高效脱氮菌种保藏技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
菌种是国家的重要资源,菌种保藏是贮备良种、满足应用之需的重要手段。在废水生物处理领域,涌现了以短程硝化-厌氧氨氧化工艺为代表的一批新型生物脱氮技术,迫切需要高效生物脱氮菌种提供支持。相对于常规菌种,硝化细菌和厌氧氨氧化菌生长十分缓慢,对环境异常敏感,难以获得优质菌源,获得的优质菌源难以保藏。鉴于此,本文对硝化细菌混培物和厌氧氨氧化菌混培物的保藏技术进行了有益探索,主要结论如下:
     1、研究了硝化细菌混培物保藏特性的变化规律,提出了硝化细菌混培物大量保藏的有效方法。
     ①比较了硝化细菌混培物保藏过程中硝化活性和总菌体量的变化规律,研究证明硝化活性更适宜用作保藏效果的评价指标。采用不同保藏方法保藏硝化细菌,保藏5个月后,总菌体量保留率是硝化活性保留率的2.5~3.9倍,以总菌体量作为保藏效果评价指标会产生虚高现象。
     ②考察了硝化细菌混培物保藏过程中血红素c含量、ATP含量以及颜色的变化规律,研究证明血红素c含量和ATP含量可用于定性表征硝化活性,但颜色与硝化活性间没有直接相关性。在缺氧保藏中,硝化细菌混培物颜色变黑,其主要致因是硫酸盐还原生成硫化物,而低温或添加硝化产物可降低硫化物的生成速度,减缓硝化细菌混培物变黑速度。
     ③试验了氧气对硝化细菌混培物保藏性状的影响,研究证明缺氧保藏优于好氧保藏。缺氧保藏和好氧保藏的硝化活性半衰期分别为1.71个月和1.60个月,饥饿保藏5个月后缺氧保藏和好氧保藏的活性保留率分别为15.9%和5.6%。
     ④试验了硝化产物对硝化细菌混培物保藏性状的影响,研究证明添加亚硝酸盐可以改善硝化细菌的保藏效果。在硝化细菌保藏过程中,亚硝氮可明显降低硝化活性的衰减速率。在缺氧条件下,采用4℃加5 mmol·L~(-1)亚硝氮、4℃加5 mmol·L~(-1)硝氮、4℃三种方法保藏,硝化活性衰减速率分别为0.010 d~(-1)、0.020 d~(-1)、0.021 d~(-1),半衰期分别为2.41、1.13、1.09个月,饥饿保藏5个月后三种保藏方法的硝化活性保留率分别为13.1%、14.4%、13.9%。
     ⑤试验了温度对硝化细菌混培物保藏性状的影响,研究证明自然温度保藏适用于硝化细菌保藏。在缺氧条件下,采用自然温度、4℃、-20℃、-20℃加15%体积甘油四种方法保藏,硝化活性衰减速率分别为0.012 d~(-1)、0.021 d~(-1)、0.019 d~(-1)、0.013 d~(-1),半衰期分别为1.71、1.09、1.22、1.62个月,饥饿保藏5个月后四种保藏方法的硝化活性保留率分别为16.0%、13.9%、20.8%、20.4%。以自然温度保藏硝化细菌,活性保留率居中,但保藏成本较低。
     2、研究了厌氧氨氧化菌混培物保藏特性的变化规律,填补了厌氧氨氧化菌混培物保藏技术的空白。
     ①考察了厌氧氨氧化菌混培物保藏过程中血红素c含量、硫化物含量、外源硫酸盐含量及颜色的变化规律,研究证明血红素c含量可定性表征厌氧氨氧化活性,但受硫化物影响,缺氧保藏过程中混培物颜色变黑,可干扰颜色与活性间的关系。
     ②试验了间歇性饥饿对厌氧氨氧化菌混培物保藏性能的影响,研究表明在厌氧氨氧化菌混培物保藏过程中,间歇性饥饿较长期性饥饿损害更大。缺氧条件下,采用4℃加(NH_4)_2SO_4、4℃加每10 d换一次NO_2~--N/NH_4~+-N浓度比为1.32的基质、4℃加每10 d换一次NO_2~--N/NH_4~+-N浓度比为1.63的基质三种方法保藏,保藏5个月后,厌氧氨氧化活性保留率分别为74.7%、68.0%、60.3%。
     ③试验了温度对厌氧氨氧化菌混培物保藏性能的影响,研究表明4℃加(NH_4)_2SO_4的缺氧保藏法最为有效,但自然温度加(NH_4)_2SO_4的缺氧保藏法最为经济。在缺氧条件下,采用4℃加(NH_4)_2SO_4、4℃加NH_4Cl、自然温度加(NH_4)_2SO_4三种方法保藏,饥饿保藏5个月后,厌氧氨氧化活性保留率分别为74.7%、45.0%、64.2%。
Microorganisms are a kind of important national resource, and their preservation is a means of storing good strain and meeting application requirements. In the field of wastewater treatment, a lot of novel biotechnologies such as short-cut nitrification and anammox (anaerobic ammonium oxidation) process for nitrogen removal were developed over the past decades, so a large amount of quality microorganisms for nitrogen removal are needed to promote the application of novel biotechnologies. Compared with other microorganisms, it is difficult to obtain and store quality nitrifying bacteria and anammox bacteria because of their slow growth and high sensitivity to environment. Therefore, the preservation methods of nitrifying bacteria and anammox bacteria were studied, and main results are as follows:
     1. The preservation characteristics were studied and some efficient preservation methods were suggested for mixed nitrifying culture.
     ①As preservation evaluation index, nitrifying activity is better than total biomass. After preservation for 5 months, the survival biomass percentage was 2.5 to 3.9 times larger than the survival activity percentage with different preservation methods, so it is easy to mislead the evaluation results by using total biomass as evaluation index.
     ②The content of heme c and ATP could qualitatively describe nitrifying activity, but the color had no correlation with nitrifying activity. Under anaerobic conditions, the color of preserved mixed nitrifying culture was changed from orange yellow to black due to sulfate reduction, but low temperature and nitrite/nitrate could decrease the sulfide formation and the color change.
