人工甜味受体模型识别甜味过程的分子动力学模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在食品科学领域中,甜味作为5种基本味感之—,它的感官特征的评价一直依赖于人的感官品评。然而,由于品评人员生理和心理方面的差异,对甜真实、客观感受的表达往往受到很大程度的制约。而且,受制于没有得到甜味受体蛋白的确切结构,人们仍然没有完全理解甜味分子的感受机理。因此,构建一种人工甜味受体模型显得尤为重要。
     本课题组前期以富勒醇C60(OH)18作为人工甜味受体模型,运用等温滴定量热(ITC)、感官品评、核磁共振(NMR)等实验手段对人工甜味受体模型与人工甜味剂、天然甜味剂、甜味抑制剂、甜味异构体、甜味增强剂的识别作用进行了研究。研究结果表明,富勒醇作为人工受体模型对甜味剂有较好的识别作用,对解释甜味抑制剂和增强剂的机理起到积极作用,并且表现出了各种糖类异构体的甜度差异。本文进一步运用分子动力学(MD)方法:从原子水平上研究了人工甜味受体模型富勒醇与甜味剂、甜味异构体的相互作用,并且.进一步优化人工甜味受体模型结构,以期为甜味机理的研究提供更多的信息。
     本课题研究的内容有:
     (1)建立了人工甜味受体与甜味剂相互作用的MD模拟方法
     在前期建立的人工甜味受体模型实验基础上,选择了六种不同甜味剂进行研究。通过比较果糖、葡萄糖、半乳糖、蔗糖、海藻糖以及麦芽糖与富勒醇相互作用的结合能,可以发现它们之间的结合能变化趋势与甜味剂的甜度具有相关性。对于近乎相同质量分数下的六种甜味剂,它们与富勒醇的结合能大小为:果糖>葡萄糖>半乳糖>庶糖>海藻糖>麦芽糖。在前期等温度定量实验中也发现同样的规律,这说明富勒醇识别不同甜味剂的有效性,以及分子动力学方法的可行性。
     (2)人工甜味受体模型富勒醇与甜味剂异构体相互作用的研究
     在前期运用ITC和NMR等技术手段研究富勒醇与单糖异构体相互作用的结果表明,富勒醇加入异构体中,富勒醇更易与β型异构体稳定地结合,并且.结合所释放的能量提供了α型异构体向β异型构体构象转化的能量。通过分子动力学模拟结果同样表明,富勒醇更易于β型异构体发生结合,两者的结合能普遍大于与α型异构体的结合能;并且,L型异构体与富勒醇的结合能也普遍大于D型异构体与富勒醇的结合能。
     通过比较三种甜味剂与富勒醇的结合方式可以看出,氢键在它们的结合中起到较大的作用,并且它们的结合位点不同,果糖的环状结构部分更易与富勒醇相结合,而半乳糖和葡萄糖的链端部分更易与富勒醇相结合。这一结果为研究甜味剂机理提供了一定的信息。
     (3)优化人工甜味受体模型富勒醇分子
     一方面由于富勒醇上羟基数量的增加可以使其与甜味分子的可结合位点增多,增加识别作用;另一方面,富勒醇分子羟基数量的过分增加同样也会减小富勒醇表面的疏水作用,富勒醇分子表而的羟基距离太近会导致羟基间相互吸引,从而形成分子内氢键。一旦富勒醇分子形成分子内氢键,则相应的氢原子就不能与其它分子形成分子间氢键,从而不利于人工甜味受体识别甜味剂。因此本论文进一步优化了人工甜味受体模型富勒醇,其结果表明C60(OH)20更适合作为人工甜味受体模型。分子动力学模拟结果表明富勒醇分子内氢键随羟基数德增加而明显增加,进一步证明富勒醇羟基数超过20个时则不利于识别甜味剂。总之,本文在前期实验研究的基础上,采用分子动力学方法,进
     一步研究了人工甜味受体模型化合物与甜味剂及其异构体间的相互作用,并进一步优化了模型化合物,建立运用分子动力学方法研究人工甜味受体模型的方法,丰富了甜味机理研究的仿生化学,并将分子动力学方法引入食品科学领域。
Sweetness is a basic taste in the field of food science while there are five basic tastes. Sweetness organoleptic property always lies on panelist sensory evaluation. However, it is difficult to express taste with true feelings and impersonality because of much difference in psychology and physiology of panelists. In addition, researchers still have no integrated comprehension for sweetness mechanism because it has no definite structure of the taste receptor protein. So it is veiy important to construct an artificial sweet taste receptor model.
