强化高纯铝箔立方织构的机理与技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高压阳极电容铝箔需要很强的立方织构,其体积分数要求达到95%以上,生产的难度相当大,技术含量相当高。此前世界上只有日本、法国、德国等少数几个国家才能生产,我国也是近几年才有自己的产品供应。铝多晶体中立方织构的形成与演变是立方金属材料一种非常重要的晶体取向变化,其影响因素十分复杂,一直是材料科学领域中难度很大的课题。虽然自从采用取向分布函数研究织构取得了重大的进展,对形变与再结晶织构的形成和演变已经提出了多种重要的模型,建立了一些有价值的理论,但目前仍然有许多问题没有解决,如再结晶织构的形成过程甚至还不能预测,只能解释。特别是结合规模化生产时,在影响因素非常复杂的情况下,要探明立方织构的形成和演变机理一直是一个科学技术难题。本文结合高压阳极电容铝箔材料的生产,研究了强化立方织构的机理与技术,获得了以下的结果。
     研究表明,杂质元素,尤其是铁元素强烈影响立方织构的形成和发展。本文从再结晶能量转化的角度,建立了微量元素作用下的再结晶能量转化模型;据此进行了Monte Carlo再结晶模拟;并在确立了低浓度铁在铝中溶解度曲线的基础上,提出了溶析热处理强化立方织构的技术。
     研究表明,立方取向晶粒具有最小的Taylor因子,在此基础上提出了应变诱发立方取向晶体优先形核机理;结合立方取向晶体择优形核和择优长大的温度相关性,建立了形变热处理强化立方织构的技术。
     冷轧润滑条件强烈影响铝箔的组织结构与织构,从而也可控制铝箔立方织构的含量。研究结果表明,由于煤油润滑比机油润滑摩擦系数大,导致轧制过程中产生明显的{001}<110>剪切织构和Cu织构以及形变剪切带,有利于强化立方织构。本文揭示了润滑影响冷轧形变组织及宏观冷轧织构的形成和演变规律,及其对立方织构的影响规律。
     研究发现,立方取向晶粒在低的再结晶温度下形核率高于其他取向,而高温时有利于立方取向晶核的择优长大。据此,本文提出了立方取向低温择优形核和高温择优长大的学术观点,建立了立方取向择优形核的动力学模型,并提出了分级退火化高纯铝箔再结晶立方织构的技术。
     本文提出的强化立方织构的机理为高压箔的国产化提供了理论依据,所研究的强化立方织构的技术已经在国内某大型铝加工企业推广应用,批量产的高压阳极电容铝箔产品的立方织构含量已经达到95%以上,并实现了规模化批量生产。
The processing of aluminum foil for the anode of high voltage electrolytic capacitors is very difficult, and a lot of high-techniques for the processing have to be mastered skillfully, which will be applied to the aluminum processing, such as casting, rolling, and heat-treatment. More than 95% cube texture in volume will be necessary for enlarging surface of the anode by etching. The foil products can have been produced only in Japan, France, Germany before, and a commercial production has come true in China in the last few years as well. The formation and evolution of cube texture in FCC materials is a very important subject for the scientists and engineers in metallic materials, on which there are many complicated factors that have strong influence on the formation and evolution of cube texture. Ever since the orientation distribution function (ODF) was advanced, although the research of crystallographic texture has made great achievements, including some valuable theories and models, there are still some uncertainties in this field. For the formation mechanism for recrystallization texture, for example, there are still some different kinds of point of view. Howerver, there are no ideas about the details of recrystallization texture formation. What can be done about is no prediction but explanation. Especially in the commercial production of aluminum foil, this problem will become even more complicated.
     The impurities, especially Fe, have strong influence on the formation and development of the cube texture in high purity aluminum. The energy transformation model for the effects of impurities is suggested and implemented with the Monte Carlo method. With establishment of the limit solubilities of Fe in Al at different temperatures, the solid solution and precipitation heat treatment are proposed for strengthening cube texture.
