三种水生植物对富营养化水体的净化效应及其影响因子研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,水体富营养化已成为一个世界性难题,如何治理富营养化水体成为科学界研究的热点问题。生态方法由于其无污染,成本低,正受到越来越多的科研工作者青睐。生态方法对富营养化水体中氮磷的去除效果研究主要集中在大型水生植物以及单一影响因子,但对植物的净化效率,生长特性,环境影响因子的系统研究还少见报道。本文从上述几方面系统研究了三种水生植物喜旱莲子草、穗状狐尾藻、黄花水龙等的修复效果,生长特性,影响因子,以期为各植物更科学的应用于富营养化水体的修复提供理论依据。本研究所取得的主要结论如下:
     1.试验确定了穗状狐尾藻氮、磷阈值范围为:N:0.05-0.1mg/L;P:0.01-0.02mg/L;黄花水龙:N:0.1-0.2mg/L;P:0.005-0.01mg/L,二者均能在贫营养自然水体中生长,穗状狐尾藻表现出对氮更强的适应性,而黄花水龙表现出对磷更强的适应性。
     2.实验证明在低浓度水平时,氮为黄花水龙和喜旱莲子草生长的主要限制因子,磷为穗状狐尾藻生长的主要限制因子。穗状狐尾藻在低氮磷比2:1时生物量最大;黄花水龙在中等氮磷比10:1-20:1时生物量最大;喜旱莲子草在较高氮磷比20:1-40:1时生物量最大。植物对氮、磷的积累量基本趋势与生物量相似。穗状狐尾藻和黄花水龙的大田实验的生物量增长趋势符合“S”型生长曲线,对氮、磷的积累与变化与生物量变化趋势一致。
     3.试验得出了试验各处理中植物吸收和微生物作用对水质净化的贡献率。不同植物对水体中氮磷净化效果贡献率不同,对氮去除贡献率方面穗状狐尾藻>黄花水龙>喜旱莲子草;对磷去除贡献率穗状狐尾藻>喜旱莲子草>黄花水龙。栽种喜旱莲子草、穗状狐尾藻、黄花水龙等植物后对除氮的微生物群落结构产生正激发效应,激发效应分别为:32.60%,35.64%,34.22%,而对除磷的微生物群落结构产生负激发效应。
     4.穗状狐尾藻和黄花水龙有较广的温度适宜范围和pH适应范围。20℃-30℃和中性pH范围内两者生长最好。穗状狐尾藻和黄花水龙在生物量、总氮去除率、总磷去除率方面均是30℃>20℃>10℃。两植物由于快速生长的能力和较广的温度适宜范围让其具备了很好的应用于生态修复的特征。
     5.经过野外大田实验的监测与观察,穗状狐尾藻和黄花水龙全年都有超过8个月的修复效应。特别是穗状狐尾藻,每年的良好修复时间为每年的3-12月,修复效果明显,周期长,因此,这两种植物都是具有良好修复前景的优选植物品种,值得进一步推广。
Nowadays, water eutrophication has becoming a worldwide difficult problem, how to solve it is a hot point around the world. Phytoremediation is becoming a popular solution because of its non-pollution, low cost and ecologically sound. A lot has been studied ahout aquatic macrophytes and their application to phytoremediation, however, less information is available about the systematic researches on effectiveness of purification by different floating aquatic plant species with relation to their growth characteristics and environment factors. The objectives of this paper were to compare the effectiveness of purification of eutrophic water by different aquatic plant species (Alternanthera philoxeroides, Myriophyllum spicatum, Jussiaea stipulacea Ohwi) and the influencing factors. The main results are summarized as follows:
     1. The results showed that growth responses to low nitrogen and phosphorus concentration were different among the tested floating plant species. The lowest nitrogen and phosphorus concentrations for the plant to stop growth was N:0.05-0.1mg/L; P:0.01-0.02mg/L for Myriophyllum spicatum(M), whereas N:0.1-0.2mg/L; P: 0.005-0.01mg/L.for Jussiaea stipulacea Ohwi(J). Both floating aquatic plants can grow in relative low N and P water body. Myriophyllum spicatum has a better endurance to low N but less durable ability to low P, as compared to Jussiaea stipulacea Ohwi.