     Recently, our team used C60(OH)18as an artificial sweet taste receptor model, and isothermal titration calorimetry (ITC), sensory evaluation, nuclear magnetic resonance (NMR) as tool to research the recognition of artificial sweet taste receptor model with artificial sweeteners, natural sweeteners, sweetness isomer, sweetness inhibitor and sweetness enhancer. The result showed that fullerenols can effectively recognize sweetness as an artificial sweet taste receptor model, and it is important for researchers to understand sweetness strengthening mechanism and sweetness inhibiting mechanism. This thesis further applies molecular dynamics (MD) simulation approach to research on interaction between artificial sweet taste receptor model with sweetness and sweet isomers, and optimizes the structure of artificial sweet taste receptor model in order to obtain more information about mechanism of sweetness. The main research work is as follows:
     (1) The formation for research on interaction between artificial sweet taste receptor with sweetness by MD simulation
     The interaction of6sweeteners (Fructose, Glucose, Galactose, Sucrose, Trehalose and Maltose) with fullerenols was researched by molecular dynamics. The result implied that the binding energies of6sweeteners with fullerenols were relational with the sweetness of6sweeteners. In the same condition, beginning with the largest binding energy is:Fructose> Glucose> Galactose> Sucrose> Trehalose> Maltose. Recently, we found the same law in the previous titration experiments of ITC. These show that effectiveness of fullerenols recognize sweeteners, as well as the feasiability of molecular dynamics method.
     (2) Research on the interaction of artifical model fullerenols with sweetness isomers
     Recently, our team research on the interaction of artifical model fullerenols with sweetness isomers by ITC and NMR technology, and the result shows'that β-isomers and fullerenols has more stable coalition compare with a-isomers. Energy would be released when P-isomers bind with fullerenols, and the energy is necessary for a-isomers transfer into β-isomers. The molecular dynamics simulation experimental result also shows that β-isomers and fullerenols has more stable coalition compare with a-isomers, and the binding energies of β-isomers with fullerenols are greater than a-isomers. However, the binding energies of L-isomers with fullerenols are also greater than D-isomers.
     By comparing the way of fullerenols combined with3kinds of sweeteners, it is found that the hydrogen bond play an important role when fullerenols combined with sweeteners. They have different binding site, ring part of the fructose has more stable coalition with fullerenols, and chain end of glucose and galactose have more stable coalition with fullerenols. These results would provide some information about mechanism of sweetness.
     (3) Structural optimization of artificial sweetness receptor model fullerenols
     On one hand, with the increasing of the number of fullerenols hydroxyl groups, the binding site of fullerenols with sweetness would increase. So, they can make better identification with sweetness. On the other hand, excessive fullerenols hydroxyl groups will decrease hydrophobic interaction, and hydroxyl groups of fullerenols will attract each other to form intramolecular hydrogen bond. In case fullerenols molecular form intramolecular hydrogen bond, the corresponding hydrogen atoms can not form hydrogen bond with other molecular, and it is going against to recognization reaction of fullerenols with sweetness. So, Structural optimization of artificial sweetness receptor model fullerenols is necessary, and the result shows that C60(OH)20is more suitable to be used as artificial sweetness receptor model. The molecular dynamics simulation the result shows intramolecular hydrogen bond would increase when increase the number of fullerenols hydroxyl group, and it is further prove that fullerenols will not suitable to be used as artificial sweetness receptor model to recognize sweetness if the number of hydroxyl group more than20.
