天然气水合物分解对海底结构物稳定性影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
进入21世纪,随着经济全面飞速发展,人们对能源的需求与日俱增,油气资源巨大消耗,经济发展面临巨大考验。天然气水合物被认为是21世纪最具有开发前景的替代能源之一。然而,当环境条件改变时,破坏天然气水合物沉积层稳定性,释放出大量的气体和水,极大地降低海底沉积物工程力学特性,引起海底土体软化、边坡失稳、海底滑坡等地质灾害,进而毁坏海底工程设施,如海底基础、管线、钻井平台等。
     由于水合物分解过程极其复杂,加之研究深海环境困难重重,目前关于水合物分解对海底结构物影响的研究较少,刚处于起步阶段。因此,现阶段有必要通过数值模拟手段针对水合物分解对水合物沉积层及其上工程设施的影响进行研究,以便为今后大规模海底开发活动提供参考。本文主要通过有限元数值模拟,研究水合物分解对海底结构物的影响规律,主要工作包括以下几个方面:
     (1)为研究水合物分解过程中水合物沉积物模量软化和强度衰减的过程,采用应力释放法,建立能够考虑水合物分解软化的有限元数值计算方法,开发了相应计算程序,并通过计算算例分析该程序的可靠性。
     (2)首先,利用该程序计算水合物分解对海底斜坡稳定性影响,设计三种计算工况,分别研究模量软化和强度衰减对斜坡变形的影响。然后,进一步讨论水合物分解过程中斜坡上面不同厚度覆盖土层对斜坡稳定性和变形的影响。
     (3)然后,分析在水合物沉积层中布设桩基础,当桩基础位于地层不同深度时,考虑桩端部承载力不同,分别比较桩端部在水合物层中和下部沉积层两种不同工况,分析水合物分解对桩基础及附近土层应力和变形影响规律。
     (4)最后,研究桩基础距离水合物层不同距离时,水合物分解对桩基础的影响。对比设计了间距为10m,50m,70m和80m四种计算工况,以分析桩基础与水合物层间安全距离是多少时,水合物分解对桩基础应力和变形影响最小,可以忽略。以期为天然气水合物开发中海底桩基础的布置和稳定性分析提供参考。
With the comprehensive and rapid development of economy, energy demand is growing quickly. The oil and gas resources are hugely consumed. And the development of economy faces enormous challenges. The gas hydrate is considered to be the most development prospects of alternative energy in the21st century. However, when environmental conditions change, the stability of gas hydrate bearing sediments is damaged and large amounts of gas and water are released, which greatly reduces the engineering mechanical properties of seabed sediments. The softening of the seabed soil, slope failure and submarine landslides geological disasters will occur, and thus causing the destruction of the seabed engineering facilities, such as seabed pipelines, communication cables, drilling platforms.
     Therefore, it is very necessary to research stabilities of the seabed structures due to hydrate dissociation. In this paper, finite element numerical simulation is used to study the influences of seabed structures due to hydrate dissociation. The main works could be summarized as follows:
     (1) To study the process of hydrate sediments modulus softening and strength reduction, the finite element numerical method is established to consider the hydrate dissociation using stress release method. The corresponding computer program is developed and the reliability of the program is discussed.
     (2) The program is used to simulate the influences of submarine slope stability due to hydrate dissociation. Three calculation conditions are designed to study the effects of modulus softening and strength reduction on slope deformation respectively. Then, the effects of overlying soil thickness on the slope stability and deformation in the process of hydrate dissociation are discussed.
     (3)Then, laying the foundation in hydrate sediments is simulated. When pile foundation is located in the strata at different depths, two different conditions of pile end in the hydrate layer and the lower sediment layers are compared. The effects of pile foundation and the surrounding soil stress and deformation due to hydrate dissociation are analyzed.
     Finally, when pile foundation is at different distances from the hydrate layer, the effect of hydrate dissociation on the pile foundation is researched. Four calculation conditions of10m,50m,70m and80m spacing are designed. When how far the pile foundation and hydrate layer, there is the minimal impact in the stress and deformation of the pile foundation due to the hydrate dissociation, which provides a reference for the development of gas hydrate in the seabed pile foundation stability.
引文
[1]蒋国盛,王达,汤凤林,等.天然气水合勘探与开发[M].武汉:中国地质大学出版社,2002.