     ③Anaerobic preservation was better than aerobic preservation for mixed nitrifying culture. Under anaerobic and aerobic conditions, the half decay times of survival activity were 1.71 months and 1.60 months, and the survival activity percentages were 15.9% and 5.6% respectively after preservation for five months.
     ④Nitrite could improve the preservation of mixed nitrifying culture, and could decrease the decay rate of nitrifying activity. Under anaerobic conditions, the decay rates of nitrifying activity were 0.010 d~(-1), 0.020 d~(-1) and 0.021 d~(-1), the half decay times of survival activity were 2.41, 1.13 and 1.09 months, and the survival activity percentages were 13.1%, 14.4% and 13.9% after preservation for 5 months by means of 4℃with 5 mmol·L~(-1) nitrite, 4℃with 5 mmol·L~(-1) nitrate and 4°C, respectively.
     ⑤Natural temperature was suitable for storing mixed nitrifying culture. Under anaerobic conditions, the activity decay rates were 0.012 d~(-1), 0.021 d~(-1), 0.019 d~(-1), 0.013 d~(-1), the half decay times of survival activity were 1.71, 1.09, 1.22 , 1.62 months, and the survival activity percentages were 16.0%, 13.9%, 20.8%, 20.4% after preservation for 5 months by means of natural temperature, 4℃, -20℃and -20℃with 15% glycerol respectively. The survival activity percentage at natural temperature was not the highest, but the cost was the lowest of all preservation methods.
     2. The preservation characteristics of anaerobic ammonium oxidation were studied, and some efficient preservation methods were suggested for mixed anammox culture.
     ①The content of heme c could qualitatively describe anammox activity, but the color had no correlation with anammox activity because of sulfide production which led to the change of color from red to black during the preservation of mixed anammox culture.
     ②Intermittent starvation was worse than persistent starvation during the preservation of mixed anammox culture. Under anaerobic conditions, three preservation methods, 4℃with substrate of (NH_4)_2SO_4, 4℃with addition of substrate (NO_2~--N/NH_4~+-N ratio of 1.32) every ten days and 4℃with addition of substrate (NO_2~--N/NH_4~+-N ratio of 1.63) every ten days, were carried out. After preservation for 5 months, their survival activity percentages were 74.7%, 68.0% and 60.3% respectively.
     ③The preservation at 4℃with (NH_4)_2SO_4 was the best, but that at natural temperature with (NH_4)_2SO_4 was the cheapest. Under anaerobic conditions, the survival activity 4℃with (NH_4)_2SO_4, 4℃with NH_4Cl and natural temperature with (NH_4)_2SO_4 were 74.7%, 45.0% and 64.2% respectively after preservation for 5 months.
引文
Arciero DM, Hopper AB. Hydroxylamine oxidoreductase from Nitrosomonas europaea is a multimer of an octa-heme subunit [J]. The Journal of Biological Chemistry, 1993,268(20): 14645-14654.
    Batchelor SE, Cooper M, Chhabra SR, et al. Cell density-regulated recovery of starved biofilm populations of ammonia-oxidizing bacteria [J]. Applied and Environmental Microbiology, 1997, 63(6): 2281-2286.
    Berry E A, Trumpower B L.Simultaneous determination of hemes a, b, and c from pyridine hemochrome spectra [J]. Analytical Biochemistry, 1987, 161(1):1-15.
    Brenner DJ, Krieg NR, Staley GT. Bergey's manual of systematic bacteriology (Vol. 2) [M]. 2005: 141-149.
    Cirpus IEY, Geerts W, Hermans JHM, et al. Challenging protein purification from anammox bacteria [J]. International Journal of Biological Macromolecules,2006, 39: 88-94.
    Crowe JH, Crowe LM, Carpenter JF, et al. Interactions of sugars with membranes [J].Biochimica et Biophysica Acta, 1988, 947: 367-384.
    