     2. The results indicated that Myriophyllum spicatum had a maximum biomass at water body with N/P ratio of 2:1, while Jussiaea stipulacea Ohwi had best growth at N/P ratio of 10:1-20:1, and Alternanthera philoxeroides grew best at N/P ratio of 20:1-40:1. At low levels of N and P water body, nitrogen was the limiting factor for growth of Alternanthera philoxeroides, Jussiaea stipulacea Ohwi, but phosphorus was the limiting factor for growth of Myriophyllum spicatum. The nitrogen and phosphorus accumulation by the plants showed a similar pattern as biomass with relation to N/P ratio. Field experiments showed that the biomass, nitrogen and phosphorus accumulation of Jussiaea stipulacea Ohwi and Myriophyllum spicatum corresponded well with the patterns of "S".
     3. Experiment show different contribution of plants and microbial in different treatment. The treatment to nitrogen removal efficiency: Myriophyllum spicatum> Jussiaea stipulacea Ohwi. > Alternanthera philoxeroides. , but to phosphorus removal efficiency is Myriophyllum spicatum> Alternanthera philoxeroides.>Jussiaea stipulacea Ohwi. Alternanthera philoxeroides, Myriophyllum spicatum, Jussiaea stipulacea Ohwi had positive effect (32.60%, 35.64%, 34.22% respectively) on the plant-enhanced microbial removal of nitrogen, because the plants had stimulative effect on nitrogen metabolic microoganism. However, the plants had negative effect on phosphorus metabolic microoganisms.
     4. Myriophyllum spicatum, Jussiaea stipulacea Ohwi had broad ranges of adaption to temperature and pH. They showed better growth at the temperature of 20℃-30℃and neutral pH (pH≈7). Temperature had the same effects on biomass of both plant species. The removal of total nitrogen and total phosphorus decreased with decreasing of temperature: 30℃>20℃>10℃.
     5. According to the observation and testing under field condition yearround, we found that Myriophyllum spicatum, Jussiaea stipulacea Ohwi had effective removal of nutrients from eutrophic water body for over 8 months per year. Myriophyllum spicatum had effective nutrient removal abilities in most time of a year, from March to December. So both plant species had a great potential for application in phytoremediation engineering of eutrophic water body.
引文
1.Aisling D O, Bredagh M M, Marinus L Otle. Accumulation and fate of contaminants (Zn, Pb, Fe and S) in substrates of wetlands constructed for treating mine wastewater [J]. Water, Air and Soil Pollution, 2004:345-364.
    2.Arnlg M. Aquatic macrophytes as tools for lake management [J]. Hydrobiologia, 1999,3395-3396:181-190. -
    3.Blindow I, Andersson G, Haregy A, et al. Long-term pattern of alternatives table states in two shallow eutrophic lakes[J]. Freshw Biol, 1993, 30(1): 159-167.
    4. Borin M, Bigon E. Abatement of NO_3-N concentration in agricultural waters by narrow buffer strips [J]. Environmental Pollution 2002,117,165-168.
    5.Brockmann U, Billen G, Goesles W W C. Pollution of the North Sea - an Assessment. Berlin: Springer-Ver-lag, 1988: 348-389.
    6. David H. Eutrophication of freshwater-principles, problems and restoration [M]. Chapman & Hall, 1992: 216-232.
    7.Dinges R. Natural Systems for Water Pollution Control [M]. New York: Van Nostrand Reinhold Co, 1982.
    8. Eriksson P G, Weisner S E B. An experimental study on effects of submerged macrophytes on nitrification and denitrification in ammonium-rich aquatic systems [J]. Limnology and Oceanography, 1999,44: 1993-1999.
    9.Fennessy M S, Cronk J K, Mitsch W J. Macrophyte Productivity and community development in created freshwater wetlands under experimental hydrological conditions [J]. Ecol Eng. 1994, 3(4): 469-484.
    10.Friedlander M, Levy I. Cultivation of Gracilaria in outdoor tanks and ponds[J]. Jappl Phycol, 1995,7:315-324.
    11.Song G L, Hou W H, Wang Qu H, et al. Effect of low temperature on eutrophicated waterbody restoration by Spirodela polyrhiza [J]. Bioresource Technology, 2006, 97: 1865-1869.
