木霉菌REMI突变株耐受Cd机理及其对油菜富集Cd影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多年来农田土壤重金属污染是我国农产品安全生产的主要威胁,因此研究生物修复农业土壤关键技术具有重要意义。木霉菌是广泛分布于植物根围的有益微生物,除具有防治土传植物病害的作用外,还发现可与植物形成共生体(symbiont)联合修复农化物质对环境的污染,具有修复土壤重金属污染的潜在价值。因此揭示木霉菌耐受重金属和与修复性植物互作的机理是构建木霉菌-植物联合修复农业土壤环境的技术基础。
     本研究是通过限制性内切酶介导整合(Restriction enzyme mediated integration,REMI)技术构建并筛选获得耐受Cd的木霉菌突变株,研究突变株耐受Cd及其对甘蓝型油菜富集Cd的影响,主要结果如下:
     以康氏木霉(Trichoderma koningii)T30为出发菌,利用REMI技术检构建了200株突变株,筛选获得10株耐受Cd突变株,与野生株(T30)相比,突变株平均耐受Cd的IC50值增加1.5~2倍。去Cd率达到23~39%,提高3~4倍。其中,突变株P6是最理想的突变株。REMI诱变技术提高了木霉菌对Cd引起的氧化胁迫效应的耐性水平。在Cd胁迫下,P6的MDA峰值小于T30,O_2~-峰值低且出现时间迟于野生株。P6的CAT被Cd胁迫诱导,活性迅速增加,4h时达峰值,增加31%。而T30仅有微小的增加。P6的SOD在4h峰值时增加45%,而T30在8h才出现峰值。P6中的GSH受Cd诱导最高增加1.6倍,T30最高增加2.3倍。
     电镜观察表明:Cd主要在P6的细胞壁和液泡内富集,REMI突变可提高木霉菌细胞膜系统抗Cd损害性。P6吸附Cd后FTIR谱图发生显著变化,胞壁羟基、羧基和蛋白残基是结合Cd的主要基团。P6菌丝体在液体中吸附Cd的过程符合准二级动力学方程(R~2=0.9938),1h基本达到吸附平衡,平衡吸附量为33.2mg/g。在18~47℃的范围内温度对吸附影响不显著。吸附量随pH增加而增加。能量抑制剂叠氮化钠仅能部分抑制吸附。
     通过质粒抢救和RACE技术从木霉菌中克隆了耐受Cd的相关基因,tkpah。该基因属于磷脂酶A2家族GVⅡ亚群(GV ⅡPLA2)。cDNA全长1,719bp,有一个65bp的内含子。同源重组敲除T30中的tkpah,Cd胁迫试验显示,敲除子菌丝和孢子对Cd耐性均有不同程度的提高,其中敲除子孢子对Cd和H2O2胁迫的耐受性增强最为明显。说明该基因可能负调控木霉菌孢子对Cd的耐受性。
     P6菌丝蛋白质组学分析表明:Cd胁迫后的菌丝蛋白质发生明显应答反应,表现为总蛋白点数明显较少,出现16个上调两倍以上蛋白点和26个特异诱导产生的蛋白点。经MALDI-TOF-TOF MS鉴定,发现多种耐Cd胁迫蛋白如热激蛋白、磷酸甘油酸变位酶、泛素蛋白连接酶等。
     盆栽试验表明:P6增强了甘蓝型油菜(沪油17和沪油20)对土壤Cd胁迫的耐受,促进油菜对土壤Cd的吸附。与CK和野生株(T30)接种处理相比,在20mgkg~(-1)Cd污染的土壤中,接种P6的沪油17地上部组织干重分别增加21%和20%,沪油20则分别增加44%和24%;在50mg kg~(-1)Cd污染的土壤中,接种P6的沪油17地上部组织干重分别增加53%和31%,沪油20则分别增加16%和17%。P6还增加了油菜地上部组织Cd浓度。与CK和T30处理相比,在20mg kg~(-1)Cd的土壤中,接种P6的沪油17地上部组织中的Cd浓度分别增加27%和13%,沪油20则分别增加8%和6%;在50mg kg~(-1)Cd的土壤中,接种P6的沪油17地上部组织中的Cd浓度分别增加35%和25%,沪油20则分别增加12%和5%。
     计算净化率。与CK和T30相比,P6可以提高沪油17对20mg kg~(-1)Cd污染土壤的净化率分别为58%和35%,沪油20净化率分别提高56%和31%;对50mg kg~(-1)Cd污染土壤,接种P6的沪油17净化率分别提高110%和68%,沪油20则分别提高30%和23%。
Numerous studies demonstrate that accumulation of heavy metals in farming soil canthreaten crop production by its toxicity to plants. Also, through the food chain, heavymetals can be further accumulated in human body and eventually cause serious healthproblems. Oilseed rape (Brassica napus), widely grown in Yangtze Delta region, wasexploited in the study for remediating Cd-contaminated soil in combination ofTrichoderma koningii. To improve oilseed rape phytoextracting efficiency by Trichoderma,restriction enzymes mediation integration (REMI) was used to construct Trichodermamutants with higher Cd resistance. Of200mutants,10mutants were shown with higherCd tolerance and ability of removing Cd from growing medium.
     Cd stress have been already ensured to result in more active oxygens released toinjury cell, even make its death. Based on our result, the insertional mutagenesis ofTrichoderma could lead to higher yield of ROS scaveging enzymes in mycelia than wildtype of Trichoderma, for instance, P6, a REMI mutant showed the higher activity of SOD、CAT and the higher amounts of GSH as compared with wild type of Trichoderma, whichthereby improve significantly its capability to alleviate damage to mycelia caused byover-accumulation of active oxygens in the presence of Cd stress. TEM photos showedthat Cd was mainly deposited in cell wall and vacuole of the mycelia of P6. the curves ofFTIR showed clearly that-OH,-COOH and protein in cell wall were responsible mainlyfor chelating Cd.