     The results calculated by the crystal plasticity model showed that the cube oriented grains have the smallest Taylor factor. The mechanism for strain induced oriented nucleation of the cube texture based on this result is proposed. The techniques for strengthening cube texture by strainanneal treatment is established, which is based on the mechanism of the strain induced cube crystallite nucleation at low temperature and the oriented growth at high temperature. It is showed that the formation and development of the cube texture are strongly influenced by not only the thermodynamics parameters but also the deformation microstructures. For example, stronger initial cube texture, cube-oriented transition band and the cube-oriented fragmented grains in deformation shear bands are beneficial to the cube texture. The techniques for strengthening cube texture are applied to the industrial production, e.g. high temperature hot rolling and pre-annealing, inhomogeneous shear deformation which are proposed in this thesis.
     The experimental results revealed that the cube orientation crystallites have higher nucleation rate at low temperature and higher growth rate at high temperature than the others. Both the oriented nucleation at low temperature and the oriented growth at high temperature are suggested and a kinematical model for the oriented nucleation of the cube texture at low temperature is also suggested together with the techniques of strengthening cube texture by two-stage annealing.
     The deformation microstructure and texture are strongly controlled by the cold rolling lubrication conditions, by which the cube texture in high purity aluminum foil is also greatly influenced. It is demonstrated that kerosene-lubricated rolling leads to the shear texture component {001}<110>, Cu component {112}<111> and shear deformation band, which are induced by the higher friction coefficient. And all of the above textures and microstructure will favor the formation of cube texture.
     Some techniques for strengthening cube texture have been applied to the commercial production of high purity aluminum foil with the volume fraction of 95% of cube texture for high voltage capacitors in one of the famous aluminum fabrication plants in China.
引文
[1]Doherty RD,Hughes DA,Humphreys FJ,et al.Current issues in recrystallization:a review[J].Materials Science and Engineering,1997,A238:219-274.
    [2]Humphreys FJ,Hatherly M.Recrystallization and related phynomena[M].Oxford:Pergamon Press,1995.
    [3]Gottstein G.Evolution of recrystallization textures—Classical approaches and recent advances[J].Materils Science Forum,2002,408-412:1-24.
    [4]毛卫民,赵新兵.金属的再结晶与晶粒长大[M].北京:冶金工业出版社,1993.
    [5]Volmer M,Weber A.Nuclei formation in supersaturated states[J].Z.Phys.Chem.,1926,119:277-301.
    [6]Becker R,Doring W.Kinetische Behandlung der Keimbildung in.ubersattigten Dampfen[J].Ann.Phys.,1935,24:719-752.
    [7]Turmbull D,Fisher JC.Rate of nucleation in condensed systems[J].J.Chem.Phys.,1949,27:71-73.
    [8]Christian LW.The theory of transformations in metals and alloys[M]:Pergamon Press,1975.
    [9]Doherty RD,Hughes DA,Humphreys FJ,et al.Current issues in recrystallization:a review[J].Materials Science and Engineering,1997,A238:219-274.
    [10]Bellier SP,Doherty RD.Structure of deformed aluminium and its recrystallization investigations with transformation transmission Kossel diffraction[J].Acta Metallurgica,1977,25(5):521-538.
    [11]Humphreys FJ,Hatherly M.Recrystallization and related phynomena[M].Oxford:Pergamon Press,1995.
    [12]M CH,J HF.Subgrain Rotation During In-Situ Annealing of Al-6wt\%Ni[J].42nd EMSA Meeting,1984:476-477.
    [13]Beck PA,Kremer JC,Demer LJ,et al.Grain growth in high-purity aluminum and in an aluminum-magnesium alloy[J].Trans.Metall.Soc.AIME,1948,175:372-394.
    [14]Hunderi O,Ryum N,Westengen H.Computer simulation of grain growth[J].Acta Metallurgica,1979,27(2):161-165.