    Dapena-Mora A, Fernandez I, Campos JL, et al. Evaluation of activity and inhibition effects on Anammox process by batch tests based on the notrogen gas production [J]. Enzyme and Microbial Technology, 2007, 40: 859-865.
    
    De Bruijn P, van de Graaf AA, Jetten MSM, et al. Growth of Nitrosomonas europaea on hydroxylamine [J]. FEMS Microbiology Letter, 1995, 125: 179-184.
    
    Diab S, Kochba M, Mires D, et al. Combined intensive-intensive (CIE) pond system.A, inorganic nitrogen transformations [J]. Aquaculture, 1992, 101(1-2):33-39.
    
    Dosta J, Fernándrz I, Vázquez-Padin JR, et al. Short- and long-term effects of temperature on the Anammox process [J]. Journal of Hazardous Materials, 2008,154:688-693.
    Egli K, Fanger U, Alvarez PJJ, et al. Enrichment and characterization of an anammox bacterium from a rotating biological contactor treating ammonium-rich leachate [J]. Archives of Microbiology, 2001, 175(3):198-207.
    Fdz-Polanco F, Fdz-Polanco M, Fernandez N, et al. New process for simultaneous removal of nitrogen and sulphur under anaerobic conditions [J]. Water Research, 2001,35(4): 1111-1114.
    
    Geets J, Boon N, Verstraete W. Strategies of aerobic ammonia-oxidizing bacteria for coping with nutrient and oxygen fluctuations [J]. Ferns Microbiology Ecology,2006, 58(1):1-13.
    
    Jetten MSM, Op den Camp HJM, Kuenen JG, et al. Taxonomic description of the family Anammoxaceae [M]// Hedlund B, Krieg NR, Paster BJ, et al. Bergey's manual of systematic bacteriology. 2nd edition. New York: Springer, in press.
    
    Johnstone BH, Jones RD. Effects of Light and CO on the Survival of a Marine Ammonium-Oxidizing Bacterium during Energy Source Deprivation [J]. Applied Environmetal Microbiology, 1988, 54: 2890-2893.
    
    Johnstone BH, Jones RD. Physiological effects of long-term energy-source deprivation on the survival of a marine chemolithotrophic ammonium-oxidizing bacterium [J]. Marine Ecology Progress Series, 1988,49: 295-303.
    Kartal B, Rattary J, van Niftrik LA, et al. Candidatus "Anammoxoglobus propionicus" a new propionate oxidizing species of anaerobic ammonium oxidizing bacteria [J]. Systematic and Applied Microbiology, 2007, 30(1):39-49.
    Kartal B, van Niftrik L, Rattary J, et al. Candidatus " Brocadia fulgida": an autofluorescent anaerobic ammonium oxidizing bacteria [J]. FEMS Microbiological Ecology, 2008, 63(1): 46-55.
    