    12.Hafting J T. Effect of tissue nitrogen and phosphorus quota on grow th of prophyra yezoensis blades in suspension cultures [J]. Hydrobiologia, 1999, 398,399: 305- 314.
    13.Paerl H W, Dyble J, Moisander P H, et al. Microbial indicators of aquatic ecosystem change: current applications to eutrophication studies [J]. FEMS Microbiology Ecology, 2003,46(3, 5): 233-246.
    14. Johnson P T J, Chase J M. Parasites in the food web: linking amphibian malformations and aquatic eutrophication [J]. Ecology Letters, 2004, 7(7): 521-526.
    15.Hernandez J P, Luz E, Bashan D, et al. Starvation enhances phosphorus removal from wastewater by the microalga Chlorella spp. co-immobilized with Azospirillum brasilense [J]. Enzyme and Microbial Technology, 2006, 38: 190-198.
    16. Julio A, Camargo, Alonso A, et al. Eutrophication downstream from small reservoirs in mountain rivers of Central Spain [J]. Water Research, 2005, 39(14): 3376-3384.
    17.Keizer P, Sinke A J C. Phosphorous in the sediment of the Loosdreht Lakes and its implication for lake restoration perspective [J]. Hydrobiologia, 1992,233:39-50.
    18.Lars H. Cost-efficient eutrophication control in a shallow lake ecosystem subject to two steady states [J]. Ecological Economics, 2006, 59: 429-439.
    19. Marten S. The effect of aquatic vegetation on turbidity; how important are the filter feeders [J]. Hydrobiologia, 1999. 408/409: 307-316.
    20.Miscutt AD, Harris GL, Baily SW, et al. Bufferzones to improve water quality: a review of their potential use in UK agriculture. Agriculture [J]. Ecosystem and Environment, 1993, 45: 59-77.
    21.Mitsch W J. Ecological engineering-the 7-year itch [J]. Ecological Engineering, 1998.10: 119-130.
    22.Mitsch W J, Reeder B C, Klarer D M. The role of wetlands in the control of nutrients with a case study of western lake Erie [J]. In: Mitah W J, Jorgensen S E, eds. Ecological Engineering, New York: J. Wiley & Sons, 1989: 129-157.
    23. Murphy T P. Lawson A, Kumagai M, et al. Review of emerging issues in sediment treatment [J]. Aquatic Ecosystem Health and Management. 1999, (2): 419-434.
    24.Pala A, O. Bolukbas. Evaluation of kinetic parameters for biological CNP removal from a municipal wastewater through batch tests [J]. Process Biochemistry, 2005, 40: 629-635.
    
    25. Gennaro P, Marco G, Funari E, et al. Reduction of land based fish-farming impact by phytotreatment pond system in a marginal lagoon area. Aquaculture, 2006, 6.
    
    26.Paul J A W, Eunice I L. Agricultural nutrient inputs to rivers and groundwater in the UK: policy, environmental management and research need [J]. The Science of the Total Environment. 2002,282-283: 9-24.
    
    27. Phillips G L, Eminson D, Moss B. Amechanism to account for macrophyte decline in progressively eutrophicated freshwaters [J]. Aquat Bot, 1978,4(2): 103-126.
    
    28.Pionke H B., Gburek W J, Sharpley A. M. Hydrological and chemical controls on phosphorus loss from catchments [J]. CAB International, Wallingford, 1997: 77-93.
    29.Radlowki A, Stromfors G., Westberg V, et al. Wetland management to reduce Baltic sea eutrophication [J]. Water Science and Technology, 2002,45 (9), 87-94.
    30.Reddy K R, DeBuck T A. State-of-the-art utilization of aquatic plants in water pollution control [J]. Water Science Reseach, 1987,199 (10): 61-79.
    31.Reddy D. Variationos in Physico-chemical Parameters of Water in Selected Aquatic Systems [J]. Hydrobiologia, 1981, 85: 201-207.
    32.Rendell A R. The atmospheric input of nitrogen species to the North Sea [J]. TelIusB, 1993,45(1): 53-56.
    33.Riis T, Sand-Jensen K. Historical changes in species composition and richness accompanying perturbation and eutrophication of Danish lowland streams over 100 years [J]. Freshwater Biology, 2001, 46(2):269-280.