    [15]Burgers WG,Louwense PC.Recrystallization and Grain Growth in metals[J].Z.Physik,1931,61:605-678.
    [16]Dillamore IL,Katoh H.The mechanisms of recrystallization in cubic metals with partiular reference to their orientation dependence[J].Metal Science,1974,8:73-83.
    [17]Taylor GI.Plastic strain in metals[J].J.Inst.Met.,1938,62:307-324.
    [18]Dillamore IL,Morris PL,E CJ,et al.Transition Bands and Recrystallization in Metals[J].Proc.Roy.Soc.,1972,329A(1579):405-420.
    [19]Kohlhoff GD,Krentscher B,Luecke K.Texture development in a cube oriented copper single crystal.In:Brakman CM,Jongenburger P,Mittemeijer EJ,*Brakman CM,Jongenburger P,Mittemeijer EJ'editors..Noordwijkerhout;1984.p 95-100.
    [20]Ridha AA,Hutchinson B.Recrystallization mechanisms and the origin of cube texture in copper[J].Acta Metall.,1982,30:1929-1939.
    [21]Lucke K.The formation of recrystallization textures in metals and alloys.In:Brakman CM,Jongenburger P,Mittemeijer EJ,*Brakman CM,Jongenburger P,Mittemeijer EJ'editors.Noordwijkerhout;1984.p 195-210.
    [22]Ibe G,Lucke K.Recrystallization,Grain Growth and Textures.:Metals Park;1966.p 434.
    [23]Lucke K,Gottstein G,Sebald R.The formation of recrystallization textures in metals and alloys Modelling of recrystallization textures[J].Journal of Materials Processing Technology,1984,117(3):195-210.
    [24]Gottstein G,Shvindlerman LS.Grain boundary migration in metals,thermodynamics,kinetics,applications[M]:CRC Press,1999.
    [25]Hjelen J,$O$rsund R,Nes E.On the origin of recrystallization textures in aluminum[J].Acta Metall.,1991,39:1377-1404.
    [26]Lucke K,Rixen R,Senna M.Formation of recrystallization textures in rolled al single crystals[J].Acta Metallurgica,1976,24:103-110.
    [27]Gottstein G,Shvindlerman LS.On the orientation dependence of grain boundary migration[J].Scripta Metallurgica et Materialia,1992,27(11):1515-1520.
    [28]毛卫民.晶界快速迁移的原子模型[J].中国科学A辑,1991,21(3):311-316.
    [29]Mao W.Atomistic model of rapidly moving grain boundaries in FCC metals[J].Mater.Sci.Forum,2002,408-412:269-274.
    [30]Urabe T,Jonas JJ.Modeling texture change during recrystallization of an IF steel[J].ISIJ International,1994,34(5):435-442.
    [31]Toth LS,Jonas JJ.Modelling the texture changes produced by dynamic recrystallization[J].Scripta Metallurgica et Materialia,1992,27(3):359-363.
    [32]Jonas JJ,Toth LS.Modelling oriented nucleation and selective growth during dynamic recrystallization[J].Scripta Metallurgica et Materialia,1992,27(11):1575-1580.
    [33]Delannay L,Mishin OV,Jessen DJ,et al.Quantitative analysis of grain subdivision in cold rolled aluminum[J].Acta Mater.,2001,41:2441-2451.
    [34]Hjelen J,$O$rsund R,Nes E.On the origin of recrystallization textures in aluminum[J].Acta Metall.,1991,39:1377-1404.
    [35]Lee DY.Strain Energy release maximum model for evolution of recrystallization textures[J].International Journal Mechanical Science,2000,42:1645-1678.
    [36]Lee DY.The evolution of recrystallization textures from deformation textures.In:Liang Z,Zuo L,Chu Y,*Liang Z,Zuo L,Chu Y'editors..Beijing;1996.p 503-508.