     In conclusion, this thesis applies molecular dynamics simulation method approach to further study the interaction between artificial sweet taste receptor model with sweetness and sweet isomers, and optimizes the structure of artificial sweet taste receptor model in order to obtain more information about mechanism of sweetness. The purpose of this thesis is to form method for research on artificial sweet taste receptor by molecular dynamics simulation, enrich biomimctic chemistry of sweetness mechanism study, and introduce molecular dynamics method to food science.
引文
[1]李蕾蕾,张根华,邓少平甜味识别与转导机理[J]动物医学进展,2006.27:12-14
    [2]Jean-Pierre M., Hiroaki M. Receptors for bitter and sweet taste [J], Current Opinion in Neurobiology,2002,12:366-371.
    [3]Shallenberger R S., Acre T E. Biology molecular theory of sweet taste[J]. Nature,1967,216: 480-482.
    [4]Nofre C, Tinti J M. Sweetness reception in man:the multipoint attachment theory [J]. Food Chemistry,1996,56:263-274.
    [5]Zhao G Q.. Zhang Y E., Hoon M A., et al. The receptors for mammalian sweet and umami taste [J]. Cell.2003,115: 255-266.
    [6]Nelson G., Iloon M A., Chandrashekar J., et al. Mammalian sweet taste receptors [J]. Cell, 2001,106:381-390.
    [71 Li X D., Staszewsk L L Xu H., et al. Human receptors for sweet and umami taste [J]. PNAS, 2002,99:4692-4696.
    [8]Richard L., Sensing via intestinal sweet taste pathways [J]. Frontiers in Neuroscience,2011,5: 1-13.
    [9]Saitoh O., Hirano A., Nishimura Y. Intestinal STC-1 cells respond to five basic taste stimuli [J]. Neuro Report,2007,18:1991-1995.
    [10]Talavera K., Yasmatsu K., Voets T. Heat activation of TRPM5 underlies thermal sensitivity of sweet taste[J]. Nature,2005,438:1022-1025.
    [11]Assadi-Porter F M., Tonelli M., Maillet E. Direct NMR deteetion of the binding of functional ligands to the human Sweet Receptor, a I Ieterodimeric Family 3 GPCR [J]. American Chemical Society,2008,130:7212-7213.
    [12]吕仁庆.不同构型氨基酸甜味与其量子化学参数的相关研究[J].化学世界,2006:74-77
    [13]Li J., Takeuchi A., Ozawa M., ct al. Ceo fullcrol formation catalysed by quaternary ammonium hydroxides [J]. J. Chem. Soc, Chem. Commun,1993,23:1784-1785.
    [14]李添宝,黄克雄,李新海,等C60(OII)n的快速制备及其机理研究[J].高等学校化学学报,1998,19:858-860
    [15]Chen B H., Huang J P., Wang L Y., et al. Facile sulfation of C60 using P2O5 as an oxidation promoter [J]. J. Chem. Soc., Perkin Trans,1998,7:1171-1174.
    [16]陆长元,姚思德.王义峰,等.C60,富勒醇、C20富勒醇的激光解研究[J],中国科学1998,28:151-156
    [17]朱浙英,滕启文,吴师,等富勒醇C60(OH)8的结构和UV谱的理论研宄[J].浙江大学学报,2002,29:77-82
    [18]李小奎,陈忠秀.郭纲敏.多羟基富勒醇水溶液自聚集行为的研究[J].分析测试学报,2009.28432-435
    [19]Chiang 1, Y., Lu F J.. Huang H C. et al. Freeradieal scavenging activity of waler-sokible fullerenols[J].J. Chem. Soc. Chem. Commun,1995.12:1823-1824.
    [20]Jensen A W., Wilson S R., Schuster D L Biological applications of fullesenes[J|. Bioogran Med. Chem.1996,4: 767-779.
