利用退浆废水发酵生产脂肽及其在染整工艺上的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微生物代谢产生的脂肽类生物表面活性剂具有表面活性强、生物降解性好等特性,在化妆品、环境、医药、食品和纺织等领域呈现出潜在的应用价值。然而,脂肽类生物表面活性剂的产量低,分离纯化困难,生产成本高,在很大程度上限制了其广泛的应用。本论文以产生脂肽的枯草芽孢杆菌(Bacillus subtilis HSO121)为出发菌株,利用染整工业的退浆废水作为枯草芽孢杆菌生长的碳源,配制成发酵培养基发酵生产脂肽。然后通过减少分离纯化步骤的方法得到脂肽粗品,并探索了其在各染整工艺上的应用。
     取商用的淀粉浆料作为菌种生长的碳源,以菌浓、脂肽产量和无菌发酵液表面张力为评价参数,采用单因素和正交实验的方法对Bacillus subtilis HSO121产脂肽的培养条件进行优化,在最优培养基上培养,脂肽产量由初始的0.67 g/l提高到1.24 g/l。
     研究了退浆废水中各主要成分对脂肽产量的影响,结果表明培养基中NaCl在10g/l以下时对菌种生长代谢产生促进作用;培养基中渗透剂JFC不超过0.1 g/l时也会对脂肽的代谢产生促进作用;浆料中PVA少量的存在,不会对菌体的生长代谢产生明显的影响,但PVA应占浆料的30%以下。
     取预处理好的退浆废水按照最优培养基配方配制成发酵培养基。菌种在退浆废水培养基中生长良好,脂肽产量达到了1.03g/l。此外,退浆废水培养基在发酵前其COD为41360 mg/l,发酵后废液的COD为22880 mg/l,COD值降低了近一半。
     在退浆废水培养基中发酵产生的脂肽经分离提纯后,薄层层析和红外光谱的实验结果表明该发酵产物为环状的脂肽类生物表面活性剂。产物带电性检测结果为阴离子表面活性剂。产物对液体石蜡的乳化能力很强,24小时后的乳化指数为83%,且具有很高的乳化稳定性。该脂肽具有很低的临界胶束浓度,其CMC值为50 mg/l,此时的表面张力值为28.53 mN/m。
     经活性炭脱色后的脂肽粗制品作为活性染料染色织物皂洗剂的实验中。皂洗的试样为50%水解率的活性黄3RS和活性蓝BRF染色后的府绸织物,得到了pH值为9,脂肽浓度为0.05g/l,皂洗温度为75℃的最佳皂洗工艺条件。脂肽类生物表面活性剂对活性红3BS,活性黄3RS,活性蓝BRF染色的织物都具有很好的皂洗效果。与皂片皂洗效果相比,脂肽去除浮色的能力更强,湿摩擦牢度提高了近1个等级,而且脂肽皂洗所需温度更低,用量更少,更加地节能环保。
     脂肽粗制品作为织物抗菌剂的实验中,利用抑菌圈法和振荡法对脂肽整理后织物抗菌性能进行测试。抑菌圈法中,经抗菌整理的织物对于金黄色葡萄球菌和大肠杆菌的抑菌圈宽度分别为1.4 mm和2.1 mm,两个抑菌圈宽度D>1 mm,说明脂肽整理的织物为溶出型抗菌织物,且抗菌效果好。振荡法实验中,对金黄色葡萄球菌的抑菌率为82.17%,对大肠杆菌的抑菌率为84.02%,说明织物经脂肽整理后,具有很好的抗菌效果。
     脂肽作为羊毛织物的柔软整理剂实验中,没有经脂肽柔软整理的空白羊毛织物的弯曲长度为18.9 mm,经过脂肽柔软整理的羊毛织物的弯曲长度为13.7 mm。这表明了经脂肽柔软整理后羊毛织物的弯曲长度有了明显的降低,羊毛织物的柔软性能得到了改善。
Lipopeptides have gained more and more attention due to their excellent surface activities, biodegradability, low toxicity, and environmentally friendly. Lipopeptides exhibited potential applications in cosmetic, environmental fields, biomedicine, food and textile industry. However, its applications have been restricted to a great extent because of their low yields and complex purification procedures and high costs. In this dissertation, we reported the production of lipopeptides using desizing wastewater as alternative carbon source by Bacillus subtilis HSO121, and discussed the applications of crude lipopeptides in Dyeing & Finishing technology after simplifying purification procedures.