    34. Robert H K, Robert L K. Constructed Wetlands for Pollution Control [M]. USA: I WA Publishing, 2002: 93-102.
    35.Sabine G. High nitrogen: phosphorus ratios reduce nutrient retention and second-year growth of wetland sedges [J]. New phytologist (research): 537-550.
    36.Sara G, Lawrence A B, Xu Y. Nitrogen transformations in a wetland receiving lagoon effluent seouential model and implications or water reuse [J]. Water research, 2001, 35(16): 3857-3866.
    37.Takizawa S, Vasanthadevi A, Kenji F. Nitrogen removal from domestic wastewater using immobilized bacteria [J]. Water Science and Technology, 1996, 34, (1-2): 431-440.
    38.Scheffer M, Carpenter S, Foley JA, et al. Catastrophic shifts in ecosystems [J]. Nature, 2001,413: 591-596.
    39.Shanta S, Jana B B. Fish-macrophyte association as a low-cost strategy for wastewater reclamation [J]. Ecological Engineering, 2003,21(1): 21-41.
    
    40. Shen Z L. A Nitrogen Budget of the Chanjiang River Catchment [J]. Ambio, 2003, 32(1): 65-69.
    
    41. Steer D, Fraser L, Boddyc J, et al. Efficiency of small constructed wetlands for subsurface treatment of single-family domestic effluent [J]. Ecological Engineering, 2002, (18): 429-440.
    
    42. Sun G, Grayk R, Biddlstone A J, el al. Effect of effluent recirculation on the performance of a reed bed system treating agricultural wastewater [J]. Process Biochemistry, 2003, 39: 351-357.
    
    43.Yamamoto T. The Seto Inland Sea-eutrophic or oligotrophic [J]. Marine Pollution Bulletin, 2003,47, (1-6): 37-42.
    44.Tammi J, Lappalainen A, Mannio J, et al. Effects of eutrophication on fish and fisheries in Finnish lakes: a survey based on random sampling [J]. Fisheries Management and Ecology, 1999, 6 (3): 173-186.
    45.Van DV, R J H M. Economic analyses of nutrient abatement policies in the Rhine basin [J]. Free University Amsterdam, the Netherlands, 2002: 272.
    46.Weisner S E B, Eriksson P G, Grane L W, et al. Influence of macrophytes on nitrate removal in wetlands [J]. Ambio 1994,23: 363-366.
    47.Zhou W B, Zhu D W, Tan L F, et al. Extraction and retrieval of potassium from water hyacinth (Eichhornia crassipes) Bioresource Technology, 2006, 4:1-6.
    48.Zhu J, Zhu X. Treatment and utilization of waster water in the Beijing Zoo by an aquatic macrophyte system [J]. Ecological Engineering, 1998,11: 101-110.
    49.包先明,陈开宁,范成新.浮叶植物重建对富营养化湖泊氮磷营养水平的影响[J].生态环境,2005,14(6):807-811.
    50.鲍士旦.土壤农化分析(第三版)[M].北京:中国农业出版社.2005,264-270.
    51.常会庆,杨肖娥,方云英等.伊乐藻和固定化细菌共同作用对富营养化水体中养分的影响[J].水土保持学报,2005,19(3):114-117.
    52.陈开宁,李文朝,吴庆龙,等.滇池蓝藻对沉水植物生长的影响[J].湖泊科学,2003.12,15(4):364-368.
    53.陈水勇,吴振明,俞伟波,等.水体富营养化的形成、危害和防治[J].环境科学与技术,1999(2).85,1999.5:11-15.
    54.陈宜宜等.西湖底泥中酶活性与养分释放的关系[J].浙江农业大学学报,1997,23(2):171-174.
    55.陈志澄,郭丹桂,熊明辉,等.处理生活污水的植物品种的筛选[J].环境污染治理技术与设备,2006.4,7(4):90-93.
    56.陈中义,雷泽湘,周进,等.梁子湖六种沉水植物种群数量和生物量周年动态[J].水生生物学报,2000.11,24(6):581-588.
    57.成水平.人工湿地植物研究[J].湖泊科学,2002,14(2):179-184.