    [2]宋召军,刘立.天然气水合物研究现状与展望[J].吉林地质,2003,22(4):64-68.
    [3]张旭辉,鲁晓兵,王淑云,等.四氢呋哺水合物沉积物静动力学性质试验研究[J].岩土力学.2011,32:303-308.
    [4]Koji Yamamoto. Methane Hydrate Bearing Sediments:a New Subject of Geomechanics [C]. Goa, India:The 12th International Conference of International Association for Computer Methods and Advances in Geomechanics (IACMAG),2008.
    [5]Sloan E D. Clathrate hydrate of natural gas (2nd) [M]. New York:Mar Dekker,1998.
    [6]陈汉宗,周蒂.天然气水合物与全球变化研究[J].地球科学进展,1997,12(1):37-41.
    [7]姚伯初.南海北部陆缘天然气水合物初探[J].海洋地质与第四纪地质,1998,18(4):11-18.
    [8]史斗.国外天然气水合物研究进展[M].兰州:兰州大学出版社,1992.
    [9]Satoh M南海海槽等海域天然气水合物资源评价[J].天然气地球学,2003,14(06):512-513.
    [10]许红,黄君权,夏斌等.最新国际天然气水合物研究现状及资源潜力评估(下)[J].天然气工业,2005,25(6):18-23.
    [11]何拥军,陈建文,曾繁彩,吴琳.世界天然气水合物调查研究进展[J].海洋地质动态,2004,20(6):43-46.
    [12]马在田,宋海斌,孙建国.海洋天然气水合物的地球物理探测高新技术[J].地球物理学进展,2000,15(3):1-5
    [13]马在田,耿建华,董良国,等.海洋天然气水合物的地震识别方法研究[J].海洋地质与第四纪地质,2002,22(1):1-8.
    [14]邓希光,吴庐山,付少英.南海北部天然气水合物研究进展[J].海洋学研究,2008,26(02):67-74.
    [15]潘克立.天然气水合物储层稳定性研究[D].山东:中国石油大学(华东),2009.
    [16]甘华阳,王家生,胡高韦.海洋沉积物中的天然气水合物与海底滑坡[J].防灾减灾工程学报,2004,24(2):177-181.
    [17]Locat, J., H.J. Lee. Submarine landslides:Advances and challenges[J]. Canadian Geotechnical Journal, 2002.39(1):193-212.
    [18]刘锋.南海北部陆坡天然气水合物分解引起的海底滑坡与环境风险评价[D].北京:中国科学院研究生院,2010.
    [19]Mclver R D. Role of naturally occurring gas hydrates in sediment transport[J]. AAPG Bulletin,1982, 66:789-792.
    [20]Hampton, M. A., Lee, H. J., Beard, R. M.. Geological interpretation of cone penetrometer tests in Norton Sound[J]. Geo-Marine Letters,1982,2:223-230.
    [21]Dillon W. P., Danforth W. W., Hutchinson D. R., et al. Evidence for faulting related to dissoci-ation of gas hydrate and release of methane ofthe southeastern United States [J]. Geological Society,1998,137: 293-302.
    [22]Glasby G P. Potential impact on climate of exploitation of methane hydrate deposits offshore[J]. Marine and Petroleum Geology,2003, (20):163-175.
    [23]Harbitz C B. Model simulations of tsunamis generated by the Storegga slidesfJ]. Marine Geology, 1992,105:1-21.
    [24]Vanoudheusden E,, Sultan N., Cochonat P. Mechanical behavior of unsaturated marine sediments: Experimental and theoretical approaches[J]. Marine Geology.2004,213(1-4):323-342
    [25]Paull C. K., Buelow W. J., Ussler W., et al. Increased continental-margin slumping frequency during sea-level lowstands above gas hydrate-bearing sediments[J]. Geology,1996, (24):143-146.
    [26]Mark M., Naja M., Bilal H.. Sea-level and gas-hydrate controlled catastrophic sediment failures of Amazon Fan[J]. Geology,1998,26(12):1107-1110.
    [27]Kayen R E, Lee H J. Pleistocene slope instability of gas hydrate-laden sediment on the Beaufort Sea margin[J]. Marine Geotechnology,1991, (10):125-141.
    [28]宁伏龙.天然气水合物地层井壁稳定性研究[D].中国地质大学,2005.