    [21]Mirkov S M., Djordievic A N., Andric N L., et al. Nitric oxide-scavenging activity of polyhydroxylated fullerenol, C'60(OH)24. Nitric Oxide,2004,11: 201-207.
    [22]佘益民MALDI质谱检测蛋白质与富勒醇的非共价复合物[J].高等学校化学学报,1998,19:1735-1738
    [23]Niu F., Wu J Y.. Zhang L S., et al. Hydroxyl group rich C60 Fullerenol:an excellent hydrogen bond catalyst with superb activity, selectivity, and stability[J]. ACS Catal,2011,1: 1158-1161.
    [24]Chen Z, X., Guo G M., Deng S P. Isothermal titration calorimetry study of the interaction of sweeteners with fullerenols as an artificial sweet taste receptor [J]..J. Agric. Food Chem, 2009.57:2945-2954.
    [25]ChenZX., Wu W.,Zhang W B., et al. Thermodynamics of the interaction of sweeteners and laclisole with fullerenols as an artificial sweet taste receptor model [J]. Food Chem,2011, 128: 134-144.
    [26]曹斌,高金森,徐春明.分子模拟技术在石油相关领域的应用[J].化学进展,2004,16:291-298
    [27]Frenkel D., Smit B. Understand molecular simulation: from algorithms to application[M]. New York:Academic press,1996.
    [28]Kofke D A. Direct evalution of phase coexistence by molecular simulation via integration along the saturation line [J]. J. Chem. Phys,1993,98:4149-4152.
    [29]Sarkisov L., Monson P A. Hysteresis in Monte Carlo and molecular dynamics simulations of adsorption in porous materials [J]. Langmuir,2000,2000,16:9857-9860.
    [30]Spoel D., Maaren P J., Berendsen H J. A systematic study of water models for molecular simulation:derivation of water models optimized for use with a reaction field [J]. J. Chem. Phys,1998,108:10220-10230.
    [31]Rapaport D C, The art of molecular dynamics simulation [M]. London: Cambridge University press,1995.
    [32]Monticelli L.. Sorin E J., Tieleman D P., et al. Molecular simulation of multistate peptide dynamics: a comparison between microsecond timescale sampling and multiple shorter trajectories|J].J. Comput. Chem,2008,29:1740-1752.
    [33]Korolev N., Lyubartsev A P.. Laaksonen A., et al. On the competition between water, sodium ions, and spermine in binding to DNA:a molecular dynamics computer simulation study [J|. Biophys J,2002,82:2860-2875.
    [34]Izvekov S., Violi A., Voth G A. Systematic coarse-graining of nanopartiele interactions in molecular dynamics simulation [J]. J. Phys. Chem. B,2005,109:17019-17024.
    [35]王艺峰,程时远,王世敏,等.高分子材料模拟中的分子力学法和力场[J].高分子材料科学与工程,2003,19:10-14.
    [36]Ren P., Ponder J W. Polarizable atomic multipole water model for molecular mechanics simulation [J]. J. Phys. Chem. B,2003,107:5933-5947.
    [37]Engler E M., Andose J D., Schleyer P V R. Critical evaluation of molecular mechanics [J]. J. Am. Chem. Soc,1973,95:8005-8025.
    [38]Swendsen R IL.. Wang.J S. Nonuniversal critical dynamics in Monte Carlo simulations [J]. Phvs. Rev. Lett,1987,58:86-88.
    [39]Jacoboni C, Reggiani L. The Monte Carlo method for the solution of charge transport in semiconductors with applications to covalent materials[J|. Rev. Mod. Phys,1983,55: 645-705.
    [40]刘丹,张晓彤,性建舟,等分子模拟在分子筛催化研究中的应用[J].石油化工高等学校学报,2004,17:9-12
    [41]赵南明,周海梦,生物物理学[M].北京:高等教育出版社,2000.
    [42]陈敏伯.计算化学:从理论化学到分子模拟[M].北京:科学出版社,2009.
