高效电渗析资源化处理电镀铬漂洗废水研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
六价铬,Cr(VI),毒性大,可以致癌、致畸、致突变。然而,Cr(VI)较贵重,具有很高的回收价值。因此,研发同步去除和回收Cr(VI)的资源化处理技术具有极大环境和经济意义。
     目前处理含Cr(VI)废水的方法有多种,这些方法各有优势,但均难以在高效去除Cr(VI)的同时,对Cr(VI)进行回收。本研究旨在对传统电渗析(ED)进行改进,通过多次折流并增加段数,实现从废水中高效同步去除与回收Cr(VI)。
     首先考察了所研发的多段多折流ED装置间歇净化含Cr(VI)废水的基本情况。结果表明,新型ED装置能够高效处理含Cr(VI)废水。Cr(VI)浓度可由原来的50-150mg╱L降至0.5mg╱L以下,典型条件下的电流效率高达30.9%,能耗为2.59kWh/molCr(VI)。在间歇处理研究基础上,系统考察了新型ED装置连续资源化处理含Cr(VI)废水的性能。结果表明,该装置可实现从废水中高效同步去除与回收Cr(VI)。处理后,淡室出水Cr(VI)浓度可由原来的50-150 mg╱L降至0.5mg╱L以下;与此同时,浓水出水Cr(VI)浓度可达10g╱L以上;电流效率与能耗分别为4.84-11.45%与2.24-6.97kWh/mol Cr(VI)。在连续运行状况下,还考察了电流、流量和进水Cr(VI)浓度对处理效果的影响,提出了一种优化系统运行的简易方法,即荷质比(CMR)控制法。结果表明,CMR与出水Cr(VI)浓度密切相关,且ED过程存在一个CMR最优值。根据CMR最优值,可以针对废水水质和流量的波动调整电流,确保ED高效率低能耗地连续稳定运行。
Hexavalent chromium,Cr(Ⅵ),is toxic,and can act as carcinogens,mutagens,and teratogens.However,Cr(Ⅵ) is expensive.Thus,it is significant to develop a technique of simultaneous removal and recovery of Cr(Ⅵ) for environmental pollution abatement and economic purpose.
     Currently,there are many methods available for the treatment of the wastewater containing ion Cr(Ⅵ),which have their own advantages.However,none of them can achieve simultaneous removal and recovery of Cr(Ⅵ) from wastewater.The major objective of this work is to remove and recover Cr(Ⅵ) efficiently from wastewater using an ED unit with multi baffles and multi stages.
     In order to investigate the basic performance for wastewater purification,the ED unit developed was operated in batch first.It was revealed that the ED unit with multi baffles and multi stages could treat the wastewater containing Cr(Ⅵ) efficiently. Concentration of Cr(Ⅵ) was reduced from the initial 50-150 mg/L to lower than 0.5mg/L under typical conditions.The current efficiency reached 30.9%,and the power consumption was only 2.59kWh/mol Cr(Ⅵ).With these results above,the ED unit was operated in a continuous mode.The results showed that Cr(Ⅵ) could be removed and recovered efficiently.After treatment,the concentration of Cr(Ⅵ) in the dilute effluent decreased from the initial 50-150 mg/L to lower than 0.5mg/L, while the concentration of Cr(Ⅵ) in the concentrated effluent was higher than 10g/L, with current efficiencies of 4.84-11.45%and power consumptions of 2.24-6.97kWh/mol Cr(Ⅵ) being obtained.The effects of current,flowrate and initial Cr(Ⅵ) concentration on the purification efficiency were also investigated,and a simple way to optimize the ED operation was proposed,which used a new concept of charge-mass ratio(CMR).The results showed that the Cr(Ⅵ) concentration in the effluent was highly dependent on CMR,and there was a optimal value for CMR under which the ED unit could be operated continuously,efficiently,economically and steadily by adjusting the current on the basis of the quality and the flowrate of the wastewater treated.
引文
[1]Brown,P.A.;Gill,S.A.;Allen,S.J.Metal removal from wastewater using peat,Water Res,2000,34:3907-3916.
    [2]http://www.samsco.com.cn/info/45740.htm,环球水网,2004年全国各工业行业废水排放及处理情况.2007.07.
    [3]Hu,J.;Lo,M.C.;Chen,G.H.Comparative study of various magnetic nanoparticles for Cr(Ⅵ) removal,Sep.Purif.Technol.,2007,56:249-256.
    [4]Sedman,R.M.;Beaurmont,J.;McDonald,T.A.;Reynolds,S.;Krowech,G.;Howd,R..Review of the evidence regarding the carcinogenicity of hexavalent chromium in drinking water,J.Environ.Sci.Heal.C.,2006,24:155-182.
    [5]Hu,J.;Lo,M.C.;Chen,G.H.Fast removal and recovery of Cr(Ⅵ) using surface-modified jacobsite(MnFe_2O_4) nanoparticles,Langmuir,2005,21:1173-1179.
    [6]Kavanaugh,M.C.Alternatives for groundwater cleanup,National Academy Press:Washington,DC,1994.
    [7]H Bode.[J].Wat.Sci.Tech.,1998,38:121-129.
    [8]胡凯、季永盛.含铬废水治理技术及应用现状.济南大学出版社:山东,2005.02.
    [9]EPA Control and Treatment Technology for the Metal Finishing Industry:Sulfide precipitation;EPA-625/8-80-003;U.S.Environmental Protection Agency:Cincinnati,OH,1980.
    [10]孟祥和,胡国飞.重金属废水处理[M].北京:化学工业出版社,2000.
    [11]Bolto,B.A.;Pawlowski,L.Wastewater treat by Ion-Exchange,Spoon:London,1987.
    [12]Chen G.H.Electrochemical technologies in wastewater treatment.Sep.Purif.Technol.2004,38,11-41.
    [13]Scholz,W.;Lucas,M.Techno-economic evaluation of membrane filtration for the recovery and reuse of tanning chemicals,Water Res.,2003,37: 1859-1867.
    