    Kowalchuk GA, Stephen JR. Ammonia-oxidizing bacteria: A model for molecular microbial ecology [J]. Annual Review of Microbiology, 2001, 55:485-529.
    Laanbroek HJ, B(a|¨)r-Gilissen MJ, Hoogveld HL. Nitrite as a stimulus for ammonia-starved Nitrosomonas europaea [J]. Applied and Environmental Microbiology, 2002, 68(3): 1454-1457.
    Laanbroek HJ, Schotman JMT. Effect of nitrite concentration and pH on most probable number enumerations of non-growing Nitrobacter spp. [J]. FEMS Microbiology Letters, 1991, 85(4): 269-277.
    Laurin V, Labbe V, Juteau P, et al. Long-term storage conditions for carriers with denitrifying biomass of the fluidized, methanol-fed denitrification reactor of the Montreal Biodome, and the impact on denitrifying activity and bacterial population [J]. Water Research, 2006, 40(9): 1836-1840.
    Madigan MT, Martinko JM. Brock biology of microorganisms (eleventh edition) [M],Prentice Hall, Pearson International Edition, 2007.
    Manser R, Gujer W, Siegrist H. Decay processes of nitrifying bacteria in biological wastewater treatment systems [J]. Water Research, 2006, 40: 2416-2426.
    Martinage V, Paul E. Effect of environmental parameters on autotrophic decay rate (b(A)) [J]. Environmental Technology, 2000, 21(1):31-41.
    Morgenroth E, Obermayer A, Arnold E, et al. Effect of long-term idle periods on the performance of sequencing batch reactors [J]. (Stratford Avon, England). 1999,105-113.
    Morgenroth E, Obermayer A, Arnold E, et al. Effect of long-term idle periods on the performance of sequencing batch reactors [J]. Water Science and Technology,2000,41(1): 105-113.
    Okabe S, Satoh H, Watanabe Y. In situ analysis of nitrifying biofilms as determined by in situ hybridization and the use of microelectrodes [J]. Applied and Environmental Microbiology, 1999, 65(7):3182-3191.
    Park HD, Noguera DR. Characterization of two ammonia-oxidizing bacteria isolated from reactors operated with low dissolved oxygen concentrations [J]. Journal of Applied Microbiology, 2007,102:1401-1417.
    Powell SJ, Prosser JI. Protection of Nitrosomonas europaea colonizing clay minerals from inhibition by nitrapyrin [J]. Journal of General Microbiology, 1991, 28:51-54.
    
    Rinalo S, Brunori M, Cutruzzolà F, et al. Nitrite controls the release of nitric oxide in Pseudomonas aeruginosa cd1 nitrite reductase [J]. Biochemical and Biophysical Research Communicaitons, 2007, 363(3): 662-666.
    