    58.崔秀丽.白洋淀水体富营养化污染源调查[J].环境科学,1995,增刊:17-18.
    59.戴莽.利用大型围隔研究沉水植被对水体富营养化的影响[J].水生生物学报,1999,23(2):97-101.
    60.丁学锋,蔡景波,杨肖娥,等.EM菌与水生植物黄花水龙(Jussiaea stipulacea Ohwi)联合作用去除富营养化水体中氮磷的效应[J].农业环境科学学报,2006,25(5):1324-1327.
    61.杜勤,赵保全,朱家义.水体富营养化控制手段及防治实例[J].工业水处理.2005.25(9):20-22.
    62.范成新,季江,陈荷生.太湖富营养化现状、趋势及其综合整治对策[J].上海环境科学,1997,16(8):4-7.
    63.范成新等.梅梁湖和五里湖水一沉积物界面的物质交换[J].湖泊科学,1998,10(1):73-78.
    64.方云英,杨肖娥,濮培民,等.宁波力洋水库富营养化现状及生态治理对策[J]. 水土保持学报,2004,12:183-186.
    65.高冲,杨肖娥,向律成,等.pH和温度对薏苡植物床去除富营养化水中氮磷的影响[J].农业环境科学学报,2008,27(4):1495-1500.
    66.高光.伊乐藻、轮叶黑藻净化养鱼污水效果试验[J].湖泊科学,1996,8(2):184-188.
    67.高吉喜,叶春,杜娟,等.水生植物对面源污水净化效率研究[J].中国环境科.学,1997,17(3):247-251.
    68.高原.沿海海-气界面的化学物质交换[J].地球科学进展,1997,12(6):553-563.
    69.葛滢.不同程度富营养化水中植物净化能力的比较研究[J].环境科学学报,1999,19(6):690-692.
    70.管敦仪.啤酒工业手册[M].北京:中国轻工业出版社,1998,619-626.
    71.郭培章,宋群.中外水体富营养化治理案例研究[J].北京,中国计划出版社2003,336.
    72.郭沛涌,朱荫湄,宋祥甫,等.浮床黑麦草去除富营养化水体总氮的试验研究[J].华中科技大学学报(城市科学版).2007 24(2):33-35,40.
    73.国家环境保护总局.水和废水的监测分析方法(第四版)[M].北京:中国环境科学出版社,2002.
    74.韩伟明.底泥释放磷及其对杭州西湖富营养化的影响.湖泊,1993,50:71-77.
    75.贺强,崔保山,赵欣胜,等.水、盐梯度下黄河三角洲湿地植物种的生态位[J].应用生态学报,2008.5,19(5):969-975.
    76.胡雪峰等.上海市郊河流底泥氮磷释放规律的初步研究[J].上海环境科学,2001,20(2):66-70.
    77.胡勇有,王鑫,张太平,等.用低浓度生活污水筛选适于华南人工湿地的植物[J].华南理工大学学报(自然科学版),2006.9,34(9):111-116.
    78.黄亚,傅以钢,赵建夫.富营养化水体水生植物修复机理的研究进展[J].农业环境科学学报,2005,24(增刊):379-383.
    79.蒋德安.植物生理学试验指导[M].成都科技大学出版社:22-23.
    80.蒋鑫焱,翟建平,黄蕾,等.不同水生植物富集氮磷能力的试验研究[J].环境保护科学,2006,32(6):13-16.
    81.蒋跃平,葛滢,岳春雷,等.人工湿地植物对观赏水中氮磷去除的贡献[J].生态学报,2004.8,24(8):1720-1725.
    82.金相灿,荆一风,刘文生,等.湖泊污染底泥疏浚工程技术-滇池草海底泥疏挖及处置[J].环境科学研究,1999,12(5):9-12.
    83.金相灿,刘鸿亮,屠清瑛.中国湖泊富营养化[J].北京:中国环境科学出版社,1992,21-40.
    84.金相灿.湖泊富营养化控制和管理技术[M].化学工业出版社,2001.
    85.井艳文,胡秀琳,许志兰,等.利用生物浮床技术进行水体修复研究与示范[J].水利科学研究,2003(6):18-19.
    86.景海春,兰耀龙,程奕.施肥与环境[M].中国农业科技出版社,1994:29-30.