     The kinectic curve for P6mycelia uptaking Cd conform to quadratic equation,R~2=0.9938. The maximum content of absorption was33.2mg Cd per gram mycelia. The pH of solution exerted the significant influence on the absorption of Cd by mutant P6, inshort, P6myceila could improve its power in absorption of Cd from environment as theincrease of environmental pH. The energy inhibitor NaN3was not able completely toinhibit the absorption of Cd.
     A tkpah gene encoding a protein homologous to platelet activating factoracetylhydrolase isoform II [PAF-AH (II)], a member of phospholiapase A2family, wascloned by plasmid rescue from a REMI mutant strain P6of Trichoderam koningii.Thegene contained a short intron of65bp and an open reading frame of1,719bp. Thededuced amino acid sequence comprises the potential conserved GHSFG motif andcatalytic triad (Ser-272, Asp-323, His-414). Tkpah expressed in E. coli showed PAF-AHactivity. tkpah gene expression was weaker in spores than in mycelia, and wasconstitutively expressed during growth in PD media. The expressions were induced bynitrogen or carbon supplementation to minimal media and suppressed after12h treatmentwith Cd. The conidia of deletion mutants of tkpah displayed an enhanced resistance toH2O2and Cd stress, thus we inferred that the gene regulate mycelial tolerance to Cd innegative way.
     By2DE analysis, we found that numbers of protein spots of P6mycelia remarkablydecreased from330to255after4h Cd treatment. Among the differential spots,26spotswere identified as unique ones, and16spots were up-regulated. MALDI-TOF-TOF MSsuccessfully identified9spots which comprised14-3-3-like protein, phosphoglycero-mutase, HSP70etc.
     In pot experiment of Cd-contaminated soil, mutant P6could significantly alleviatethe negative impacts of Cd on oilseed rape (Hu17and Hu20) growth, and then improvethe Cd uptake of oilseed rape plant. At Cd-contaminated soil of20mg kg~(-1)the removal rateof Cd of Hu17combinated with P6were increased by58%and35%respectively,compared to wild type Trichoderma treatment and non-inoculated treatment(CK).Similarly the figures were56%and31%respectively for Hu20-P6combination. At Cd-contaminated soil of50mg kg~(-1), the removal rate of Cd was increased by110%and68%by Hu17-P6combination respectively, and by30%and23%respectively by Hu20-P6combination. The results suggested the Trichoderma mutant-oilseed rape symbiosissystem can be used in remediation of soil contaminated with heavy metal Cd.
引文
[1].冯海艳,刘茵,冯固,等.,接种AM真菌对黑麦草吸收和分配Cd的影响[J].农业环境科学学报,2005,24(003),pp426-431.
    [2].胡小玲,张瑰,陈剑刚,等.,珠海市蔬菜重金属污染的调查研究[J].中国卫生检验杂志,2006,16(008),pp980-981.
    [3].和苗苗,梁新强,田光明,去除污泥中重金属的研究进展[J].农机化研究,2007,05pp100-104.
    [4].苏德纯,黄焕忠,油菜作为超积累植物修复镉污染土壤的潜力[J].中国环境科学,2002,22(1),pp34-38.
    [5]. Pilon-Smits, E., Phytoremediation[J]. Annual Review of Plant Biology,2005,56pp15-39.
    [6]. Baker, A.,Brooks, R., Terrestrial higher plants which hyperaccumulate metallic elements. Areview of their distribution, ecology and phytochemistry.[J]. Biorecovery,1989,1pp81-126.
    [7]. Baker, A. J. M.,Mcgrath, S. P.,C, M. D. S., etc., The possibility of in situ heavy metaldecontamination of polluted soils using crops of metal-accumulating plants[J]. Environmentalbiotechnology in waste treatment and recycling. International conference, Hong Kong,1994,11pp41-49.
    [8].陈同斌,韦朝阳,黄泽春,等.,砷超富集植物蜈蚣草及其对砷的富集特征[J].科学通报,2002,47(3),pp207-210.
    [9].杨肖娥,龙新宪,倪吾钟,等.,东京南天(Sdeum alfredii H)-一种新的新超积累植物[J].科学通报,2002,47(13),pp1003-1006.
    [10].韦朝阳,陈同斌,大叶井边草-一种新发现的富集砷的植物[J].生态学报,2002,1(22),pp234-237.
    [11].薛生国,陈英旭,林琦,等.,中国首次发现的锰超积累植物-商陆[J].生态学报,2003,23(5),pp100-104.
    [12].刘威,束文圣,蓝崇钰,宝山堇菜(Viola baoshanensis)-一种新的镉超积累富集植物[J].科学通报,2003,48(19),pp2046-2049.
    [13].魏树和,周启星,王新,超积累植物龙葵及其对镉的富集特征[J].环境科学,2005,26(5),pp120-123.
    [14]. Hernández-Allica, J.,Becerril, J. M.,Garbisu, C., Assessment of the phytoextraction potentialof high biomass crop plants[J]. Environmental Pollution,2008,152(1),pp32-40.
    [15]. Kumar, P.,Dushenkov, V.,Motto, H., etc., Phytoextraction: The Use of Plants To RemoveHeavy Metals from Soils[J]. Environmental Science&Technology,1995,29(5),pp1232-1238.
    [16].王激清,茹淑华,苏德纯,等.,用于修复土壤超积累镉的油菜品种筛选[J].中国农业大学学报,2003,8(1),pp67-70.
