoblast adhesion on nanophase ceramics[J]. J. Biomed. Mater. Res.,2000, 3:475-83.
    34. Brunski JB. Biomechanical factors affecting the bone-dental implant interface[J]. Clinical Materials,1992,10:153-201.
    35. Wu JM, Hayakawa S, Tsuru K. Low-temperature preparation of anatase and rutile layers on Ti substrates and their ability to induce in vitro apatite deposition[J]. J. Am. Ceram. Soc,2004,87:1635-1642.
    36. Rho JY, Kuhn-Spearing L, Zioupos P. Mechanical properties and the hierarchical structure of bone[J]. Med. Eng. Phys.,1998,2:92-102.
    37. Colon G, Ward BC, Webster TJ. Increased osteoblast and decreased Staphylococcus epidermidis functions on nanophase ZnO and TiO2 [J]. J. Biomed. Mater. Res., 2006,3:595-604.
    38. Liu H, Webster TJ. Nanomedicine for implants:a review of studies and necessary experimental tools[J]. Biomaterials,2006,28:354-369.
    39. Yamamoto A, Honma R, Sunita M. Cytotoxicity evaluation of ceramic particles of different sizes and shapes[J]. J. Biomed. Mater. Res. A.,2004,2:244-256.
    40. Lowry OH, Roberts NR, Wu M. The quantitative histochemistry of brain. Ⅱ. Enzyme measurement[J]. J. Bio. Chem. 1954, 1:19-37.
    41. Webster TJ, Ergun C, Doremus RH. Enhanced functions of osteoblasts on nanophase ceramics[J]. Biomaterials,2000,21:1803-1810.
    42. Liu XY, Zhao XB, Ricky KY. Plasma-treated nanostructured TiO2 surface supporting biomimetic growth of apatite[J]. Biomaterials, 2005,31:6143-6150.
    43. Ribeiro N, Sousa SR, Monteiro FJ, et al. Influence of crystallite size of nanophased hydroxyapatite on fibronectin and osteonectin adsorption and on MC3T3-E1 osteoblast adhesion[J]. J. Colloid Interf. Sci.,2010, 398-406.
    44. Shukla RK, Sharma V, Pandey AK, et al. ROS-mediated genotoxicity induced by titanium dioxide nanoparticles in human epidermal cells[J]. Toxi. In. Vitro.,2010, 11:231-241.
    45. Liu XY, Zhao XB, Ricky KY, et al. Plasma-treated nanostructured TiO2 surface supporting biomimetic growth of apatite[J]. Biomaterials, 2005,26:6143-6150.
    46. He F, Zhang F, Yang GL, et al. Enhanced initial proliferation and differentiation of MC3T3-E1 cells on HF/HNO3 solution treated nano structural titanium surface[J]. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod.,2010, 110:13-22.
    47.张吉宏,赵常利,张小农等.钛合金表面纳米结构对钙磷矿化物体外沉积及成骨细胞矿化功能的影响[J].中国组织工程研究与临床康复,2010,14(12).
    48. Zhu ZH, Lu ZS, Liu JP. Fabrication of well-aligned ZrO2 nanotube arrays for fibroblast adhesion and proliferation[J]. Acta Biomaterialia, 2007, 2(4):287-295.
    49. Zhang L, Ramsaywack S, Fenniri H, et al. Enhanced osteoblast adhesion on self-assembled nanostructured hydrogel scaffolds[J]. Tissue Eng.,2008, 14:1353-1364.
    50. Lewandrowski KU, Cartaneo MV, Gresser JD. Effect of a poly (propylene fumarate) foaming cement on the healing of bone defects [J]. Tissue Engineering, 1999, 5(4):305-316.
    51. Att W, Takeuchi M, Suzuki T, Kubo K, Anpo M, Ogawa T. Enhanced osteoblast function on ultraviolet light-treated zirconia[J]. Biomaterials, 2009,30:1273-1280.
    52. Yim EK, Reano RM, Pang SW, Yee AF. Nanopattern induced changes in morphology and motility of smoth muscle cells[J]. Biomaterials, 2005,26: 5405-5413.
    53. Oh S, Daraio C, Chen LH, Pisanic TR, Finones RR, Jin S. Significantly accelerated osteoblast cell growth on aligned TiO2 nanotubes[J]. Journal of Biomedial Materials Research,2006,78:97-103.
    54. Van Kooten TG, Schakenraad JM, Van der Mei HC, Busscher HJ. Influence of substratum wettability on the strength of adhesion of human fibroblasts[J]. Biomaterials,1992,13:897-904.
    55. Yang XB, Roach HI, Clarke NM, Howdle SM, Quirk R, Shakesheff KM, Oreffo RO. Human osteoprogenitor growth and differentiation on synthetic biodegradable structure after surface modification[J]. Bone,2001,29:523-531.
    56. Shah AK, Sinha RK, Hickok NJ, Tuan RS. High-resolution morphometric analysis of human osteoblastic cell adhesion on clinically relevant orthopedic alloys[J]. Bone, 1999,24:499-506.