    87.康燕玉,梁君荣,高亚辉,等.氮、磷比对两种赤潮藻生长特性的影响及藻间竞争作用[J].海洋学报,2006.9,28(5):117-122.
    88.兰智文,等.蓝藻水华的化学控制研究[J].环境科学,1992,13(1):32-35.
    89.李朝晖,施丽丽,王喆,等.黄花水龙浮巢净化富营养化水体[J].江苏大学学报(自然科学版),2006.1,27(1):1-5.
    90.李锋民,胡洪营.生物化感作用在水处理中的应用[J].中国给水排水,2003,19(7):38-40.
    91.李杰,钟成华,邓春光.人工湿地研究进展[J].安徽农业科学,2007,35(6):1778-1780.
    92.李科德,胡正嘉.芦苇床系统净化污水的机理[J].中国环境科学,1995,15(2):140-144.
    93.李睿华,管运涛,何苗,等.河岸芦苇、茭白和香蒲植物带处理受污染河水中试研究[J].环境科学,2006,27(3):493-497.
    94.李绍英,曾述柏,于令弟.环境污染与监测[M].哈尔滨船舶工程学院出版社,1993.
    95.李文朝.富营养水体中常绿水生植被组建及净化效果研究[J].中国环境科学,1997,17(1):43-57.
    96.李祚泳.城市综合环境质量评价的BP网络模型[J].系统工程,1994,15(5):75-77.
    97.梁继东,周启星,孙铁珩.人工湿地污水处理系统研究及性能改进分析[J].生态学杂志,2003,22(2):49-55.
    98.廖新佛.规模化猪场用水与废水处理技术[M].北京:中国农业出版社,1999:42-45.
    99.刘春常,夏汉平.人工湿地处理生活污水研究[J].生态环境,2005,14(4):536-539.
    100.刘春光,王春生,李贺.几种大型水生植物对富营养水体中氮和磷的去除效果[J].农业环境科学学报,2006,25(增刊):635-638.
    101.刘东艳,孙军,巩晶,等.不同氮磷比例对球等鞭金藻生长的影响[J].海洋水产研究,2002.3,23(1):29-32.
    102.刘利花,吕家珑,张翠荣,等.渭河水体磷素富营养化状况研究[J].农业环境科学学报2006,25(增刊):639-642.
    103.刘淑媛,任久民,由文辉.利用人工基质无土栽培经济植物净化富营养化水体的研究[J].北京大学学报(自然科学版),1997,35(4):518-522.
    104.刘伟龙,胡维平,谷孝鸿.太湖马来眼子菜(Potamogeton ma la ianus)生物量变化及影响因素[J].生态学报,2007.8,27(8):3324-3333.
    105.马立珊,骆永明,吴龙华,等.浮床香根草对富营养化水体氮磷去除动态及效率的初步研究[J].土壤,2000.2:99-101.
    106.孟庆义.国内湖泊水质污染及富营养化治理[J].北京水利,2001.5:45-47.
    107.刘建康.东湖生态学研究(二).北京:科学出版社,1995:287-301.
    108.彭海清,谭章荣,高乃云,等.给水处理中藻类的去除[J].中国给水排水,2002,18(2):29-31.
    109.濮培民等.健康水生生态系统的退化及其修复-理论、技术及应用[J].湖泊科学,2001,13(3):193-203.
    110.濮培民,颜京松.改善太湖马山自来水厂水源区水质的物理-生态实验研究[J].湖泊科学,1993,5(3):171-180.
    111.曲格平.中国环境问题及对策[M].北京:环境科学出版社,1990.
    112.饶钦止等.武汉东湖浮游植物的演变和富营养化问题[J].水生生物期刊,1980,7(1):1-17.
    113.沈根祥,胡宏,姚芳,等.浮萍放养体系中氮的平衡与浮萍体内氮的亚细胞分布研究[J].浙江大学学报(农业与生命科学版),2005,31(6):731-735.
    114.施丽丽,刘昕雁,刘瑶,等.黄花水龙克藻效应的研究及其野外应用[J].南京大学学报(自然科学),2006.9,42(5):499-505.
    115.施丽丽,叶存奇,王喆,等.黄花水龙作为人工浮岛植物的开发研究[J].生物学通报,2005,40(8):15-16.