    [17]. Sar, P.,K. Kazy, S.,D'Souza, S. F., Radionuclide remediation using a bacterial biosorbent[J].International Biodeterioration&Biodegradation,2004,54(2-3),pp193-202.
    [18].曹德菊,程培,3种微生物对Cu Cd生物吸附效应的研究[J].农业环境科学学报,2004,23(003),pp471-474.
    [19]. Patterson, J. W.,Passino, R., Metals speciation, separation, and recovery[M]. CRC Press:1990.
    [20].张素芹,重金属在根圈环境的迁移动态及根际效应[J].北京师范大学学报(自然科学版),1992,28(增刊):120-125.
    [21]. Krantz-Rülcker, C.,Allard, B.,Schnürer, J., Adsorption of IIB-metals by three common soilfungi comparison and assessment of importance for metal distribution in natural soil systems[J]. SoilBiology and Biochemistry,1996,28(7),pp967-975.
    [22].沈薇,杨树林,李校堃,等.,木霉(Trichoderma sp.)HR-1活细胞吸附Pb(Ⅱ)的机理[J].中国环境科学,2006,26(1),pp101-105.
    [23]. Anand, P.,Isar, J.,Saran, S., etc., Bioaccumulation of copper by Trichoderma viride[J].Bioresource Technology,2006,97(8),pp1018-1025.
    [24]. Zafar, S.,Aqil, F.,Ahmad, I., Metal tolerance and biosorption potential of filamentous fungiisolated from metal contaminated agricultural soil[J]. Bioresource Technology,2007,98(13),pp2557-2561.
    [25]. Smith, S. E.,Read, D. J., Mycorrhizal Symbiosis[M]. Academic Press:2008.
    [26]. Guo, Y.,George, E.,Marschner, H., Contribution of an arbuscular mycorrhizal fungus to theuptake of cadmium and nickel in bean and maize plants[J]. Plant and Soil,1996,184(2),pp195-205.
    [27]. Citterio, S.,Prato, N.,Fumagalli, P., etc., The arbuscular mycorrhizal fungus Glomus mosseaeinduces growth and metal accumulation changes in Cannabis sativa L[J]. Chemosphere,2005,59(1),pp21-29.
    [28].黄艺,李婷,费颖恒,外生菌根真菌对油松幼苗根际土壤重金属赋存的影响[J].生态与农村环境学报,2007,23(3).pp70-76
    [29]. Leyval, C.,Turnau, K.,Haselwandter, K., Effect of heavy metal pollution on mycorrhizalcolonization and function: physiological, ecological and applied aspects[J]. Mycorrhiza,1997,7(3),pp139-153.
    [30]. Heggo, A.,Angle, J. S.,Chaney, R. L., Effects of vesicular-arbuscular mycorrhizal fungi onheavy metal uptake by soybeans[J]. Soil Biology and Biochemistry,1990,22(6),pp865-869.
    [31].陈保冬,丛枝菌根减轻宿主植物锌镉毒害机理研究.北京:中国农业大学,2002
    [32]. Gamalero, E.,Trotta, A.,Massa, N., etc., Impact of two fluorescent pseudomonads and anarbuscular mycorrhizal fungus on tomato plant growth, root architecture and P acquisition[J].Mycorrhiza,2004,14(3),pp185-192.
    [33]. Piotrowski, J. S.,Denich, T.,Klironomos, J. N., etc., The effects of arbuscular mycorrhizas onsoil aggregation depend on the interaction between plant and fungal species[J]. New Phytologist,2004,164(2),pp365-373.
    [34]. Rillig, M. C.,Steinberg, P. D., Glomalin production by an arbuscular mycorrhizal fungus: amechanism of habitat modification?[J]. Soil Biology and Biochemistry,2002,34(9),pp1371-1374.
    [35]. Augé, R. M., Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis[J].Mycorrhiza,2001,11(1),pp3-42.
    [36]. Feng, G.,Song, Y. C.,Li, X. L., etc., Contribution of arbuscular mycorrhizal fungi toutilization of organic sources of phosphorus by red clover in a calcareous soil[J]. Applied Soil Ecology,2003,22(2),pp139-148.
    [37]. Taylor, J.,Harrier, L. A., A comparison of development and mineral nutrition ofmicropropagated Fragaria×ananassa cv. Elvira (strawberry) when colonised by nine species ofarbuscular mycorrhizal fungi[J]. Applied Soil Ecology,2001,18(3),pp205-215.
    [38]. Dodd, J. C.,Burton, C. C.,Burns, R. G., etc., Phosphatase activity associated with the rootsand the rhizosphere of plants infected with vesicular-arbuscular mycorrhizal fungi[J]. New Phytologist,1987,107(1),pp163-172.
    [39].胡江春,薛德林,马成新,等.,植物根际促生菌(PGPR)的研究与应用前景[J].应用生态学报,2004,15(10),pp1963-1966.
    [40]. Egamberdiyeva, D.,H?flich, G., Effect of plant growth-promoting bacteria on growth andnutrient uptake of cotton and pea in a semi-arid region of Uzbekistan[J]. Journal of Arid Environments,2004,56(2),pp293-301.
    [41]. Lasat, M. M., Phytoextraction of Toxic Metals A Review of Biological Mechanisms. In AmSoc Agronom:2002; Vol.31, pp109-120.
    [42]. Burd, G. I.,Dixon, D. G.,Glick, B. R., Plant growth-promoting bacteria that decrease heavymetal toxicity in plants[J]. Canadian Journal of Microbiology,2000,46(3),pp237-245.