     In this paper, we used the commercial starch as carbon source. Single factor test and orthogonal experiment were used to optimize the production of lipopeptides by Bacillus subtilis HSO121. The biomass, lipopeptides yields and reduced surface tension values were selected as evaluating parameters. Grown in the optimized medium, lipopeptides yields improved from 0.67 g/L to 1.24 g/L.
     The effects of main composition in the desizing wastewater on lipopeptides yields were investigated. The results demonstrated that the concentration of NaCl less than 10g/l and the concentration of penetrant JFC less than 0.1 g/l in medium could contribute to growth and metabolism of bacteria, a small amount of PVA had no significant effect on growth and metabolism of bacteria, but PVA should less than 30% in sizing agent.
     Bacillus subtilis HSO121 grew well in the desizing wastewater medium, which prepared by pretreated desizing wastewater according to the optimized medium, the yields of lipopeptides attained 1.03 g/L. Moreover, the Chemical Oxygen Demand of the desizing wastewater after cultivation reduced by half compared with before cultivation, decreased from 41360 mg/L to 22880 mg/L.
     The lipopeptides were separated and extracted from the desizing wastewater medium after cultivation, and characterized by thin layer chromatography (TLC) on silica gel and infrared ray (IR) analysis. The charged detection for lipopeptides was anionic-surfactant. Emulsification activity of the lipopeptides from Bacillus subtilis HSO121 was measured with water-immiscible substrates. The results show that the lipopeptides had high emulsification activity and emulsification stability against liquid paraffin. After 24 hours the emulsification index was 83%. The CMC of the lipopeptides was approximately 50 mg/L, and the lipopeptides reduced the surface tension of the water from 72 to 28.53mN/m.
     In order to reduce the cost used, the crude lipopeptides were prepared by discoloring. The crude lipopeptides as soaping agents in soaping process were investigated. The test sample was poplin dyed with partially hydrolyzed reactive red 3BS, reactive yellow 3RS and reactive blue BRF. The optimal soaping process was obtained: pH=9, 0.05g/L of lipopeptides, at 75°C. Regardless of dyeing by partially hydrolyzed reactive red 3BS, reactive yellow 3RS or reactive blue BRF, the results of soaping with lipopeptides were better than traditional soaping process. Compared with traditional soaping process, lipopeptides soaping showed higher efficient, higher colorfastness, more energy-efficient and more environmentally friendly.
     The crude Lipopeptides as fabric antibacterial agents were investigated. In the agar diffusion plate method, the fabric after antibacterial finish showed a large and clear inhibition zone on solid agar medium against E. coli and S. aureus, the width of the inhibition zone was 2.1 mm and 1.4 mm respectively. It indicated that the fabric after antibacterial finish was leaching type antibacterial fabric, and had good antibacterial effect. In the shake flask method, the finished fabric showed over 84.02% bacterial reduction against E. coli, and over 82.17% bacterial reduction against S. aureus. It is well recognized that lipopeptides has good antimicrobial activity.
     The crude Lipopeptides as fabric softener were investigated. The bending length of wool fabric before softening finishes was 18.9 mm and after softening finishes was 13.7 mm. The results showed that lipopeptides as softener improved performance of wool soft.
引文
[1]Greek BF.Sales detergents growing despite recession[J].Chem.Eng.News,1991,69:25-32.
    [2]张天胜等.生物表面活剂及其应用[M].北京:化学工业出版社.2005:1-382.
    [3]Bant I M,Makkar R S,Cameotra S S.Potential commercial applications of microbial surfactants[J].Appl Microbiol Biotechnol,2000,53:495-508.
    [4]Arima K,Tamura G,Kakinuma A,Surfactin:US Patent 3,687,926[P],1970-07-01.