    116.时应征,王晓,强艳艳,等.人工湿地植物的选择驯化研究综述.技术与创新管理,2008.1,29(1):90-94.
    117.史晓新,夏军.环境影响综合评价灰色层次模型研究[J].上海环境科学,1996,15(10):9-12.
    118.宋海亮,吕锡武.利用植物控制水体富营养化的研究与实践[J].安全与环境工程,2004,11(3):35-39.
    119.宋祥甫等.浮床水稻对富营养化水体中氮磷的去除效果及规律研究[J].环境科学学报,1998,18(5):489-494.
    120.宋玉芝,秦伯强,高光.氮及氮磷比对附着藻类及浮游藻类的影响[J].湖泊科学,2007,19(2):125-130.
    121.宋志文,王仁卿,席俊秀.人工湿地对氮、磷的去除效率与动态特征[J].生态学杂志,2005,24(6):648-651.
    122.隋少峰等.武汉东湖底泥释磷特点[J].环境科学,2001,22(1):102-105.
    123.孙文浩,俞子文,邰根福,等.凤眼莲无菌苗培养及其克藻效应[J].植物生理学报,1990,16:301-305.
    124.孙文浩,俞子文,余叔文.城市富营养水域的生物治理和风眼莲抑制藻类生长的机理[J].环境科学学报,1989,9:188-182.
    125.唐萍,吴国荣,陆长梅.太湖水域几种高等水生植物的克藻效应[J].农村生态环境,2001,17(3):42-44,47
    126.唐志坚,张平,左社强,等.植物修复技术在地表水处理中的应用[J].中国给水排水,2003,19(7):27-29.
    127.童昌华,杨肖娥,濮培民.低温季节水生植物对污染水体的净化效果研究[J].水土保持学报,2003,17(2):159-162.
    128.童昌华博士论文,2004.水体富营养化发生原因分析及植物修复机理的研究.
    129.王超,张文明,王沛芳,等.黄花水龙对富营养化水体中氮磷去除效果的研究[J].环境科学,2007.5,28(5):975-981.
    130.王国祥.若干人工调控措施对富营养化湖泊藻类种群的影响[J].环境科学,1999,20(2):71-74.
    131.王国祥,濮培民.用镶嵌组合植物群落控制湖泊饮用水源区藻类及氮污染[J].植物资源与环境.1998,7(2):35-41.
    132.王国祥,濮培民,黄宜凯,等.太湖反硝化、硝化、亚硝化及氨化细菌分布及其作用[J].应用与环境生物学报,1998,5(2):190-194.
    133.王国祥,濮培民,张圣照,等.冬季水生高等植物对富营养化湖水的净化作用[J].中国环境科学,1999,19(2):106-109.
    134.王国祥,濮培民,张圣照,等.人工复合生态系统对太湖局部水域水质的净化作用[J].中国环境科学,1998,6(2):15-19.
    135.王卷霞,郭便玲,李悦峰.水体富营养化的危害及修复措施[J].河南水利与南水北调,2008年2期:13-14.
    136.王丽卿,李燕,张瑞雷.6种沉水植物系统对淀山湖水质净化效果的研究[J].农业环境科学学报,2008,27(3):1134-1139.
    137.王庆海,段留生,李瑞华,等.几种水生植物净化能力比较[J].华北农学报,2008,23(2):217-222.
    138.王旭明,匡静.水芹菜对污水净化的研究[J].农业环境保护,1999,18(1):34-35.
    139.吴根福,宣晓东.杭州西湖底泥释磷的初步研究[J].中国环境科学,1998,18(2):107-110.
    140.吴洁.西湖浮游植物的演替及富营养化治理措施的生态效应[J].中国环境科学,2001,21(6):540-544.
    141.吴晓磊.人工湿地废水处理机制[J].环境科学,1994,16(3):83-86.
    142.吴玉树.根生沉水植物菹草对滇池水体的净化作用[J].环境科学学报,1991,11(4):411-416.
    143.吴振斌,陈辉蓉,贺锋,等.人工湿地系统对污水磷的净化效果[J].水生生物 学报,2001.1,25(1):28-35.