    [37]Doherty RD,Smajdar I,Necker CT,et al.In:Hanssen N,Jessen DJ,Liu YL,Ralph R,*Hanssen N,Jessen DJ,Liu YL,Ralph R'editors..Demark;1995.p 1-23.
    [38]Juul JD.Growth rates and misorientation relationships between growing nuclei/grains and the surrounding deformed matrix during recrystallization[J].Acta Metallurgica et Materialia,1995,43(11):4117-4129.
    [39]刘楚明,张新明,等.微量元素对高纯铝箔立方织构的影响[J].中南工业大学学报,2001,32(2):176-179.
    [40]刘楚明,张新明,等.高纯铝在轧制及退火过程中微观组织与织构的演变[J].轻合金加工技术,2001,29(1):18-21.
    [41]陵亚标,尚振山.提高电解电容器用铝箔质量初探[J].轻合金加工技术,1999,27(7):27-32.
    [42]刘楚明,林林.高压阳极电容铝箔生产工艺对立方织构的影响[J].材料导报,2000,14(6):19-21.
    [43]李念奎.提高高纯铝箔立方织构的工艺途径[J].轻合金加工技术,1995,23(4):23.
    [44]刘楚明,张新明,等.微量元素对高纯铝箔立方织构的影响[J].中南工业大学学报,2001,32(2):176-179.
    [45]Suzuki T,Aral K,Shiga M.et al.Impurity effect on cube texture in pure aluminum foils[J].Metalluggical Transaction.1985.16:27-36.
    [46]孟亚.Fe杂质对高纯铝箔再结晶织构及比电容的影响..长沙:中南工业大学;1999.
    [47]张新明,周鸿章,孟亚.Fe杂质对高纯铝箔再结晶织构及比电容的影响[J].中国有色金属学报,1999,9(1):19-24.
    [48]徐进,毛卫民,冯惠平,et al.Cu对高压电解电容器阳极铝箔再结晶织构的影响[J].北 学报,2002,24(2):133-136.
    [49]毛卫民,杨宏,余永宁,et al.微量Mg对高压电子铝箔腐蚀结构的影响[J].中国有色金属学报,2003,13(5):1057-1060.
    [50]李成利.高纯铝化学成分对高压电解电容铝箔质量的影响[J].铝加工,1998,21(5):39-43.
    [51]张新明,蒋红辉,等.润滑剂对高纯铝形变织构的影响[J].中国有色金属学报,2001,11(5):785-790.
    [52]Hirsch J,Lucke K.Mechanism of deformation and development of rolling textures in polycrystalline F.C.C.metals-Ⅰ description of rolling texture development in homogeneous CuZn alloys[J].Acta Metall.,1988,36:2863-2882.
    [53]Hirsch,Lucke K.Mechanism of deformation and development of rolling textures in polycrystalline F.C.C.metals-Ⅱ simulation and interpretation of experiments on the basis of Taylor type theories[J].Acta Metall.,1988,36:2883-2904.
    [54]Hirsch,Lucke K.Mechanism of deformation and development of rolling textures in polycrystalline F.C.C.metals-Ⅲ the influence of slip inhomogeneities and twining[J].Acta Metall.,1988,36:2883-2904.
    [55]Ito K,Musick R,Lucke K.The influence of iron content and annealing temperature on the recrystallization textures of high-purity aluminium-iron alloys[J].Acta Metallurgica,1983,31:2137-2149.
    [56]Hirsch J,Lucke K.The application of quantitative texture analysis for investigating continuous and discontinuous recrystallization processes of Al-0.01Fe[J].Acta Metall.,1985,33:1927-1938.
    [57]Hung H,Bichsel H.The effect of small beryllium contents on the recrystallization of high-purity aluminium[J].Metall,1962,16(3):193-197.
    [58]田荣璋,王祝堂.铝合金及其加工手册[M].第二版.长沙:中南大学出版社,2000.
    [59]Bunge HJ.Mathematiscbe Methoden der Texturanalyse[M].Berlin:Akademie-Verlag,1969.