    [29]杨启伦.海洋开发和海底不稳定性调查研究的关系[J].海洋技术,1994,13(4):65-67.
    [30]Prior D B, Coleman J M. Active slides and flows in underconsolidated marine-sediments on the slopes of the Mississippi delta[A]. Saxov S and Nieuwenhius J K. Marine Slides and Other Mass Movements [C]. New York:Plenum Press,1982.21-49.
    [31]Saxov S. Marine slides-Some introductory remarks[J]. Marine Geotechnology,1990,9:110-114.
    [32]Hampton M, Lee H. Submarine landslides [J]. Reviews of Geo, physics,1996,34(1):33-59.
    [33]U.S.Exempted BP's Gulf Of Mexico Drilling From Environmental Impact Study due to gas hydrate, http://www.vivelecanada.ca/article/235930805.
    [34]胡光海,刘忠臣,孙永福,等.海底斜坡土体失稳的研究进展[J].海岸工程.2004.23(01):63-72.
    [35]Cundall P A. computer model for simulating progressive large scale movements in blocky system[C]// Symposium of the International Society of Rock Mechanics. Rotterdam:A. A. Balkema,1971.
    [36]CUNDALL P A. The measurement and analysis of acceleration in rock slopes[D]. London:University of London,1971.
    [37]沈海超.天然气水合物藏降压开采流固耦合数值模拟研究[D].东营:中国石油大学(华东),2009,5.
    [38]王淑云,王丽,鲁晓兵,等.天然气水合物分解对地层和管道稳定性影响的数值模拟.中国海上油气,2008.20(2):127-138.
    [39]Kimoto S., Oka F., Fushita T., FUJIWAK M. A chemo-thermo-mechanically coupled numerical simulation of the subsurface ground deformations due to methane hydrate dissociation[J]. Computes And Geotechnics,2007,34(4):216-228.
    [40]Kimoto S., Oka F, Fushita T.. A chemo-thermo-mechanically coupled analysis of ground deformation induced by hydrate dissociation[J]. International Journal of Mechanical Sciences,2009,10(2):1-12.
    [41]肖俞,蒋明镜,孙渝刚.考虑简化胶结模型的深海能源土宏观力学性质离散元数值模拟分析.岩土力学.2011.32:755-760.
    [42]蒋明镜,肖俞,刘芳.深海能源土开采对海床稳定性的影响研究思路.岩土工程学报.2010.32(9):]412-1417.
    [43]Brugada J, Cheng Y P, Soga K, et al. Discrete element modeling of geomechanical behavior of methane hydrate soils with pore-filling hydrate distribution[C]// International Symposium on Geomechanics and Geotechnics:From Micro to Macro. Shanghai,2010.
    [44]Rutqvist J, Moridis G J, Grover T, et al. Geomechanical Response of Known Permafrost Hydrate Deposits To Depressurization-Induced Production[C].Proceedings of the 6th International Conference on Gas Hydrates (ICGH 2008), Vancouver, British Columbia, CANADA,2008.
    [45]张旭辉,鲁晓兵,王淑云等.四氢呋哺水合物沉积物静动力学性质试验研究[J].岩土力学.2011.32:303-308.
    [46]Winters W J, Pecher I A, Waite W F. Physical properties and rock physical models of sediment containing natural and laboratory-formed methane gas hydrate [J]. American Mineralogist,2004,89: 1221-1227.
    [47]Winters W J, Waite W F, Mason D H, et al. Methane gas hydrate effect on sediment acoustic and strength properties. Journal of petroleum science and engineering.2007,56(1-3):127-135.
    [48]Akira Masui, Hironori Haneda, Yuji Ogata et al. Mechanical Properties of Sandy Sediment Containing Marine Gas Hydrates in Deep Sea Offshore Japan[C]//Proceedings of the 17th. International Offshore and Polar Engineering. Lisbon, Portugal:2007.53-56.
    [49]Masui, A., Miyazaki, K., Haneda, H., Ogata, Y., and Aoki, K.2008. Mechanical Properties of Natural Gas Hydrate Bearing Sediments Retrieved from Eastern Nankai Trough. OTC 19277 The Offshore Technology Conference, Houston,5-8 May. doi:10.4043/19277-MS.
    [50]Hyodo M, Nakata Y, Yoshimoto N. Bonding Strength by Methane Hydrate Formed among Sand Particles. Proceedings of the 6 International Conference on Micromechanics of Granular Media, Powders and Grains,2009,1145:79-82.