    [43]. Madhaiyan, M.,Poonguzhali, S.,Sa, T., Metal tolerating methylotrophic bacteria reducesnickel and cadmium toxicity and promotes plant growth of tomato (Lycopersicon esculentum L.)[J].Chemosphere,2007,69(2),pp220-228.
    [44]. Dell’Amico, E.,Cavalca, L.,Andreoni, V., Improvement of Brassica napus growth undercadmium stress by cadmium-resistant rhizobacteria[J]. Soil Biology and Biochemistry,2008,40(1), pp74-84.
    [45]. Harman, G. E.,Howell, C. R.,Viterbo, A., etc., Trichoderma species-opportunistic, avirulentplant symbionts[J]. Nature Reviews Microbiology,2004,2(1),pp43-56.
    [46]. Adams, P.,De-Leij, F.,Lynch, J. M., Trichoderma harzianum Rifai1295-22Mediates GrowthPromotion of Crack Willow (Salix fragilis) Saplings in Both Clean and Metal-Contaminated Soil[J].Microbial Ecology,2007,54(2),pp306-313.
    [47]. Cao, L.,Jiang, M.,Zeng, Z., etc., Trichoderma atroviride F6improves phytoextractionefficiency of mustard (Brassica juncea (L.) Coss. var. foliosa Bailey) in Cd, Ni contaminated soils[J].Chemosphere,2008,71(9),pp1769-1773.
    [48]. Ebbs, S.,Bushey, J.,Poston, S., etc., Transport and metabolism of free cyanide and ironcyanidecomplexes by willow[J]. Plant, Cell&Environment,2003,26(9),pp1467-1478.
    [49]. Koomen, I.,McGrath, S. P.,Giller, K. E., Mycorrhizal infection of clover is delayed in soilscontaminated with heavy metals from past sewage sludge applications[J]. Soil Biology andBiochemistry,1990,22(6),pp871-873.
    [50]. Hildebrandt, U.,Kaldorf, M.,Bothe, H., The zinc violet and its colonization by arbuscularmycorrhizal fungi[J]. Journal of plant physiology,1999,154(5-6),pp709-717.
    [51]. Tonin, C.,Vandenkoornhuyse, P.,Joner, E. J., etc., Assessment of arbuscular mycorrhizalfungi diversity in the rhizosphere of Viola calaminaria and effect of these fungi on heavy metal uptakeby clover[J]. Mycorrhiza,2001,10(4),pp161-168.
    [52]. Sheng, X. F.,Xia, J. J., Improvement of rape (Brassica napus) plant growth and cadmiumuptake by cadmium-resistant bacteria[J]. Chemosphere,2006,64(6),pp1036-1042.
    [53]. Weissenhorn, I.,Leyval, C.,Berthelin, J., Cd-tolerant arbuscular mycorrhizal (AM) fungi fromheavy-metal polluted soils[J]. Plant and Soil,1993,157(2),pp247-256.
    [54]. Wu, C. H.,Wood, T. K.,Mulchandani, A., etc., Engineering Plant-Microbe Symbiosis forRhizoremediation of Heavy Metals[J]. Applied and Environmental Microbiology,2006,72(2),pp1129-1134.
    [55]. Ike, A.,Sriprang, R.,Ono, H., etc., Bioremediation of cadmium contaminated soil usingsymbiosis between leguminous plant and recombinant rhizobia with the MTL4and the PCS genes[J].Chemosphere,2007,66(9),pp1670-1676.
    [56]. Gadd, G. M., Tansley Review No.47: Interactions of fungi with toxic metals[J]. NewPhytologist,1993,124(1),pp25-60.
    [57]. Cumming, J. R.,Swiger, T. D.,Kurnik, B. S., etc., Organic acid exudation by Laccaria bicolorand Pisolithus tinctorius exposed to aluminum in vitro[J]. Can. J. For. Res,2001,31pp703-710.
    [58]. Ahonen-Jonnarth, U.,Van Hees, P. A. W.,Lundstrom, U. S., etc., Organic acids produced bymycorrhizal Pinus sylvestris exposed to elevated aluminium and heavy metal concentrations[J]. NewPhytologist,2000,146(3),pp557-567.
    [59].张琴,汞、镉对外生菌根真菌生长、分泌作用和养分吸收的影响.2003.硕士论文:37~38,
    [60]. Bellion, M.,Courbot, M.,Jacob, C., etc., Extracellular and cellular mechanisms sustainingmetal tolerance in ectomycorrhizal fungi[J]. FEMS Microbiology Letters,2006,254(2),pp173-181.
    [61]. Meharg, A. A., The mechanistic basis of interactions between mycorrhizal associations andtoxic metal cations[J]. Mycological Research,2003,107(11),pp1253-1265.
    [62].Wright, S. F.,Upadhyaya, A., A survey of soils for aggregate stability and glomalin, aglycoprotein produced by hyphae of arbuscular mycorrhizal fungi[J]. Plant and Soil,1998,198(1),pp97-107.
    [63]. González-Chávez, M. C.,Carrillo-González, R.,Wright, S. F., etc., The role of glomalin, aprotein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements[J].Environmental Pollution,2004,130(3),pp317-323.
    [64]. Hughes, M. N.,Poole, R. K., Metal speciation and microbial growth--the hard(and soft)facts[J]. Microbiology,1991,137(4),pp725-734.
    [65]. Jacob, C.,Courbot, M.,Martin, F., etc., Transcriptomic responses to cadmium in theectomycorrhizal fungus Paxillus involutus[J]. FEBS Letters,2004,576(3),pp423-427.
    [66]. Bhanoori, M.,Venkateswerlu, G., In vivo chitin–cadmium complexation in cell wall ofNeurospora crassa[J]. BBA-General Subjects,2000,1523(1),pp21-28.