    [5]Yoneda T,Tsuzuki T,Ogata E,et al.Surfactin sodium salt:an excellent bio-surfactant for cosmetics[J].Cosmet Sci,2001,52:153-154.
    [6]Grangemard I,Wallach J,Peypoux F.Evidence of surfactin hydrolysis by a bacterial Endoprotease[J].Biotechnol Lett,1999,21:241-244,
    [7]Mukherjee S,Das P,Sen R.Towards commercial production of microbial surfactants [J].Trends Biotechnol,2006,24:509-515.
    [8]Makkar R S,Cameotra S S.An update on the use of unconventional substrates for biosurfactant production and their new applications[J].Appl Microbiol Biotechnol,2002,58:428-434.
    [9]Brown M J.Biosurfactants for cosmetic applications[J].Int J Cosmet Sci,1991,13:61-64.
    [10]Schaller K D,Fox S L,et al.Characterization of surfactin from Bacillus subtilis for application as an agent for enhanced oil recovery[J].Appl Biochem Biotechnol,2004,113-16:827-836.
    [11]Banat I M,Makkar R S,Cameotra S S.Potential commercial applications of microbial surfactants[J].Appl Microbiol Biotechnol,2000,53:495-508.
    [12]Nitschke M,Costa S G V A O.Biosurfactants in food industry[J].Trends Food Sci Technol,2007,18:252-259.
    [13]Mulligan C N.Environmental applications for biosurfactants[J].Environ Pollut,2005,133:183-198.
    [14]E.Montoneri et al.Use of biosurfactants from urban wastes compost in textile dyeing and soil remediation[J].Waste Management,2009,29:383-389.
    [15]Jarvis,F.G,and M.J.Johnson.A glycolipid produced by pseudomonas aeruginosa[J].Am.Chem.Soc,1949,71:4124-4126.
    [16]Lang,S.,and F.Wagner.Structure and properties of biosurfactants[J].Biosurfactants and bioteehnology,Marcel Dekker,Inc,1987:21-47.
    [17]Sarkat,A.K.,J.C.Goursand et al.A critical evaluation of MEOR process[J].In Situ,1989,13: 207-238.
    [18]Horowitx,S.,and J.K.Currie.Novel dispersants of silicon carbide and aluminium nitride[J].Dispersion Sci.Technol,1990,11:637-659.
    [19]Robert.M,M.E.Mercade et al.Effect of the carbon source on biosurfactant production by Pseudomonas aeruginosa 44TI[J].Biotechnol.Lett.,1989,11:871-874.
    [20]Navonvenezia.S.,Z.Zosim et al.A new bioemulsifier from Acinetobacter radioresistens[J].Appl.Environ.Microbiol,1995,61:3240-3244.
    [21]Cameron,D.R.,D.G.Cooper and R.J.Neufeld.The mannoprotein of Saccharomyces cerevisiae is an effective bioemulsifier[J].Appl.Environ.Microbiol,1988,54:1420-1425.
    [22]Kappeli.O.,P.Walther,M.Mueller et al.Structure of the cell surface of the yeast and its relation to hydroearbon transport[J].Arch Microbiol.1984,138:279-282.
    [23]Jitendra D.Desai,Ibrahim M.Banat.Microbial production of surfactants and their commercial potential[J].Microbiol Mol Biol Reviews.1997,61(1):47-64.
    [24]吕应年,杨世忠,牟伯中.脂肽类生物表面活性剂的研究进展[J].生物技术通报,2004,(6):11-16.
    [25]Arima K,Kakinuma A,Tamura G.Surfactin a crystalline peptidelipid surfactant produced by Bacillus subtilis isolation,characterization and its inhibition of fibrin clot formation[J].Biochemical and Biophysical Research Communication,1968,31(3):488-494.
    [26]方传记.Bacillus amyloliquefaciens ES-2-4产抗菌脂肽发酵工艺的优化及产物的分离[D].南京农业大学硕士学位论文.2007.
    [27]Marikawa M,Ito M and Imanaka T.Isolation of a new surfactin producer Bacillus pumilus A-1 and cloning and nucleotide sequence of the regulator gene,psf-1[J].Journal of Fermentation and Bioengineering,1992,74:216-255.