    [14] Audinos, R. Liquid waste concentration by electrodialysis, in: Li, N.N.; Calo, J.M.(Eds), Separation and Purification Technology, Marcel Dekker, New York, 1992.
    
    [15] Mahmoud, A.; Muhr, L.; Vasiluk, S.; Aleynikoff, A.; Lapicque, F. Investig ationof transport phenomena in a hybrid ion exchange-electrodialysis system for the removal of copper ions, J. Appl. Electrochem., 2003, 33: 875-884.
    
    [16] Yeon, K.H.; Song, J.H.; Moon, S.H. A study on stack configuration of continuous electrodeionization for removal of heavy metal ions from the primary coolant of a nuclear power plant, Water Res., 2004, 38: 1911-1921.
    
    [17] 黄瑞光.21世纪电镀废水的发展趋势[J].电镀与精饰,2002,24(3):1-2.
    
    [18] Pourcelly, G; Marquinez, R.; Bauer, B. Lopez. R; Viala, S.; Mahiout, A; Istvan, G Acid chromic recycling from rinse water in galvanic plants by electro-elcreodialysi. Workshop on Environmentally Clean Technologies for Sustainable Production and Consumption,Vancouer, Canada,Canmet-Cari-European Cornmision,2003.
    
    [19] Butler, J.N. Ionic Equilibrium, Addison-Wesley: New York, 1967.
    
    [20] Sengupta, A.K.; Clifford, D. Important process variables in chromate ion exchange, Environ. Sci. Technol., 1986, 20: 149-155.
    
    [21] Park, D.H.; Yun, Y.S.; Park, J.M. Reduction of hexavalent chromium with the brown seaweed Ecklonia biomass, Environ. Sci. Technol., 2004, 38: 4860-4864.
    
    [22] Patterson, J.W.; Passino, R. Metals Separation and Recovery, Lewis Publishers: Chelsea, MI, 1987.
    
    [23]Patterson, R.R.; Fendorf, S.; Fendorf, M.J. Reduction of hexavalent chromium by amorphous ion sulfide, Environ. Sci. Technol., 1997, 31: 2039-2044.
    
    [24] Wikoff, P.M.; Suciu, D.F. Society for the Advancement of Material and Process Engineering, California, 299-311, Conf. on Environment in the 1990s-A global concern, San Diego, CA, USA, May, 1991: 21-23.
    