    [60]Hirsch J,Nes E,Lucke K.Rolling and recrystallization texture of directionally solidified aluminum[J].Acta Metall.,1987,28A:229-236.
    [61]West DA,Adams BL.Analysis of orientation clustering in a directionally solidified nickel-based ingot[J].Metall.Mater.Trans.A,I997,15:27-30.
    [62]Doherty RD,Chen L-,Samajdar I.Cube recrystallization texture-Experimental results and modeling[J].Materials Science and Engineering A,1998,A257:18-36.
    [63]Engler O.On the origin of R orientation in the recrystallization textures of aluminum alloys[J].Mater.Metall.Trans.A,1999,30A:1517-1527.
    [64]韩德伟等.金属学实验指导书[M].长沙:中南工业大学出版社,1993.
    [65]Lee KT,Delwit G,D AM,et al.The application of the etch-pit method to quantitative texture analysis[J].J.Mater.Sci.,1995,30:1327-1332.
    [66]毛卫民,张新明.晶体材料织构定量分析[M].北京:冶金工业出版社,1995.
    [67]Bunge HJ,Esling C.Determination of the Odd Part of the Texture Function of Crystallites in a Polycrystalline Material[J].C.R.Hebd Seances Acad Sci.B.,1979,289(9):163-164.
    [68]Pospiech J,Lucke K.The rolling textures of copper and a-brasses disgussed in terms of the orientation distribution function[J].Acta Metall.,1975,23:997-1007.
    [69]Lucke K,Pospiech J,Virnich KH,et al.On the problem of the reproducion of the true orientation distribution from pole figures[J].Acta Metall.,1981,29:167-185.
    [70]Wright SI,Zhao JW,Adams BL.Automated determination of lattice orientation from electron backscattered Kikuchi diffraction patterns[J].Textures and Microstructures,1991,13:123-131.
    [71]Jessen DJ,Schmidt NH.Local texture measurements by EBSP-new computer procedures[J].Textures and Microstructures,1991,14-18:97-102.
    [72]梁志德等.织构材料的三维取向分析术:ODF分析..沈阳:东北工学院出版社;1986.
    [73]Aust KT,Chalmers B.Structure of grain boundaries[J].Met.Trans.,1970,1(5):1095-1104.
    [74]Demianczuk DW,Aust KT.Effect of solute and orientation on the mobility of near-coincidence tilt boundaries in high purity aluminium[J].Acta Metallurgica,1975,23(10):1149-1162.
    [75]Belluz RV,Aust KT.Effects of solutes on prefered orientation in high purity aluminium[J].Metallurgical Transactions A(Physical Metallurgy and Materials Science),1975,6(1):219-220.
    [76]Association EA,MATTER.Comparison of Atomic Radii.http://aluminium.matter.org.uk/,2001.
    [77]Clement A,Coulomb P.Eulerian simulation of deformation textures[J].Scripta Metallurgica,1979,13:899-701.
    [78]Toth LS,Jonas JJ,Neale KW.Comparision of the minimum plastic spin and rate sensitive slip therories for loading of symmetrical crystal orientations[J].Proc.Soc.Lond,1990,427:201-219.
    [79]Schmid E.Plasticity of crystal[M].New York:Oxford University Press,1935.
    [80]Vatne HE,ShaHani R,Nes E.Deformation of cube-roientated grains and formation of recrystallized cube grains in a hot deformed commercial AlMgMn aluminium alloy[J].Acta Materilia,1996,44(11):4447-4462.
    [81]Taylor GI.Plastic strain in metals[J].J.Inst.Met.,1938,62:307-324.
    [82]Taylor GI,Elam CF.The distortion of an aluminium crystal during tension test.|.*I02A 102A.London;1923.p 643-644.
    [83]van Houte P.A comperhensive mathematical formulation of an Extended Taylor-Bishop-Hill model featuring relaxed constraints,the Renouard-Wintenberger theory and strain rate sensitivity model[J].Textures and Microstructures,1988,8-9:313-350.