    57. Kilpadi DV, Lemons JE. Surface energy characterization of unalloyed titanium implants[J]. Journal of Biomedial Materials Research, 1994, 28:1419-1425.
    58. Anselme K, Linez P, Bigerelle M, Le Maguer D, Le Maguer A, Hardouin P, Hildebrand HF, lost A, Leroy JM. The relative influence of the topography and chemistry of TiA16V4 surfaces on osteoblastic cell behaviour[J]. Biomaterials, 2000, 21:1567-1577.
    59. SchulerM, Owen GR, Hamilton DW, de Wild M, Textor M, Brunette DM, Tosatti SG. Biomimetic modification of titanium dental implant model surfaces surfaces using the RGD-SP-peptide sequence:a cell morphology study [J]. Biomaterials, 2006, 27:4003-4015.
    60. Bagno A, Piovan A, Dettin M, Chiarion A, Brun P, Gambaretto R, Fontana G, Di Bello C, Palu G, Castagliuolo I. Human osteoblast-like cell adhesion on titanium substrates covalently functionalized with synthetic peptides [J]. Bone, 2007, 40: 693-699.
    61. Chiapasco M, Gatti C. Implant-retained mandibular overdentures with immediate loading:a 3- to 8-year prospective study on 328 implants[J]. Clinical Implant Dentistry and Related Research, 2003,5:29-38.
    62. Kim YM, Koak JY, Chang IT, Wennerberg A, Heo SJ. A histomorphometric analysis of the effects of various surface treatment methods on osseointegration[J]. The International Journal of Oral & Maxillofacial Implants, 2003,18:349-356.
    63. Huang HH, Hsu CH, Pan SJ, He JL, Chen CC, Lee TL. Corrosion and cell adhesion behavior of TiN-coated and ion-nitrided titanium for dental application [J]. Applied surface science, 2005,244:252-256.
    64. Dalby MJ, Gadegaard N, Wilkinson CDW. The response of fibroblasts to hexagonal nanotopography fabricated by electron beam lithography [J]. Journal of Biomedical Materials Research Part A,2008, 84:973-979.
    65. Choi CH, Hagvall SH, Wu BM, Dunn JC, Beygui RE, Kim CJ. Cell interaction with three-dimensional sharp-tip nanotopography[J], Biomaterials,2007,28:1672-1679.
    66. Yang P, Zhao D, Margolese DI, Chmelka BF, Stucky GD. Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks [J]. Nature, 1998,396:152-155.
    67. Yoo S, Akbar SA, Sandhage KH. Nanocarving of bulk titania crystals into oriented arrays of single-crystal nanofibers via reaction with hydrogen-bearing gas[J]. Advanced Materials,2004,16:260-264.
    68. Qi S, Yi C, Ji S, Fong CC, Yang M. Cell Adhesion and Spreading Behavior on Vertically Aligned Silicon Nanowire Arrays[J]. ACS Applied Materials & Interfaces, 2009,1:30-4.
    69. De Maeztu MA, Alava JI, Gay-Escoda C. Ion implantation:surface treatment for improving the bone integration of titanium and Ti6A14V dental implants [J]. Clinical oral implants research, 2003,14:57-62.
    70. Sohmura T, Tamasaki H, Ohara T, Takahashi J. Calcium-phosphate surface coating by casting to improve bioactivity of titanium[J]. Journal of Biomedial Materials Research,2001,58:478-485.
    71. Keselowsky BG, Collard DM, Garcia AJ. Surface chemistry modulates fibronectin conformation and directs integrin binding and specificity to control cell adhesion[J]. Journal of Biomedical Materials Research Part A,2003,66:247-259.
    72. Rodahl M, Hook F, Krozer A, Brzezinski P, Kasemo B. Quartz-crystal microbalance setup for frequency and Q-factor measurements in gaseous and liquid environments[J]. Review of Scientific Instruments,1995,66:3924-3930.
    73. Hook F, Voros J, Rodahl M, Kurrat R, Boni P, Ramsden JJ, Textor M, Spencer N D, Tengvall P, Gold J, Kasemo B. A comparative study of protein adsorption on titanium oxide surfaces using in situ ellipsometry, optical waveguide lightmode spectroscopy, and quartz crystal microbalance/dissipation[J], Colloids and Surfaces B,2002,24:155-170.
    74. Zhou T, Marx KA, Warren M, Schulze H, Braunhut SJ. The quartz crystal microbalance as a continuous monitoring tool for the study of endothelial cell surface attachment and growth[J]. Biotechnology Progress,2000,16:268-277.
    75. Fredriksson C, Khilman S, Kasemo B, Steel DM. In vitro real-time characterization of cell attachment and spreading[J]. Journal of Materials Science Materials in Medicine,1998,9:785-788.
    76. Peng H, Zhang Y, Zhang J, Xie Q, Nie L, Yao S. Development of a thickness shear mode acoustic sensor based on an electrosynthesized molecularly imprinted polymer using an underivatized amino acid as the template[J]. Analyst,2001,126:189-194.