    [43]杨小震.分子模拟与高分子材料[M].北京:利学出版社,2002
    [44]Delommelle J., Evans D J. Companson of thermostatting meehanisms in NVT and NPT simulations of decane under shear [J].J. Chem. Phys. 2011,115:43-49.
    [45]Fratemali F. Restrained and unrestrained molecular dynamies simulations in the NVT ensemble of almethicin [J]. Biopolymers, 1990.30: 1083-1099.
    [46]Cuendet M A.The jarzynski identity derived from gencral Hamiltonian or non-Hamiltonian dynamics reproducing NVT or NPT ensembles [J]. J. Chem. Phys. 2006,125: 144109-144122.
    [47]Buch V., Martonak R., Parrinell M. Exploration of NVE classical trajectories as a tool for molecular crystal structure prediction. with test on ice polymorhs [J].J. Chem. Phys, 2006, 124: 204705-204715.
    [48]Woodcock L V. Isothermal molecular dynamics calculations for liquid salts [J]. Chem. Phys. Lett, 1971, 10:257-261.
    [49]Berendsen H J C., Postma J P M., van Gunsteren W F.,et al. Molecular dynamics with Coupling to an external bath [J]. J. Chem. Phys, 1984, 81: 3684-3690.
    [50]Anderson H C. Molecular dynamics simulation at constant pressure and/or temperature [J].J. Chem. Phys, 1980, 72: 2384-2393.
    [51]Nose S. A unified formulation of the constant temperature molecular dynamics method [J].J. Chem. Phys, 1984,81:511-519.
    [52]吉青,杨小震.分子力场发展的新趋势[J].化学通报,2005,2:111-116
    [53]Greathouse J A., Allendor M D. Foree field validation for molecular dynamies simulations of IRMOF-1 and other isoretieular zine carboxylate coordination polymers [J]. phys. Chern. C 2008,112:5795-5802.
    [54]Cossi M., Scalmani G., Rega N., et al. Newdevelopments in the polarizble ocntinuum model for quantum mechanical and classical calculation on molecular in solution [J].J. Chem. Phys 2002,117:43-54.
    [55]Rappe A K., Casewit C J.,Colwell K S., et al. UFF, a full periodie table force field for molecular mechanies and molecular dynamics [J]. J. Am. Chem. Socs, 1992, 114: 10024-10035.
    [56]Mayo S L., Olafson B D., Goddard W A. DREDING:a generic force field for molecular simulations [J]. J. Phys. Chem,1990,94:8897-8909.
    [57]Sun H., Ren P., Fried J R. The COMPSSS force field:parameterization and validation for phosphazenes [J]. Comput. Theor. Polym. S,1998,8: 29-246.
    [58]Sun H. COMPASS:an ab initio force-field optimized for condensed-phase applications-overview with detail on alkane and benzene compounds [J]. J. Phys. Chem. B, 1998.102:7338-7364.
    [59]郑建仙,李璇,袁尔东,等高效甜味剂[M].北京:中国轻工业出版社,2009
    [60]王璋,许时婴、江波等.食品化学[M].北京:中国轻工业出版社,2003
    [61]于艳春.朱伟,肖继军,等.四组分高能体糸结合能和力学性能的分子动力学模拟[J].化学学报.2010,68:1181-1187
    [62]黄玉成,胡应杰,肖继军,等TATB基PBX结台能的分子动力学模拟[J].物理化学学报,2005,21:425-429
    [63]El-Barghouthi M I., Jaime C, Al-Sakhen N A., et al. Molecular dynamics simulation and MMP-BSA calculations of the cyclodextrin inclusion complexes with 1-alkanols, para-substituted phenols and substituted imidazoles [J]. J. Mol. Struc-THEOCHEM,2008, 853:45-52.
    [64]Kokkinou A., Tsorteki F., Karpusas M., et al. Study of the inclusion of the (R)-and (S)-camphor enantimers in α-cyclodextrin by X-ray crystallography and molecular dynamics [J]. Carbohydr. Res,2010,345: 034-1040.