    [25] Gloub, D; Oren, Y. Removal of chromium from aqueous solutions by treatment with porous carbon electrodes:electrochemical principles.J.Appl.Electrchem.,1989,19:211-218.
    [26]李英杰,纪智玲,侯凤等.2005.活性炭吸附法处理含铬废水的研究[J].沈阳化工学院学报,19(3):184-187.
    [27]Valix M,Cheung W H,Zhang K.Role of heteroatoms inactivated carbon for removal of hexavalent chromium from waste waters[J].J Hazard Mater,2006,Inpress.
    [28]马少健,刘盛余,胡治流,等.2004.钢渣吸附剂对铬和铅重金属离子的吸附特性研究[J].有色矿冶,20(4):57-59.
    [29]韩毅,王京刚,唐明述.2005.用改性赤泥吸附废水中的六价铬[J].化工环保,25(2):132-136.
    [30]隋国舜,廖立兵,胡鸿佳.2005.低聚合羟基铁离子-蛭石复合体吸附铬的实验研究[J].矿物岩石,25(3):131-136.
    [31]Acar,F.N.;Malkoc,E.The removal of chromium(Ⅵ) from aqueous solutions by Fagus orientalis L,Bioresourc.Technol.,2004,94:13-15.
    [32]Pumpel,T.;Schinner,F.Native fungal pellets as a biosorbents for heavy metals,FEMS Microbiological Review,1993,11:159-164.
    [33]Brady,D.;Stoll,A.;Duncan,J.R.Biomass of heavy metal cation by non viable yeast biomass,J.Environ.Technol.,1994,15:429-437.
    [34]Kratochvil,D.;Pimentel,P.;Volesky,B.Removal of trivalent and hexavalent chromium by seaweed biosorbent,Environ.Sci.Technol.,1998,32:2693-2698.
    [35]Bolto,B.A.Wastewater treatment by ion-exchange,Spoon:London,1987.
    [36]姜志新,谌竟清,宋正孝.离子交换分离工程,天津大学出版社:天津,1992.
    [37]钱庭宝.离子交换剂应用技术.天津科学技术出版社:天津,1984.
    [38]王绍文,姜凤有.重金属废水治理技术.冶金工业出版社:北京,1993.
    [39]Petruzelli,D.;Passino,R.;Tiravanti,G.Ion exchange process for chromium removal and recovery from tannery wastes,Ind.Eng.Chem.Res.,1995,34: 2612-2617.
    [40]Brower,J.B.;Ryan,R.L.;Pazirandeh,M.Comparison of ion-exchange resins and biosorbents for the removal of heavy metals from plating factory wastewater,Environ.Sci.Technol.,1997,31:2910-2914.
    [41]Terry,P.A.Characterization of Cr ion exchange with hydrotalcite,Chemosphere,2004,57:541-546.
    [42]Rengaraj,S.;Yeon,K.H.;Moon,S.H.Removal of Cr(Ⅵ) from water and wastewater by ion exchange resin,J.Hazard.Mater.,2001,87:273-287.
    [43]Gode,F.;Pehlivan,E.Removal of Cr(Ⅵ) from aqueous solution by two Lewatit-anion exchange resins,J.Hazard.Mater.,2005,B119:175-182.
    [44]Sapari,N.;Idris,A.;Hamid,N.H.A.Total removal of heavy metal from mixed plating rinse wastewater,Desalination,1996,106:419-422.
    [45]Tenorio,J.A.S.;Espinosa,D.C.R.Treatment of chromium plating process effluents with ion exchange resins,Waste Manage.,2001,21:637-642.
    [46]Drela,I.Recovery of chromium and zinc from wastewater by ion exchange,Rudy Met.Niezelaz.,1996,41:321-323.
    [47]Lin,S.H.;Kiang,C.D.Chromic acid recovery from waste acid solution by an ion exchange process:equilibrium and colunm ion exchange modeling.Chem.Eng.J.,2003,92:193-199.
    [48]马业英.郑洁修.王成瑞.铁粉、铸铁粉及磁性铸铁净化含铬电镀废水的比较研究:1990(2).
    [49]冯玉杰,李晓岩,尤宏,等.电化学技术在环境工程中的应用.北京:化学工业出版社,2002,128-130.
    [50]Xing Y.Q.,X.M.Chen,P.D.Yao,D.H.Wang.Continuous electrodeionization for removal and recovery of Cr(Ⅵ) from wasterwater.Separation and Purification Technology,2009,67:123-126.
    [51]Laxman R S,More S.2002.Reduction of hexavalentchromium by Streptomyces griseus[J].Miner Eng,15(11):831-837.
    [52]叶锦韶,尹华,彭辉,等.高效生物吸附剂处理含铬废水[J].中国环境科学,2005,25(2):245-248.
    [53]Choo T P,Lee C K,Low K S,et al..Accumulation of chromium(Ⅵ) from aqueous solutions using water lilies(Nymphaea spontanea)[J].Chemosphere,2006,62(6):961-967.
    [54]李健,张惠源,尔丽珠.电镀重金属废水治理技术的发展现状(Ⅲ).电镀与精饰,2003,25(5):31-34.
    [55]Bodalo,A.;Gomez,J.L.;Gomez,E.;Maximo,M.F.;Hidalgo,A.M.Application of reverse osmosis to reduce pollutants present in industrial wastewater,Desalination,2003,155:101-108.
    [56]Cassano,A.;Molinari,M.;Romano,M.;Drioli,E.Treatment of aqueous effluents of the leather industry by membrane processes:A review,J.Membr.Sci.,2001,181:111-126.