    77. Wang H, Zeng H, Liu Z. Yang Y, Deng T, Shen G, Yu R. Immunophenotyping of acute leukemia using an integrated piezoelectric immunosensor array. Analytical Chemistry,2004,76:2203-2209.
    78. Chen KL, Elimelech M. From the Chemical Hazards in Industry Database[J]. Environmental Science and Technology,2008,42:7607-7614.
    79. Saleh N, Sirk K, Liu Y, Phenrat T, Dufour B, Matyjaszewski K, Tilton RD, Lowry GV. Surface Modifications Enhance Nanoiron Transport and DNAPL Targeting[J]. Environmental Engineering Science,2007,24:45-57.
    80. Stalgren JJ, Claesson PM, Warnheim T. Adsorption of liposomes and emulsions studied with a quartz crystal microbalance[J]. Advances in Colloid and Interface Science, 2001, 89-90, 383-394.
    81. Intranuovo F, Favia P, Sardella E, Ingrosso C, Nardulli M, Gristina R. Osteoblast-Like Cell Behavior on Plasma Deposited Micro/Nanopatterned Coatings[J]. Biomacromolecules, 2011,12:380-387.
    82. Webster TJ, Hellenmeyer EL. Increased osteoblast functions on theta-delta nanofiber alumina[J]. Biomaterials,2005,26:953-960.
    83. Kadowaki K, Matsusaki M, Akashi M. Control of Cell Surface and Functions by Layer-by-Layer Nanofilms[J]. Langmuir, 2010,26:5670-5678.
    84. Wang J, Liu GD, Lin YH. Layer-by-Layer Assembly of Enzymes on Carbon Nanotubes[J]. Biomolecular Catalysis, 2008,6:117-128.
    85. Andres CM, Kotov NA. Inkjet deposition of layer-by-layer assembled films[J]. Journal of the American Chemical Society, 2010, 132:14496-14502.
    86. Kommireddy DS, Ichinose I, Lvov YM, Mills DK. Nanoparticle thin films:surface modification for cell attachment and growth[J]. Journal of Biomedical Nanotechnology, 2005,3:286-290.
    87. Li D, Lutt M. Preparation, characterization, and properties of mixed organic and polymeric self-assembled multilayers [J]. Journal of the American Chemical Society, 1998,120:8797-8804.
    88. Webster TJ, Ergun C, Doremus RH, Siegel RW, Bizios R. Enhanced functions of osteoblasts on nanophase ceramics[J]. Biomaterials, 2000,21:1803-1810.
    89. Dalby MJ, Riehle MO, Johnstone H, Affrossman S, Curtis AS. In vitro reaction of endothelial cells to polymer demixed nanotopography[J]. Biomaterials, 2002, 23: 2945-2954.
    90. Yang P, Zhao D, Margolese DI, Chmelka BF, Stucky GD. Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks[J]. Nature, 1998,396:152-155.
    91. Yoo S, Akbar SA, Sandhage KH. Nanocarving of bulk titania crystals into oriented arrays of single-crystal nano fibers via reaction with hydrogen-bearing gas[J]. Advanced Materials,2004,16:260-264.
    92. Qi S, Yi C, Ji S, Fong CC, Yang M. Cell Adhesion and Spreading Behavior on Vertically Aligned Silicon Nanowire Arrays[J]. ACS Applied Materials & Interfaces, 2009,1:30-4.
    93. Abrahamsson I, Zitzmann NU, Berglundh T, Wennerberg A, Lindhe J. Bone and Soft Tissue Integration to Titanium Implants with Different Surface Topography: An Experimental Study in the Dog[J]. The International Journal of Oral & Maxillofacial Implants, 2001,16:323-332.
    94. Olmedo D, Fernandez MM, Guglielmotti MB, Cabrini RL. Macrophages related to dental implant failure[J]. Implant Dentistry, 2003,12:75-80.
    95. Rosa AL, Beloti MM. Rat bone marrow cell response to titanium and titanium alloy with different surface roughness[J]. Clinical Oral Implants Research, 2003, 14:43-48.
    96. Modin C, Stranne AL, Foss M, Duch M, Justesen J, Chevallier J, Andersen LK, Hemmersam AG, Pedersen FS, Besenbacher F. QCM-D Studies of Attachment and Differential Spreading of Pre-osteoblastic Cells on Ta and Cr Surfaces[J]. Biomaterials,2006,27:1346-1354.
    97. Kilpadi DV, Lemons JE. Surface energy characterization of unalloyed titanium implants [J]. Journal of Biomedial Materials Research, 1994, 28:1419-1425.
    98. Anselme K, Linez P, Bigerelle M, Le Maguer D, Le Maguer A, Hardouin P, Hildebrand HF, lost A, Leroy JM. The relative influence of the topography and chemistry of TiA16V4 surfaces on osteoblastic cell behaviour[J]. Biomaterials, 2000, 21:1567-1577.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700