    [65]朱伟,肖继军,郑剑,等高能混合物的感度理论判别-不同配比和不同温度AP/HMX的MD研究[J].化学学报.2008,66:2592-2596
    [66]张弛.吴伟彬.卢宇靖,等.吲哚并蝰晽衍生物与G-四链体相互作用的分子模拟研究[J].2008.66:953-958
    [67]Bonnet P., Jaime C, Alllory L M. Structure and thermodynamics of α-, β-, and γ-cvclodextrin dimmers. Molecular dynamics studies of the solvent effect and free binding energies [J], J. Org. Chem,2002,67:8602-8609.
    [68]Sell nor B, Zifferer G. Molecular dynamics simulation of P-cyclodextrin-aziadamantane complexes in water [J|. J. Phys. Chem. B,2008,112: 710-714.
    [69]Humphreys D D., Friesner R A ., Berne B J. The chemical potential of water: molecular dynamlics cornputer simulation simulation of che SPC model [J]. Phys. Chem, 1994 98: 68-85
    [70]1'uckermall M., Berne B J., Martyna G J. Ab initio molecular dynamics of solid nitromethane [J]. Chem. Phys, 1992< 97: 1990
    [71]杨湘庆,沈悦玉,徐仲莉,等.冰淇林中糖的理化性质及其主要功能[J].冷饮与速冻食品工业,2002,8:5-9
    [72]Watson J D ., Crick F H C. A structure for deoxyribose nucleic acid [J]. Nature. 1953.171 737—738
    [73]Binder W H., Bernstorff S., Kluger C., et al. Tunable materials from hydrogen bonded bonded pscudo. block copolymers [J]. Adv. Mater, 2005, 17:2824-2828.
    [74]Shallenberger R S., Acree T E. Molecular theory of sweet taste[J]. Nature, 1967.216: 480-482
    [75]Shallenberger R S. HYdrogen bonding and the varying sweetness of the sugars [J]. J. Food. Sci, 1963,28: 584-589.
    [76]Huang D M ., Wand Y B ., Visco L M., et al. Structure and stability of thiophene-hydrogen halide complexes: An ab init io molecular orbital study [J].Chem. Phys. Lett, 2005,407: 222-226
    [77]Frenkel D., Smit B. Understanding molecular simulation from algorithms to appleations[M]. New York: Aeademic press, 1996
    [78]阚建全.食品化学[M].北京:中国农业大学出版社,2002
    [79]Wladkowski B D ., Chenoweth S A., Jones K E., et al. Exocyeic hydroxymethyl rotational conformers of β- and α-D-glucopyranose in the gas phase and aqueous solution [J]. J. Phys Chem. A. 1998, 102: 5086-5092.
    [80]Corchado J C., Sanchez M L., Aguilar M A. Theoretical study of the relative stablity of rotational conformers of αand β-glucopyranose in gas and aqueous solution[J]. J.Am. Chem. Soc. 2004, 126: 7311-7319.
    [81]Shallenberger R S., Acree T E. Sweet taste of D and L-sugers and amino-acids and the steric nnature of their chemo-receptor site[J]. Nature. 1969, 221:555-557.
    [82]王宇,唐黎明.氢键识别超分子聚合物的新进展[J].化学进展,2007、19:769-778.
    [83]Rodriguez-Zavala.J G., Barajas-Barraza R E., Padilla-Osuna I., et al. Hydration behaviour of polyhydroxylated fullerenes. J. Phys. B:At. Mol. Opt. Phys.2011.44:205104.
    [84| Griko Y V. Remata D P. Energetics of solvent and ligand-induced conformational changes in α-lactalbumin [J]. Protein Science,1999,8:554-561.
    [85]Sanja T., Silva D., Vasna J., et al. Tissue-protective effects fullerenol C6o(OH)24 and amifostne in irradiated rats [J]. Colloids and Surfaces B :Biointerfaces.2007.58: 39-43.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700