    [57]Scholz,W.;Bowden,W.Application of membrane technology in the tanning industry,Leather,1999,201:17-24.
    [58]Bodalo,A.;Gomez,J.L.;Gomez,E.;Hidalgo,A.M.;Aleman,A.Viability study of different reverse osmosis membranes for application in the tertiary treatment of wastes from the tanning industry,Desalination,2005,180:277-284.
    [59]Hafez,A.I.;EI-Manharawy,M.S.;Khedr,M.A.RO membrane removal of unreacted chromium from spent tanning effluent.A pilot-scale study,Part 2,Desalination,2002,144:237-242.
    [60]Rodriguez,J.J.;Jimenez,V.;Trujillo,O.;Veza,J.M.Reuse of reverse osmosis membranes in advanced wastewater treatment,Desalination,2002,150:219-225.
    [61]Maigrot,E.;Sabates,J.,Germ.Patent 50443,1890.
    [62]Schollmeyer,G.,Germ.Patent 109589,1900.
    [63]Morse,H.N.;Pierce,J.A.,Z.Phys.Chem.,1903,45:589-592.
    [64]Pauli,W.Biochem.Z.Phys.Chem,1924,152-355.
    [65]Teorell,T.Transport process and electrical phenomena in ionic membranes,Prog.Biophysics.,1953,3:305-369.
    [66]Donnan,F.G.Theory of membrane equilibrium and membrane potanial in the presence of non-dialysing electrolytes.A contribution to physical-chemical physiology,Z.Electrochem.Angewandt Phys.Chem.,1911,17:572-581.
    [67]Shaposhnik,V.A.Evolution of the membrane electrochemistry,Rus.J.Electrochem.,2002,38:800-805.
    [68]Shaposhnik,V.A.;Kesore,K.An early history of electrodialysis with permselective membranes,J.Membr.Sci.,1997,136:35-39.
    [69]Juda W.McRae W A.Coherent non-exchange gels and membranes[J].J.Am Chem.1950,72:1044.
    [70]V.Grebenyuk,O.Grebenyuk.[J].Russian jounal of Electrochemistry.,2002,38:906-910.
    [71]黄万抚,等.电渗析技术发展应用研究进展[J].中国资源综合利用,2003,(11):17.
    [72]徐传宁.电渗析处理含铬废水[J].净化技术,1993,(2):25-27.
    [73]Q.H.Zuo,X.M.Chen,W.Li,G.H.Chen.Combined electrocoagulation and electroflotation for removal of fluoride from drinking water,Journal of Hazardous Materials,2008,159(2-3):452-457.
    [74]邵刚.膜法水处理技术(第2版)[M].北京:冶金工业出版社,2001.
    [75]胡宏.水污染控制工程实验[M].杭州:内部讲义,2008.
    [76]Greenberg,A.E.;Clesceri,L.S.;Eaton,A.D.Standard Methods:For the Examination of Water and Wastewater,18th ed.,APHA,1992.
    [77]Kedem.O,Kohen.J.Warshawasky.A.Desalination,1983.462291.
    [78]Millipore Product Bulletin,Lit.No.Ciool,1997.
    [79]谭翎燕,靳会杰.离子交换膜技术处理冶金工业废液的研究与应用.工业水 处理,2002,22(11):10-12.
    [80]徐传宁.电渗析法净化镀铬漂洗废水的研究.净水技术,1993,44(2):25-27.
    [81]邢云青.EDI法去除及回收废水中Cr(Ⅵ)的研究[J].CNKI中国博士学位论文全文数据库.2008.
    [82]Baral,A.;Engelken,R.D.Chromium-based regulations and greening in metal finishing industries in the USA,Environ.Sci.Pol.,2002,5(2):121-133.
    [83]Cohen Hubal,E.A.;Overcash,M.R.Net-waste-reduction analysis applied to zero-water discharge system for chromic acid electroplating,J.Cleaner Prod.,1995,3(3):161-167.
    [84]曹连城.关于电渗析器耗电量的分析[J].湖北化工,1998,(2):33-34.
    [85]Xing,Y.Q.;Chen,X.M.;Yao,P.D.;Wu,H.;Wang,D.H.Continuous electrodeionization for removal and recovery of Cr(Ⅵ) from wastewater,Separation and Purification Technology,2009.
    [86]Pourcelly,G.;Boudet-Dumy,M.;Lindheimer,A.;Gavach,C.Transport of protons in polymeric ionic exchange membranes in relation with the dissociated sorbed acid,Desalination,1991,80:193-200.
    [87]Pourcelly,G.;Tugas,I.;Gavach,C.Electrotransport of sulphuric acid in special anion exchange membranes for the recovery of acids,J.Mem.Sci.,1994,97:99-107.
    [88]Sarmaitis,R.;Dikinis,V.;Rezaite,V.;Stazukaitis,V.Distribution of Cr(Ⅵ)particles in acid solutions,Plat.Surf.Finish.,1996,83:60-63.
    [89]Sarmaitis,R.;Dikinis,V.;Rezaite,V.Equilibrium in solutions of chromic acid,Plat.Surf.Finish.,1996,83:53-57.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700