    [67]. Hart, J. J.,Welch, R. M.,Norvell, W. A., etc., Characterization of Cadmium Binding, Uptake,and Translocation in Intact Seedlings of Bread and Durum Wheat Cultivars[J]. Plant Physiology,1998,116(4),pp1413-1420.
    [68]. Blaudez, D.,Botton, B.,Chalot, M., Cadmium uptake and subcellular compartmentation in theectomycorrhizal fungus Paxillus involutus. In Soc General Microbiol:2000; Vol.146, pp1109-1117.
    [69].Ting, Y. P.,Teo, W. K., Uptake of cadmium and zinc by yeast: effects of co-metal ion andphysical/chemical treatments[J]. Bioresource Technology,1994,50(2),pp113-117
    [70]. Fogarty, R. V.,Tobin, J. M., Fungal melanins and their interactions with metals[J]. Enzymeand Microbial Technology,1996,19(4),pp311-317.
    [71].Turnau, K.,Kottke, I.,Dexheimer, J., etc., Element Distribution in Mycelium of Pisolithusarrhizus Treated with Cadmium Dust[J]. Annals of Botany,1994,74(2),p137.
    [72]. Newby, P. J.,Gadd, G. M., Diffusion assays for determination of the effects of pH on thetoxicity of heavy metal compounds towards filamentous fungi[J]. Environ. Technol. Lett.,1986,7(7),pp391-396.
    [73]. Cataldo, D. A.,Garland, T. R.,Wildung, R. E., Cadmium Uptake Kinetics in Intact SoybeanPlants1[J]. Plant Physiology,1983,73(3),pp844-848.
    [74]. Costa, G.,Morel, J. L., Cadmium Uptake by Lupinus albus (L.): Cadmium Excretion, aPossible Mechanism of Cadmium Tolerance[J]. Journal of plant Nutrition,1993,16pp1921-1921.
    [75]. Gomes, D. S.,Fragoso, L. C.,Riger, C. J., etc., Regulation of cadmium uptake bySaccharomyces cerevisiae[J]. BBA-General Subjects,2002,1573(1),pp21-25.
    [76]. Zhao, H.,Eide, D., The yeast ZRT1gene encodes the zinc transporter protein of ahigh-affinity uptake system induced by zinc limitation. In National Acad Sciences:1996; Vol.93, pp2454-2458.
    [77]. Gitan, R. S.,Shababi, M.,Kramer, M., etc., A Cytosolic Domain of the Yeast Zrt1ZincTransporter Is Required for Its Post-translational Inactivation in Response to Zinc and Cadmium*[J].Journal of Biological Chemistry,2003,278(41),pp39558-39564.
    [78]. Supek, F.,Supekova, L.,Nelson, H., etc., A yeast manganese transporter related to themacrophage protein involved in conferring resistance to mycobacteria. In National Acad Sciences:1996;Vol.93, pp5105-5110.
    [79]. Liu, Y. G.,Whittier, R. F., Thermal asymmetric interlaced PCR: automatable amplificationand sequencing of insert end fragments from P1and YAC clones for chromosome walking[J].Genomics,1995,25(3),pp674-681.
    [80]. Minney, S. F.,Quirk, A. V., Growth and adaptation of Saccharomyces cerevisiae at differentcadmium concentrations[J]. Microbios,1985,42(167),pp37-44.
    [81]. Dix, D.,Bridgham, J.,Broderius, M., etc., Characterization of the FET4Protein of Yeastevidence for a direct role in the transport of iron[J]. Journal of Biological Chemistry,1997,272(18),pp1770-11777.
    [82]. Li, L.,Kaplan, J., Defects in the Yeast High Affinity Iron Transport System Result inIncreased Metal Sensitivity because of the Increased Expression of Transporters with a BroadTransition Metal Specificity[J]. Journal of Biological Chemistry,1998,273(35),pp22181-22187.
    [83]. Waters, B. M.,Eide, D. J., Combinatorial Control of Yeast FET4Gene Expression by Iron,Zinc, and Oxygen[J]. Journal of Biological Chemistry,2002,277(37),pp33749-33757.
    [84]. Clemens, S.,Kim, E. J.,Neumann, D., etc., Tolerance to toxic metals by a gene family ofphytochelatin synthases from plants and yeast[J]. The EMBO Journal,1999,18pp3325-3333.
    [85]. Bobrowicz, P.,Wysocki, R.,Owsianik, G., etc., Isolation of three contiguous genes, ACR1,ACR2and ACR3, involved in resistance to arsenic compounds in the yeast Saccharomycescerevisiae[J]. Yeast,1997,13(9),pp819-28.
    [86]. Pinson, B.,Sagot, I.,Daignan-Fornier, B., Identification of genes affecting selenite toxicityand resistance in Saccharomyces cerevisiae[J]. Molecular Microbiology,2000,36(3),pp679-687.
    [87]. Park, H. S.,Park, E.,Kim, M. S., etc., Selenite Inhibits the c-Jun N-terminalKinase/Stress-activated Protein Kinase (JNK/SAPK) through a Thiol Redox Mechanism[J]. Journal ofBiological Chemistry,2000,275(4),pp2527-2531.
    [88]. Shiraishi, E.,Inouhe, M.,Joho, M., etc., The cadmium-resistant gene, CAD2, which is amutated putative copper-transporter gene (PCA1), controls the intracellular cadmium-level in the yeastS. cerevisiae[J]. Current Genetics,2000,37(2),pp79-86.
    [89]. Wemmie, J. A.,Szczypka, M. S.,Thiele, D. J., etc., Cadmium tolerance mediated by the yeastAP-1protein requires the presence of an ATP-binding cassette transporter-encoding gene, YCF1[J].Journal of Biological Chemistry,1994,269(51),pp32592-32597.