    [28]Horowitz S,Griffin W M.Structural analysis of Bacillus licheniformis 86 surfactant[J].Journal of Industrial Microbiology and Biotechnology,1991,7:45-52.
    [29]Nishikori T,Naganawa H,Muraoka Y,et al.Plipastatins:new inhibitors of phospholipase A2,produced by Bacillus cereus BMG302-fF67.Ⅲ.Structural elucidation of plipastatins[J].The Journal of Antibiotics,1986,39:755-761.
    [30]Chung Y R,Kim C H,Hwang I,et al.Paenibacillus koreensis sp.a new species that produces an iturin-like antifungal compound[J].International Journal of Systematic and Evolutionary Microbiology,2000,50:1495-1500.
    [31]Perez C,Suarez C,Castro G R.Antimicrobial activity determined in strains of Bacillus circulans cluster[J].Folia of Microbiology,1993,38:25-28.
    [32]Vander Vegt,W.H.C.Vander Mei,J.Noordmans et al.Assessment of bacterial biosurfactant Production through axisymmetric drop shape analysis by Profile[J].Appl Microbial Biotechnol.1991,30:6503-6508.
    [33]Shulga,A.N.,E.V.Karpenko et al.The method for determination of anionogenic bacterial surface-active peptidolipids[J].Microbiol,1993,55:85-88.
    [34]Matsuyama,T.,M.Sogawo.and I.Yano.Direct colony thin-layer chromatography and rapid characterization of Serrati marcescens mutants detective in Production wetting agents[J].Appl.Envion.Microbial.1991,53:1186-1187.
    [35]Coope,D.C,B.G.Goldenberg.Surface active agents from two Bacillus species[J].Appl.Environ.Mierobol.1987,53:224-229.
    [36]Sung-Chyr Lin,Kuo-Ging Lin,Chih-Chen Lo et al.Enhanced biosurfactant production by Bacillus licheniformis mutant[J].Enzyme Microbiol Technol,1998,23:267-273.
    [37]Kim H-S,Yoon B-D,Lee C-H,et al,Production and properties of a lipopeptide biosurfactant from Bacillus subtilis C9[J].Ferment Bioeng,1997,84:41-46.
    [38]Syldatk,C.,S.Lang,U.Matulovie,and F.Z.Wagner.Production of four interracial-active thamnolipids from n-alkanes or glycerol by resting cells of Pseudomonas sP.DSM 2874[J].Z.Naturforsch.1985,40C:61-67.
    [39]Edmonds.P.,and J.J.Cooney.LiPids of pseudomonas aeruginosa cells grown on hydrocarbons and on trypticase soybean broth[J].Baeteriol.1969,98:16-22.
    [40]Mulligan C N,Cooper D G,Neufeld R J.Selection of microbes producing biosurfactants in media without hydrocarbons[J].Journal of fermentation technology,1984,62:311-314.
    [41]Fox S L,Brehm M A,Robertson E P,et al.Comparative analysis of microbially mediated oil recovery by surfactants produced by Bacillus licheniformis and Bacillus subtilis[J].Developments in Petroleum Science,1993,pp:143-150.
    [42]Cooper D G,Macdonald C R,et al.Enhanced production of surfactin from Bacillus subtilis by continuous product removal and metal cation additions[J].Appl Environ Microbiol,1981,42:408-412.
    [43]Davis D A,Lynch H C,Varley J.The production of surfactin in batch culture by Bacillus subtilis ATCC 21332 is strongly influenced by the condtions of nitrogen metabolism[J].Enzyme Microb Technol,1999,25:322-329.
    [44]Duvnjak,Z.,D.G.Cooper,and N.Kosaric.Effect of nitrogen source on surfactant production by Arthrobacter paraffines ATCC19558[J].Micobial enhanced oil recovery,1983,66-72.
    [45]Peypoux,F.,and G.Michel.Control biosynthesis of Val-7 and Leu-7 surfactins[J].Appl.Microbiol.Biotechnol,1992,36:515-517.