    [51]Hyodo M, Yoneda J, Nakata Y, et al. Strength and Dissociation Property Of Methane Hydrate Bearing Sand:Proceedings of the 7th International Conference on Gas Hydrates (ICGH 2011), Edinburgh, Scotland, United Kingdom,2011[C].July 17-21,2011.
    [52]Clayton C R I, Priest J A, Best A I. The effects of dissemininated methane hydrate on the dynamic stiffness and damping of a sand [J]. Geotechnique,2005,55 (6):423-434.
    [53]张旭辉,鲁晓兵,王淑云,等.四氢呋哺水合物沉积物静动力学性质试验研究[J].岩土力学,2011,32:303-308.
    [54]张旭辉,王淑云,李清平.天然气水合物沉积物力学性质的试验研究[J].岩土力学,2010,31(10):3069-3074.
    [55]Miyazaki K, Masui A, Sakamoto Y, et al. Effect of Confining Pressure on Triaxial Compressive Properties of Artificial Methane Hydrate Bearing Sediments:Offshore Technology Conference, Houston, Texas, USA,2010[C].
    [56]Miyazaki K, Masui A, Sakamoto Y, et al. Triaxial compressive properties of artificial methane-hydrate-bearing sediment[J]. Geophys. Res.,2011,116(B6):B6102.
    [57]Song Y, Yu F, Li Y, et al. Mechanical property of artificial methane hydrate under triaxial compression[J]. Journal of Natural Gas Chemistry,2010,19(3):246-250.
    [58]Yu F, Song Y, Liu W, et al. STUDY ON SHEAR STRENGTH OF ARTIFICIAL METHANE HYDRATE[M]//PROCEEDINGS OF THE ASME 29TH INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING,2010,4:705-710.
    [59]Li Y, Song Y, Yu F, et al. Experimental Study on Mechanical Properties of Gas Hydrate-Bearing Sediments Using Kaolin Clay [J]. China ocean engineering,2011,25(1):113-122.
    [60]Li Y, Song Y, Liu W, et al. Mechanical Property Measurements of Clayey Sediments Containing Gas Hydrate By Triaxial Compression Tests:Proceedings of the 7th International Conference on Gas Hydrates (ICGH 2011), Edinburgh, Scotland, United Kingdom[C].July 17-21,2011.
    [61]Priest J, Sultaniya A, Clayton C. Impact of Hydrate Formation and Dissociation on The Stiffness of a Sand:Proceedings of the 7th International Conference on Gas Hydrates (ICGH 2011), Edinburgh, Scotland, United Kingdom,2011[C]. July 17-21,2011.
    [62]Miyazaki K, Aoki K, Tenma N, et al. A Nonlinear Elastic Constitutive Model For Artificial Methane-Hydrate-Bearing Sediment:Proceedings of the 7th International Conference on Gas Hydrates (ICGH 2011), Edinburgh, Scotland, United Kingdom,2011 [C].July 17-21,2011.
    [63]Yu F, Song Y, Liu W, et al. Analyses of stress strain behavior and constitutive model of artificial methane hydrate [J]. Journal of Petroleum Science and Engineering,2011,77(2):183-188.
    [64]Sultan N, Garziglia S. Geomechanical Constitutive Modelling of Gas-Hydrate-Bearing Sediments: Proceedings of the 7th International Conference on Gas Hydrates (ICGH 2011), Edinburgh, Scotland, United Kingdom,2011[C].July 17-21,2011.
    [65]Rutqvist J, Moridis G, Kim J. A Numerical Study Of Gas Production From Collapsing Oceanic Hydrate-Bearing Sediments:Proceedings of the 7th International Conference on Gas Hydrates (ICGH 2011), Edinburgh, Scotland, United Kingdom,2011[C].July 17-21,2011.
    [66]蔡晓光,袁晓铭,刘汉龙等.近岸水平场地液化侧向大变形机理及软化模量分析方法[J].地震工程与工程振动.2005.37(03):0125-0131.
    [67]邹德高,孔宪京GEOtechnical DYnamic Nonlinear Analysis-GEODYNA使用说明,大连理工大学土木水利学院工程抗震研究所.
    [68]毛文娟.强震区高土石坝三维动力反应分析[D].大连:大连理工大学,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700