    [90]. Li, Z. S.,Szczypka, M.,Lu, Y. P., etc., The Yeast Cadmium Factor Protein (YCF1) Is aVacuolar Glutathione S-Conjugate Pump[J]. Journal of Biological Chemistry,1996,271(11),p6509.
    [91]. Li, Z. S.,Lu, Y. P.,Zhen, R. G., etc., A new pathway for vacuolar cadmium sequestration inSaccharomyces cerevisiae: YCF1-catalyzed transport of bis (glutathionato) cadmium[J]. Progress InNational Acad Sciences:1997; Vol.94, pp42-47.
    [92]. Eraso, P.,Martnez-Burgos, M.,Falcón-Pérez, J. M., etc., Ycf1-dependent cadmiumdetoxification by yeast requires phosphorylation of residues Ser908and Thr911[J]. FEBS Letters,2004,577(3),pp322-326.
    [93]. Mason, D. L.,Mallampalli, M. P.,Huyer, G., etc., A Region within a Lumenal Loop ofSaccharomyces cerevisiae Ycf1p Directs Proteolytic Processing and Substrate Specificity[J].Eukaryotic Cell,2003,2(3),pp588-598.
    [94]. Decottignies, A.,Grant, A. M.,Nichols, J. W., etc., ATPase and Multidrug TransportActivities of the Overexpressed Yeast ABC Protein Yor1p[J]. Journal of Biological Chemistry,1998,273(20),pp12612-12622.
    [95]. Klein, M.,Mamnun, Y. M.,Eggmann, T., etc., The ATP-binding cassette (ABC) transporterBpt1p mediates vacuolar sequestration of glutathione conjugates in yeast[J]. FEBS Letters,2002,520(1-3),pp63-67.
    [96]. Cui, Z.,Hirata, D.,Tsuchiya, E., etc., The Multidrug Resistance-associated Protein (MRP)Subfamily (Yrs1/Yor1) of Saccharomyces cerevisiae Is Important for the Tolerance to a Broad Rangeof Organic Anions[J]. Journal of Biological Chemistry,1996,271(25),p14712.
    [97]. Decottignies, A.,Goffeau, A., Complete inventory of the yeast ABC proteins[J]. NatureGenetics,1997,15(2),pp137-145.
    [98]. Katzmann, D. J.,Epping, E. A.,Moye-Rowley, W. S., Mutational Disruption of PlasmaMembrane Trafficking of Saccharomyces cerevisiae Yor1p, a Homologue of Mammalian MultidrugResistance Protein[J]. Molecular and Cellular Biology,1999,19(4),pp2998-3009.
    [99]. Ortiz, D. F.,Ruscitti, T.,McCue, K. F., etc., Transport of Metal-binding Peptides by HMT1, AFission Yeast ABC-type Vacuolar Membrane Protein[J]. Journal of Biological Chemistry,1995,270(9),p4721.
    [100].Vande Weghe, J. G.,Ow, D. W., Accumulation of metal-binding peptides in fission yeastrequires hmt2+[J]. Molecular Microbiology,2001,42(1),pp29-36.
    [101]. Paulsen, I. T., A Novel Family of Ubiquitous Heavy Metal Ion Transport Proteins[J].Journal of Membrane Biology,1997,156(2),pp99-103.
    [102]. MacDiarmid, C. W.,Milanick, M. A.,Eide, D. J., Biochemical Properties of Vacuolar ZincTransport Systems of Saccharomyces cerevisiae[J]. Journal of Biological Chemistry,2002,277(42),pp39187-39194.
    [103]. Winge, D. R.,Nielson, K. B.,Gray, W. R., etc., Yeast metallothionein. Sequence andmetal-binding properties[J]. Journal of Biological Chemistry,1985,260(27),pp14464-14470.
    [104]. Vido, K.,Spector, D.,Lagniel, G., etc., A Proteome Analysis of the Cadmium Response inSaccharomyces cerevisiae[J]. Journal of Biological Chemistry,2001,276(11),pp8469-8474.
    [105]. Morselt, A. F. W.,Smits, W. T. M.,Limonard, T., Histochemical demonstration of heavymetal tolerance in ectomycorrhizal fungi[J]. Plant and Soil,1986,96(3),pp417-420.
    [106]. Lanfranco, L.,Bolchi, A.,Ros, E. C., etc., Differential Expression of a Metallothionein Geneduring the Presymbiotic versus the Symbiotic Phase of an Arbuscular Mycorrhizal Fungus[J]. PlantPhysiology,2002,130(1),pp58-67.
    [107]. Maitani, T.,Kubota, H.,Sato, K., etc., The Composition of Metals Bound to Class IIIMetallothionein (Phytochelatin and Its Desglycyl Peptide) Induced by Various Metals in Root Culturesof Rubia tinctorum[J]. In Am Soc Plant Biol:1996; Vol.110, pp1145-1150.
    [108]. Schmoger, M. E. V.,Oven, M.,Grill, E., Detoxification of Arsenic by Phytochelatins inPlants[J]. Plant Physiology,2000,122(3),pp793-802.
    [109]. Cobbett, C. S., Phytochelatins and Their Roles in Heavy Metal Detoxification[J]. In AmSoc Plant Biol:2000; Vol.123, pp825-832.
    [110]. Ha, S. B.,Smith, A. P.,Howden, R., etc., Phytochelatin Synthase Genes from Arabidopsisand the Yeast Schizosaccharomyces pombe[J]. The Plant Cell Online,1999,11(6),pp1153-1164.