    [46]Sheppard,J.D.,Mulligan,C.N.The production of surfactin by Bacillus subtilis grown on peat hydrolysate[J].Appl.Microbiol.Biotechnol,1987,27:110-116.
    [47]Marcia Nitschke,Glaucia Maria Pastore.Production and properties of a surfactant obtained from Bacillus subtilis grown on cassava wastewater[J].Bioresour Technol,2006,97:336-341.
    [48]Fox,S.L.,Bala,G.A.Production of surfactant from Bacillus subtilis ATCC 21332 using potato substrates[J].Bioresour.Technol,2000,75:235-240.
    [49]Makkar,R.S.,Cameotra,S.S.Utilization of molasses for biosurfactant production by two Bacillus strains at thermophilic conditions[J].Am.Oil Chem.Soc,1997b,74:887-889.
    [50]Ohno A,Aao T,Shoda M,et al.Use of soybean curd residue,okara,for the solid state substrate in the production of a lipopeptide antibiotic,iturin A,by Bacillus subtilis NB22[J].Process Biochemistry,1996,31:801-806.
    [51]Ohno A,Aao T,Shoda M,et al.Production of a lipopeptide antibiotic,surfactin,by recombinant bacillus subtillis in solid-state fermentation[J].Biotechnology and Bioengineering;,1995,47:209-214.
    [52]刘向阳.Bacillus subtilis HSO121产生的脂肽结构和生物活性的研究[D].华东理工大学学位论文,2008.
    [53]Bodour A A,Miller-Maier R M.Application of a modified drop-collapse technique for surfactant quantitation and screening of biosurfactant-producing microorganisms[J].Microbiol Methods,1998,32:273-280.
    [54]Ramkrishna S.Response surface optimization of the critical media components for the production of surfactin[J].Chem Technol Biotechnol,1997,68:263-270.
    [55]Moran A C,Martinez M A,Sineriz F.Quantification of surfactin in culture supernatants by hemolytic activity[J].Biotechnol Lett,2002,24:177-180.
    [56]Vater J.Lipepeptides,an attractive class of microbial surfactants[J].Progr Colloid Polymer Sci,1986,72:12-18.
    [57]陈涛,杨世忠,牟伯中.微生物发酵液中脂肽类生物表面活性剂的测定[J].油田化学,2004.21:385-390.
    [58]Youssef N H,Duncan K E,Nagle D P,et al.Comparison of methods to detect biosurfactant production by diverse microorganisms[J].Microbiol Methods,2004,56:339-347.
    [59]张凡,余跃惠.排油圈法对生物表面活性剂的定性与定量[J].化学工程师,2005,1:14-16.
    [60]Kalinovskaya N I,Kuznetsova T A,Ivanova E P,et al.Characterization of surfactin-like cyclic depsipeptides synthesized by Bacillus pumilus from ascidian Halocynthia aurantium [J].Mar Biotechnol,2002,4:179-188.
    [61]Batrakov S G,Rodionova T A,et al.A novel lipopeptide,an inhibitor of bacterial adhesion,from the thermophilic and halotolerant subsurface Bacillus licheniformis strain 603[J].Biochim Biophys Acta,2003,1634:107-115.
    [62]Borders D B,Francis N.D.,Fantini A.A,Extractive purification of lipopeptide antibiotics[P]:WO patent no.02/055537/Al,2002-7-18.
    [63]Mulligan C N,Gibbs B F,Recovery of biosurfactants by ultrafiltration[J].Chem Technol Biotechnol,1990,47:23-29.
    [64]Lin S-C,Jiang H-J.Recovery and purification of the lipopeptide biosurfactant of Bacillus subtilis by ultrafiltration[J].Biotechnol Tech,1997,11:413-416.
    [65]Huei-Li Chen,Ying-Shr Chen,Ruey-Shin Juang.Recovery of surfactin from fermentation broths by a hybrid salting-out and membrane filtration process[J].Separation and Purification Technology,2008,59:244-252.
    [66]傅海燕,曾光明 等.生物表面活性剂的分离提纯及其发展前景[J].生物学杂志,2003,06:01-04.