    144.吴振斌,邱东茹,贺锋,等.沉水植物重建对富营养水体氮磷营养水平的影响[J].应用生态学报,2003,14(8):1351-1353.
    145.夏汉平.垃圾污水的植物毒性与植物净化效果之研究[J].植物生态学报,1999,23(4):289-301.
    146.向律成,郝虎林,杨肖娥,等.多年生漂浮植物对富营养化水体的响应及净化效果研究.水土保持学报,2009,23(5):142-146.
    147.肖德荣,田昆,袁华,等.高原湿地纳帕海水生植物群落分布格局及变化[J].生态学报,2006.11,26(11):3624-3630.
    148.谢礼国,郑怀礼.湖泊富营养化的防治对策研究[J].世界科技研究与发展:环境污染及治理,2004.4:7-11.
    149.谢雄飞,肖锦.水体富营养化问题评述[J].四川环境,2000,2(19):22-25.
    150.谢有奎,俞栋,高殿森,等.体富营养化危害、成因及防治[J].后勤工程学院学报,2004.3:27-29,37.
    151.熊飞,李文朝,潘继征,等.云南抚仙湖沉水植物分布及群落结构特征[J].云南植物研究 2006,28(3):277-282.
    152.徐永健,陆开宏,管保军.不同氮磷浓度及氮磷比对龙须菜生长和琼胶含量的影响[J].农业工程学报,2006.8,22(8):209-213.
    153.许木启,黄玉瑶.受损水域生态系统恢复与重建研究[J].生态学报,1998.9,18(5):547-558.
    154.颜素珠,范允,平方.黄花水龙与水龙形态及结构的比较观察[J].广西植物,1997,17(2):152-157.
    155.杨柳春,郑明辉,刘文彬,等.有机物污染环境的植物修复研究进展[J].环境污染治技术与设备,2002,3(6):1-7.
    156.杨文龙,杨树华.滇池流域非点源污染控制区划研究[J].湖泊科学,1998,10(3):55-60.
    157.杨文龙.湖水藻类生长的控制技术[J].云南环境科学,1999,18(2):34-36.
    158.余国忠,余国庆,史本林.富营养化水源中藻类控制的研究进展[J].信阳师范学院学报(自然科学版),2000.10,13(4):482-485.
    159.俞子文,孙文浩,郭克勤,等.几种高等水生植物的克藻效应[J].水生生物学报,1992,16(1):1-7.
    160.袁东海,高士祥,任全进.几种挺水植物净化生活污水总氮和总磷效果的研究[J].水土保持学报,2004,18(4):77-80,92.
    161.袁文权,张锡辉,张丽萍.不同供氧方式对水库底泥氮磷释放的影响[J].生态学杂志,2004,23(2):98-101.
    162.张光富,陈瑞冰.外来入侵植物喜旱莲子草的研究进展[J].安徽大学学报(自然科学版),2005.11,29(6):87-93.
    163.张鸿,陈光荣.两种人工湿地中氮、磷净化率与细菌分布关系的初步研究[J].华中师范大学学报,1999,33(4):575-578.
    164.张荣社,李广贺,周琪,等.潜流湿地中植物对脱氮除磷效果的影响中试研究[J].环境科学,2005,26(4):83-86.
    165.赵建,朱伟,赵联芳.人工湿地对城市污染河水的净化效果及机理[J].湖泊科学,2007,19(1):32-38.
    166.郑亚西,王关民.湖(库)水体富营养化综合防治对策[J].重庆环境科学,2001,23(4):30-33.
    167.中华人民共和国水利部2004年中国水资源公报.
    168.种云霄,胡洪营,钱易.大型水生植物在水污染治理中的应用研究进展[J].环境污染治理技术与设备.2003,4(2):36-40.
    169.朱亮.水体氮磷营养源控制对策研究[J].给水排水,1998,24(1):23-25.
    170.朱月海.啤酒废水处理工艺及浅析[J].给水排水,1999,25(1):32-36.
    171.诸惠昌,D.K.Stevens.用人工湿地处理乳制品厂废水的研究[J].环境科学,1996.10,17(5):30-33.
    172.邹迪,肖琳,杨柳燕,等.不同氮磷比对铜绿微囊藻及附生假单胞菌磷代谢的影响[J].环境化学,2005.11,24(6):647-650.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700