    [111]. Clemens, S.,Antosiewicz, D. M.,Ward, J. M., etc., The plant cDNA LCT1mediates theuptake of calcium and cadmium in yeast[J]. Progress In National Acad Sciences:1998; Vol.95, pp12043-12048.
    [112]. Zhou, J.,Goldsbrough, P. B., Structure, organization and expression of the metallothioneingene family in Arabidopsis[J]. Molecular and General Genetics,1995,248(3),pp318-328.
    [113]. Jaeckel, P.,Krauss, G.,Menge, S., etc., Cadmium induces a novel metallothionein andphytochelatin2in an aquatic fungus[J]. Biochemical and Biophysical Research Communications,2005,333(1),pp150-155.
    [114]. Courbot, M.,Diez, L.,Ruotolo, R., etc., Cadmium-Responsive Thiols in the EctomycorrhizalFungus Paxillus involutus[J]. Applied and Environmental Microbiology,2004,70(12),pp7413-7417.
    [115]. Momose, Y.,Iwahashi, H., Bioassay of cadmium using a DNA Microarray: genome wideexpression patterns of Saccharomyces cerevisiae response to cadmium[J]. Environmental Toxicologyand Chemistry,2001,20(10),pp2353-2360.
    [116]. Georg, R. C.,Gomes, S. L., Transcriptome Analysis in Response to Heat Shock andCadmium in the Aquatic Fungus Blastocladiella emersoni[J]. Eukaryotic Cell,2007,6(6),pp1053-1062.
    [117]. Guelfi, A.,Azevedo, R. A.,Lea, P. J., etc., Growth inhibition of the filamentous fungusAspergillus nidulans by cadmium: an antioxidant enzyme approach[J]. The Journal of General andApplied Microbiology,2003,49(2),pp63-73.
    [118]. Harshman, K. D.,Moye-Rowley, W. S.,Parker, C. S., Transcriptional activation by the SV40AP-1recognition element in yeast is mediated by a factor similar to AP-1that is distinct from GCN4[J].Cell,1988,53(2),pp321-330.
    [119]. Morgan, B. A.,Banks, G. R.,Toone, W. M., etc., The Skn7response regulator controls geneexpression in the oxidative stress response of the budding yeast Saccharomyces cerevisiae[J]. TheEMBO Journal,1997,16pp1035-1044.
    [120]. Lee, J.,Godon, C.,Lagniel, G., etc., Yap1and Skn7Control Two Specialized OxidativeStress Response Regulons in Yeast[J]. Journal of Biological Chemistry,1999,274(23),pp16040-16046.
    [121]. Howlett, N. G.,Avery, S. V., Induction of lipid peroxidation during heavy metal stress inSaccharomyces cerevisiae and influence of plasma membrane fatty acid unsaturation[J]. Applied andEnvironmental Microbiology,1997,63(8),pp2971-2976.
    [122]. Avery, A. M.,Avery, S. V., Saccharomyces cerevisiae Expresses Three PhospholipidHydroperoxide Glutathione Peroxidases[J]. Journal of Biological Chemistry,2001,276(36),pp33730-33735.
    [123]. Jin, Y. H.,Dunlap, P. E.,McBride, S. J., etc., Global Transcriptome and Deletome Profiles ofYeast Exposed to Transition Metals[J]. PLoS Genetics,2008,4(4).
    [124]. Yaver, D. S.,Lamsa, M.,Munds, R., etc., Using DNA-tagged mutagenesis to improveheterologous protein production in Aspergillus oryzae[J]. Fungal Genetics and Biology,2000,29(1),pp28-37.
    [125]. Zhou, X.,Xu, S.,Liu, L., etc., Degradation of cyanide by Trichoderma mutants constructedby restriction enzyme mediated integration (REMI)[J]. Bioresource Technology,2007,98(15),pp2958-2962.
    [126]. Tang, J.,Liu, L.,Hu, S., etc., Improved degradation of organophosphate dichlorvos byTrichoderma atroviride transformants generated by restriction enzyme-mediated integration (REMI)[J].Bioresource Technology,2009,100(1),pp480-483.
    [127].李薇,王兵,陈云鹏.,等.,抑制稗草生长的木霉菌REMI转化子构建与功能初探[J].安徽农业科学,2007,35(021),pp6473-6475.
    [128]. Paradkar, R. P.,Williams, R. R., Micellar colorimetric determination of dithizone metalchelates[J]. Analytical Chemistry,1994,66(17),pp2752-2756.
    [129].曹玉桃,姚革,文成敬, etc.,木霉拮抗黄瓜枯萎病菌菌株的筛选[J].西南农业学报,2007,54, pp3-5.
    [130]. López Errasquin, E.,Vazquez, C., Tolerance and uptake of heavy metals by Trichodermaatroviride isolated from sludge[J]. Chemosphere,2003,50(1),pp137-143.
    [131].汤章城,现代植物生理学实验指南[J].北京:科学出版社,1999,127-405.
    [132].陈建勋,王晓峰,植物生理学实验指导[J].广州:华南理工大学出版社,2002,2pp20-121.
    [133].郜瑞莹,陈灿,王建龙,酿酒酵母吸附Zn2+和Cd2+的动力学[J].清华大学学报:自然科学版,2007,47(006),pp897-900.
    [134]. Thon, M. R.,Nuckles, E. M.,Vaillancourt, L. J., Research-Restriction Enzyme-MediatedIntegration Used to Produce Pathogenicity Mutants of Colletotrichum graminicola[J]. Molecular PlantMicrobe Interactions,2000,13(12),pp1355-1364.
    [135]. Sambrook, J.,Russell, D. W., Molecular Cloning: A Laboratory Manual[M]. CSHL Press:2001.