    [67]Davis D A,Lynch H C,Varley J.The application of foaming for the recovery of Surfactin from B.subtilis ATCC 21332 culture[J].Enzyme and Microbial Technology,2001,28:346-354.
    [68]Kim S Y,Kim J Y,et al.Surfactin from Bacillus subtilis displays anti-proliferative effect via apoptosis induction,cell cycle arrest and survival signaling suppression[J].FEBS Lett,2007,581:865-871.
    [69]刘向阳,杨世忠,牟伯中.微生物脂肽的结构[J].生物技术通报,2005,4:18-26.
    [70]Gao X W,Yao S Y,et al.Lipopeptide antibiotics produced by the engineered strain Bacillus subtilis GEB3 and detection of its bioactivity[J].Sci Agri Sin,2003,36:1496-1501.
    [71]Tsukagoshi N,Tamura G,Arima K.A novel protoplast-bursting factor(surfactin) obtained from Bacillus subtilis IAM 1213.I.effects of surfactin on Bacillus megaterium KM[J].Biochim Biophys Acta,1970,196:204-210.
    [72]Makkar R S,Cameotra S S,,Structural characterization of a biosurfactant produced by Bacillus subtilis at 45℃[J].Surfactants Deterg,1999,2:267-372.
    [73]Youssef N,Simpson D R,et al.In situ biosurfactant production by Bacillus strains injected into a limestone petroleum reservoir[J].Appl Environ Microbiol,2007,73:1239-1247.
    [74]Marsh T L.Mechanisms of microbial oil recovery by clostridium acetobutylicum and bacillus strain JF-2[C].Microbial Enhanced Oil Recovery & Related Biotechnol For Solving Environmental Rrobal INF CONF PROC(US Doerep No conf-9509173),1995,393-610.
    [75]Steller S,Vollenbroieh D,Leenders F,et al.Structural and functional organization of the fengycin synthetase multienzyme system from Bacillus subtilis b213 and A1/3[J].Chemistry and Biology,1999,6:31-41.
    [76]Haneoek R W,Chapple D.Peptide antibiotic[J].Antimicribial Agents and Chemotherapy,1999,1317-1323.
    [77]左晶,王学川.生物表面活性剂的应用[J].化学工业与工程技术,2005,26:23-26.
    [78]Nielsen T H,Thrane C,Charistophersen C,et al.Structure,production characteristics and fungal antagonism of tensin-a new antifungal cyclic lipopeptide from pseudomonas fluorescens strain 96.578[J].Appl Microbiol,2000,89:992-1001.
    [79]Kim P I,Bai H,Bai D,et al.Purification and characterization of a lipopeptide produced by Bacillus thuringiensis CMB26[J].Appl Microbiol,2004,97:942-949.
    [80]高学文,姚仕义等.Bacillus subtilis B2菌株产生的表面活性素变异体的纯化和鉴定[J].微生物学报,2003,43(5):647-652.
    [81]Yu G Y,Sinclair J B,et al.Production of iturin A by Bacillus amyloliquefaciens suppressing Rhizoctonia solani[J].Soil Biology and Biochemistry,2002,34:955-963.
    [82]Mulligan C N,Yong R N,Gibbs B F.Heavy metal removal from sediments by biosurfactants [J].Hazard Mater,2001,85:111-125.
    [83]Mulligan C N,Yong R N,et al.Metal removal from contaminated soil and sediments by the biosurfactant surfactin[J].Environ Sci Technol,1999,33:3812-3820.
    [84]E.Montoneri,et al.Use of biosurfactants from urban wastes compost in textile dyeing and soil remediation[J].Waste Management,2009,29:383-389.
    [85]Xiao-Bo Gu,Zong-Ming Zheng et al.Optimization of medium constituents for a novel lipopeptide production by Bacillus subtilis MO-01 by a response surface method[J].Process Biochemistry,2005,40:3196-3201.
    [86]A.Mohammad Abdel-Mawgoud,M.Mabrouk Aboulwafa et al.Optimization of Surfactin Production by Bacillus subtilis isolate BS5[J].Appl Biochem Biotechnol,2008,150:305-325.