    Salem S, Moussa MS, van Loosdrecht MCM. Determination of the decay rate of nitrifying bacteria [J]. Biotechnology and Bioengineering, 2006, 94(2): 252-262
    Schimamura M, Nishiyama T, Shigetomo H, et al. Isolation of a multiheme protein with features of a hydrazine-oxidizing enzyme from an anaerobic ammonium-oxidizing enrichment culture [J]. Applied and Environmental Microbiology, 2007, 73(4): 1065-1072.
    Schmidt I, Look C, Bock E, et al. Ammonium and hydroxylamine uptake and accumulation in Nitrosomonas [M]. (Hilo, HI). 2003,1405-1412.
    Schouten S, Strous M, Kuypers MMM, et al. Stable carbon isotopic fractionations associated with inorganic carbon fixation by anaerobic ammonium-oxidizing bacteria [J]. Applied and Environmental Microbiology, 2004, 70(6): 3785-3788.
    Schramm A, Larsen LH, Revsbech Np, et al. Structure and function of a nitrifying biofilm as determined by in situ hybridization and the use of microelectrodes [J]. Applied and Environmental Microbiology, 1996, 62(12):4641-4647.
    Schubert DJ, Durisch-Kaiser E, Wehrli B, et al. Anaerobic ammonium oxidation in a tropical freshwater system (Lake Tanganyika) [J]. Environmental Microbiology,2006, 8(10): 1857-1863.
    Sharma B, Ahler RC. Nitrification and nitrogen removal [J]. Water Research, 1977,11:897-925.
    Shears JH, Wood PM. Spectroscopic evidence for a photosensitive oxygenated state of ammonia monooxygenase [J]. The Biochemical journal, 1985, 226(2):499-507.
    Stein LY, Arp DJ. Ammonium Limitation Results in the Loss of Ammonia-Oxidizing Activity in Nitrosomonas europaea [J]. Applied and Environmental Microbiology, 1998,64(4): 1514-1521.
    Strous M, Kuenen JG, Jetten M. Key physiological parameters of anaerobic ammonium oxidation [J]. Applied and Environmental Microbiology, 1999,65(7): 3248-3250.
    Strous M, van Gerven E, Kuenen JG, et al. Effects of aerobic and microaerobic conditions on anaerobic oxidizing (Anammox) sludge[J]. Applied and Environmental Microbiology, 1997, 63(6): 2446-2448.
    Strous M. Microbiology of anaerobic ammonium oxidation [Ph.D Thesis]. Delt,TU Technical University, 2000.
    Tan NGG, Kampschreur MJ, Wanders W, et al. Physiological and phylogenetic study of an ammonium-oxidizing culture at high nitrite concentrations [J].Systematic and Applied Microbiology, 2008, 31(2): 114-125.
    
    Tang CJ, Zheng P, Wang CH, et al. Suppression of anaerobic ammonium oxidizers under high organic content in high-rate Anammox UASB reactor [J]. Bioresource Technology, 2010, 101: 1762-1768. doi: 10.1016/j.bioretech.2009.10.032.
    Thamdrup B, Dalsgaard T. Production of N_2 through anaerobic ammonium oxidation coupled to nitrate reduction in marine sediments [J]. Applied and Environmental Microbiology, 2002, 68(3): 1312-1318.
    
    Thore A, Lundin A. Firefly luciferase ATP assay as a screening method for bacteriuria [J]. Journal of clinical microbiology, 1983, 17(2): 218-224.
    Tokuyama T, Yoshida N, Matsuishi T, et al. A new psychrotrophic ammonia oxidizing bacterium, Nitrosovibrio sp. TYM9 [J]. Journal of Fermentation and Bioengineering, 1997, 83(4): 377-380.
    
    van der Star WRL, Abma WR, Blommers D, et al. Startup of reactors for anoxic ammonium oxidation: experiences from the first full-scale anammox reactor in Rotterdam [J]. Water Research, 2007, 41(18): 4149-4163.
    
    Van Dongen U, Jetten MSM, van Loosdrecht MCM. The Sharon-Anammox process for treatment of ammonium rich wastewater [J]. Water Science and Technology,2001,44(1): 153-160.
    van Niftrik LA, Fuerst JA, Sinninghe Damsté JS, et al. The anammoxosome: an intracytoplasmic compartment in anammox bacteria [J]. FEMS Microbiology Letters, 2004, 233(1):7-13.
    Vlaeminck SE, Geets J, Vervaeren H, et al. Reactivation of aerobic and anaerobic ammonium oxidizers in OLAND biomass after long-term storage [J]. Applied Microbiology and Biotechnology, 2007, 74(6):1376-1384.
    Vogelsang C, Gollembiewski K, Ostgaard K. Effect of preservation techniques on the regeneration of gel entrapped nitrifying sludge[J]. Water Research, 1999, 33(1):164-168.
    Vbtyakova TV, Kaprelyants AS, Kell DB. Influence of viable cells on the resuscitation of dormant cells in Micrococcus luteus cultures held in an extended stationary phase: the population effect [J]. Applied and Environmental Microbiology, 1994,60(9): 3284-3291.
    
    Waki M, Tokutomi T, Yokoyama H, et al Nitrogen removal from animal waste treatment water by anammox enrichment [J]. Bioresource Technology, 2007,98: 2775-2780.
    