    [136]. Jeanmougin, F.,Thompson, J. D.,Gouy, M., etc., Multiple sequence alignment with ClustalX[J]. Trends in Biochemical Sciences,1998,23(10),pp403-405.
    [137]. Felsenstein, J., PHYLIP (Phylogeny Inference Package)[J]. Cladistics,1989,5(version3.2),pp164-166.
    [138]. Maor, R.,Puyesky, M.,Horwitz, B. A., etc., Use of green fluorescent protein (GFP) forstudying development and fungal-plant interaction in Cochliobolus heterostrophus[J]. MycologicalResearch,1998,102(04),pp491-496.
    [139]. Schaloske, R. H.,Dennis, E. A., The phospholipase A2superfamily and its group numberingsystem[J]. Molecular and Cell Biology of Lipids,2006,1761(11),pp1246-1259
    [140]. Matsuzawa, A.,Hattori, K.,Aoki, J., etc., Protection against Oxidative Stress-induced CellDeath by Intracellular Platelet-activating Factor-Acetylhydrolase II[J]. Journal of Biological Chemistry,1997,272(51),pp32315-32320.
    [141]. Chambers, A.,Packham, E. A.,Graham, I. R., Control of glycolytic gene expression in thebudding yeast (Saccharomyces cerevisiae)[J]. Current Genetics,1995,29(1),pp1-9.
    [142]. Mai, B.,Breeden, L., Xbp1, a stress-induced transcriptional repressor of the Saccharomycescerevisiae Swi4/Mbp1family[J]. Molecular and Cellular Biology,1997,17(11),pp6491-6501.
    [143]. Vithalani, K., Sho ner J, DeLozanne A., Isolation and characterization of a novelcytokinesis deficient mutant in Dictyostelium discoideum[J]. J Cell Biochem,1996,62pp290-301.
    [144]. Inoue, T.,Sugimoto, A.,Suzuki, Y., etc., Type II platelet-activating factor-acetylhydrolase isessential for epithelial morphogenesis in Caenorhabditis elegans[J]. Proceedings of the NationalAcademy of Sciences,2004,101(36), pp13233-13238.
    [145]. Foulks, J. M.,Weyrich, A. S.,Zimmerman, G. A., etc., A yeast PAF acetylhydrolaseortholog suppresses oxidative death[J]. Free Radical Biology and Medicine,2008,45(4),pp434-442.
    [146]. Kono N, Inoue T, Yoshida Y, etcl., Protection against oxidative stress-induced hepaticinjury by intracellular type II platelet-activating factor acetylhydrolase by metabolism of oxidizedphospholipids in vivo[J]. Journal of Biological Chemistry,2008, pp283-1628.
    [147].钱小红,贺福初,蛋白质组学:理论与方法.科学出版社,2003.
    [148].罗金学,喜温硫杆菌蛋白质组学研究技术建立及抗砷机制初步探讨.山东,山东大学,2005.
    [149]. Vido, K.,Spector, D.,Lagniel, G., etc., A proteome analysis of the cadmium response inSaccharomyces cerevisiae[J]. Journal of Biological Chemistry,2001,276(11),pp8469-8474.
    [150]. Gillet, S.,Decottignies, P.,Chardonnet, S., etc., Cadmium response and redoxin targets inChlamydomonas reinhardtii: a proteomic approach[J]. Photosynthesis Research,2006,89(2),pp201-211.
    [151].文彬,王小菁,14-3-3蛋白研究进展[J].生命科学,2004,16(004),pp226-230.
    [152]. Ichimura, T.,Kubota, H.,Goma, T., etc., Transcriptomic and Proteomic Analysis of a14-3-3Gene-Deficient Yeast[J]. Biochemistry,2004,43(20),pp6149-6158.
    [153]. Kieffer, P.,Planchon, S.,Oufir, M., etc., Combining Proteomics and Metabolite Analyses ToUnravel Cadmium Stress-Response in Poplar Leaves[J]. J. Proteome Res,2009,8(1),pp400-417.
    [154].贺亚军,郭旺珍,张天真,棉花6个小分子质量热激蛋白基因的序列,表达与定位[J].作物学报,2008,34(009),pp1574-1580.
    [155]. Hopkins, M. T.,Lampi, Y.,Wang, T. W., etc., Eukaryotic Translation Initiation Factor5A IsInvolved in Pathogen-Induced Cell Death and Development of Disease Symptoms in Arabidopsis[J].Plant Physiology,2008,148(1),p479.
    [156]. Jeon, H. K.,Jin, H. S.,Lee, D. H., etc., Proteome analysis associated with cadmiumadaptation in U937cells: identification of calbindin-D28k as a secondary cadmium-responsive proteinthat confers resistance to cadmium-induced apoptosis[J]. Journal of Biological Chemistry,2004,279(30),p31575.
    [157]. Ezzi, M. I.,Lynch, J. M., Cyanide catabolizing enzymes in Trichoderma spp[J]. Enzyme andMicrobial Technology,2002,31(7),pp1042-1047.
    [158].高永东,王兵,刘力行,等.,木霉菌及其REMI突变株与油菜联合吸附镉污染土壤研究[J].现代农业科技,2008,(020),pp161-162.
    [159]. Hernández-Allica, J.,Becerril, J. M.,Garbisu, C., Assessment of the phytoextractionpotential of high biomass crop plants[J]. Environmental Pollution,2008,152(1),pp32-40.
    [160]. Adams, P.,Lynch, J. M.,De Leij, F., Desorption of zinc by extracellularly producedmetabolites of Trichoderma harzianum, Trichoderma reesei and Coriolus versicolor[J]. Journal ofApplied Microbiology,2007,103(6),pp2240-2247.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700