    [87]R.R.FONSECA,A.J.R.SILVA,Optimizing Carbon/Nitrogen Ratio for Biosurfactant Production by a Bacillus subtilis Strain[J].Applied Biochemistry and Biotechnology,2007,136-140:471-486.
    [88]吕应年.生物表面活性剂产生菌的诱变及产物研究[D].华东理工大学硕士论文,2004.
    [89]Liu Xiang-Yang,Haddad Namir,Yang Shi-Zhong,Mu Bo-Zhong.Structural characterization of eight cyclic lipopeptides produced by Bacillus subtilis HSO121[J].Protein Peptide Lett,2007,14:766-773.
    [90]丁立孝.脂肽生物表面活性剂的发酵生产及其结构、性质研究[D].浙江大学博士学位论文,2004.
    [91]罗建红,蒋宁英.现代纺织浆料的应用与发展[J].成都纺织高等专科学校学报,2006,23(2):27-30.
    [92]Sandrin C,Peypoux F,Michel G.Coproduction of surfactin and iturin A,Lipopeptids with surfactant and antifungal properties,by Bacillus subtilis[J].Biotechnology and Applied Biochemistry,1990,12:370-375.
    [93]Reddy P G.,Singh H.D,Pathak M.G.,Bhagat S D,Baruah J N.Isolation and functional characterization of hydrocation emulsifying and solubilizing factors produced by a Pseudomonas Species[J].Biotechnology and Bioengineering,1983,ⅹⅹⅴ:387-401.
    [94]Morikawa M,Ito Mi,Imanaka T,Isolation of a new surfactant producer Bacillus pumilus A-1, cloning and nucleotide sequence of the regulator gene,psf-1[J].Journal of Fermentation and Bioengineering,1992,74:255-261.
    [95]Fukuda D S,Bus R H Du,et al.A54145,a new lipopeptide antibiotic complex:isolationand characterization[J].The Journal of Antibiotics,1990,43(6):594-600.
    [96]Peypoux F,Bonmatin J M,etal.Isolation and characterization of a new variant of surfactin,the[Val 7]surfactin[J].Uropean Journal of Biochemistry,1991,202:101-106.
    [97]Umezawa H,Aoyagi T,Nishikiori T,et al.Plipastatins:new inhibitors of phospholipase A2produced by bacillus cereus BMG302-fF67:1[J].The Journal of Antibiotics,1986,6:737-744.
    [98]王俊刚,张树珍等.3,5-二硝基水杨酸(DNS)法测定甘蔗茎节总糖和还原糖含量[J].甘蔗糖业,2008,5:45-49.
    [99]张峻松,贾春晓等.碘显色法测定烟草中的淀粉含量[J].烟草科技,2004,5:24-26.
    [100]陈松,吴晋川.印染污水COD值快速测定方法探索[J].印染,2009,5:38-40.
    [101]钱存柔,黄仪秀.微生物学实验教程[M].北京:北京大学出版社,1999:67.
    [102]Hua Z Z.Basic Characteristics of Biosurfactants Produced with Candida Antarctica[J].Detergent & Cosmetics,2000,23(1):78-80.
    [103]Cooper D G,Goldenberg B G.Surface-active agents from two Bacillus species[J].Appl Environ Microbiol,1987,53:224-9.
    [104]刘旭峰.表面活性剂在纺织工业中的应用[J].日用化学工业.2006,2:99-102.
    [105]黄海,杨瑞金,王璋.低聚木糖的脱色工艺[J].无锡轻工大学学报,2002,21(2):125-129.
    [106]高晓红,宋心远.水解活性染料对羊毛染色的研究[J].印染,2004(5):6-9.
    [107]黄旭明等.液体活性染料的水解性分析及水解控制[J].纺织科技进展,2005(6):17-19.
    [108]傅科杰,杨力生等.交联剂对水解活性染料的交联作用[J].印染,2004(17):13-15.
    [109]李建华.活性染料皂洗剂的配制与应用[D].青岛大学硕士学位论文,2007,21-22.
    [110]陈英.染整工艺实验教程[M].北京:中国纺织出版社,2004,54-55.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700