    Wang JL, Yang N. Partial nitrification under limited dissolved oxygen conditions [J]. Process Biochemistry,2004,39:1223-1229.
    Wei YJ,Li KA,Tong SY.A linear regression method for the study of the Coomassie brilliant blue protein assay[J].Talanta,1997,44(5):923-930.
    Wilhelm R,Abeliovich A,Nejidat A.Effect of long-term ammonia starvation on the oxidation of ammonia and hydroxylamine by Nitrosomonas europaea[J].Journal of Biochemistry,1998,124:811-815.
    Yang SF,Li XY,Yu HQ.Formation and characterisation of fungal and bacteria granules under different feeding alkalinity and pH conditions[J].Process Biochemistry,2008,43:8-14.
    Yarbrough JM,Rake JB,Eagon RG.Bacterial inhibitory effects of nitrite:inhibition of active transport,but not of group translocation,and of intracellular enzymes [J].Applied and Environmental Microbiology,1980,39(4):831-834.
    Yoshioka T,Yatsuka S.Photoinhibition and recovery of NH_4~+-oxidizing bacteria and NO_2~--oxidizing bacteria[J].Journal of General Applied Microbiology,1984,30:151-156.
    Zhang Y,Ruan XH,Op den Camp HJM,et al.Diversity and abundance of aerobic and anaerobic ammonium-oxidizing bacteria in freshwater sediments of the Xinyi River(China)[J].Environment Microbiology,2007,9(9):2375-2382.
    任杰,林炜铁,罗小春等.硝化菌保藏特性及衰减动力学研究[J].中国生物工程杂志,2007,27(12):61-65.
    刘占杰,华泽钊.蛋白质药品冷冻干燥过程中变性机理的研究进展[J].中国生化药物杂志,2000,21(5):263-265.
    卢刚,郑平.气升式内循环反应器短程硝化控制策略的研究[J].浙江大学学报(工学版),2005,39(4):542-546.
    吕红线,郭利美.工业微生物菌种的保藏方法[J].山东轻工业学院学报,2007,21(1):52-55.
    唐崇俭,郑平,陈建伟等.基于基质浓度的厌氧氨氧化工艺运行策略[J].化工学报,2009,60(3):718-725.
    姚槐应,黄昌勇.土壤微生物生态学及其实验技术[M].北京:科教出版社,2005,143-144.
    常金梅,蔡芷荷,吴清平等.菌种冷冻干燥保藏的影响因素[J].微生物学通报,2008,35(6):959-962.
    张蕾,郑平.厌氧氨氧化菌的特性与分类[J].浙江大学学报(农业与生命科学版),2009,35(5):473-481.doi:10.3785/j.issn.1008-9209.2009.05.001.
    李季伦,张伟心,杨启瑞等.微生物生理学[M].北京:北京农业大学出版社,1991.507-534.
    李旭丰,全球氮排放与氮污染[J].国外科技动态,2006,(3):33-38.
    王奕峰,金子辰,吴立梦.微生物菌(毒)种保藏及管理[J].上海预防医学杂志,2007,19(2):87-88.
    秦华明,宗敏华,梁世中.糖在蛋白质药物冷冻干燥过程中保护作用的分子机制[J].广东药学院学报,2001,17(4):305-307.
    蒲丽丽,刘宁,霍贵成.嗜热链球菌冻干保护剂保护作用的研究[J].食品科技,2007,(7):32-34.
    郑平,徐向阳,胡宝兰.新型生物脱氮理论与技术[M].北京:科学出版社,2004.14-71.
    郑平,冯孝善.废物生物处理[M].北京:高等教育出版社,2006,17-143.
    郑平,冯孝善.硝化作用的生化原理[J].微生物学通报,1999,26(3):215-220.
    郑平.环境微生物学实验指导[M].浙江:浙江大学出版社,2005,40-89.
    郭霭光.基础生物化学[M].北京:高等教育出版社,2004,197-199.
    金仁村.自养型生物脱氮反应器性能的研究[博士学位论文].杭州:浙江大学,2007:12-15.
    陈婷婷,郑平.硝化基质和产物对发光细菌的急性毒性[J].微生物学报:2009,49(6):759-765.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700