    [84]Bishop JF,Hill R.A theoretical derivation of the plastic properties ofa polycrystalline face centered metal[J].Phil.Mag.,1951,42:1298.
    [85]Bishop JF,Hill R.A theory of the plastic distortion of a polycrystalline aggregate under combined stress[J].Phil.Mag.,1951,42:414-427.
    [86]Belansky AM,Peck CF.Bond strength and[J].Iron Steel Eng.,1956,33(3):62.
    [87]Kannel JW,Dow TA.Evolution of surface pressure and temperature measurement technologies for use in the study of lubrication in metal rolling[J].Journal of Lubrication Technology,Transactions ASME,1974,96(4):611-616.
    [88]李虎兴.压力加工过程中的摩擦与润滑[M].北京:冶金工业出版社,1993.
    [89]陈志永.立方金属单晶屈服面和纯铝轧制织构演变的研究..长沙:中南大学;2002.
    [90]蒋显全.热轧温度对3104H19薄板性能、织构和各向异性的影响..长沙:中南工业大学;1992.
    [91]F YZ,Toth LS,Neale KW.On the stability of the ideal orientations of rolling textures for f.c.c.polycrystals[J].Acta Metallurgica et Materialia,1992,40(11):3179-3193.
    [92]K GD.Textur-und Microstrukturentwickkung bei Walzumformung und Rekristallisation vor Einkristallen Kubisch-flachenzentrierter Metalle..Aachen:RWTH-Aachen University;1988.
    [93]Hirsch J,Lucke K.Mechanism of deformation and development of rolling textures in polycrystalline F.C.C.metals-Ⅰ description of rolling texture development in homogeneous CuZn alloys[J].Acta Metall.,1988,36:2863-2882.
    [94]K GD,Krentscher B,LOcke K,et al.Texture development in a cube oriented copper single crystal.In:Brakman CM,*Brakman CM.Noordwijkerhout,Demark;1984.p 95-100116.
    [95]李虎兴.压力加工过程中的摩擦与润滑[M].北京:冶金工业出版社,1993.
    [96]Zhang XM.Enstehung und Entwicldung der Walz- und Rekristallisationstextur in Cu-Zn und Cu-P legierungen in Abhangigkeit von der Walz- und Gluhtemperatur sowie von der Ausgangskomgroβe..Aachen:RWTH-Aachen university;1987.
    [97]Bay B,N HD.Evolution of f.c.c,deformation structures in polyslip[J].Acta Metallurgica et Materialia,1992,40:205-219.
    [98]Kneynsberg HP,Verbraak CA,Ten BM.The influence of inhomogeneous rolling on the capacity of aluminium anode foil material[J].Mater.Sci.Eng.(Switzerland),1985,72(2):171-176.
    [99]Dillamore IL,Katoh H.The mechanisms of recrystallization in cubic metals with partiular reference to their orientation dependence[J].Metal Science,1974,8:73-83.
    [100]Hirsch J,Nes E,Lucke K.Rolling and recrystallization texture of directionally solidified aluminum[J].Acta Metall.,1987,28A:229-236.
    [101]Demianczuk DW,Aust KT.Effect of solute and orientation on the mobility of near-coincidence tilt boundaries in high purity aluminium[J].Acta Metallurgica,1975,23(10):1149-1162.
    [102]Belluz RV,Aust KT.Effects of solutes on prefered orientation in high purity aluminium[J].Metallurgical Transactions A(Physical Metallurgy and Materials Science),1975,6(1):219-220.
    [103]U SY,Aust KT.Development of Cube texture in dilute aluminium-tin alloys[J].Transactions of the Japan Institute of Metals,1979,20(7):388-394.
    [104]Gottstein G,Shvindlerman LS.Grain boundary migration in metals,thermodynamics,kinetics,applications[M]:CRC Press,1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700