湖滨带含水层反硝化作用试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以乌梁素海湖泊为典型代表,对乌梁素海湖滨带的渗流及补给作用,以及湖岸带反硝化作用进行研究。通过土槽模拟含水层渗流实验的观测数据,表明在湖泊补给地下含水层时,湖泊与含水层从交界处向含水层方向的水流运动特征。通过土槽模拟含水层淋滤实验的观测数据,来表明在湖泊补给地下含水层时,湖泊与含水层交界带位置向含水层方向的水质运移特征。
     利用水槽试验和数学模拟的方法验证了湖滨带湖水补排潜水时,地下水渗流速度在指定岸坡倾角下,潜水和湖水界面上的分布规律。基于MODFLOW和湖滨带土壤剖面反硝化速率概念模型,测定了湖滨带潜水层中反硝化速率。建立了湖岸带反硝化渗流与渗流实验的数学求解模型,并结合模型所模拟的边界,及岩层性质等因素,采用Visual modflow 4.0进行模拟,经过对模型的校正,模拟结果能够很好的再现实验结果,并预测了60天内,含水层中地下水的溶质分布。通过模型的计算值,得到了溶质浓度稳定后的观测点位反硝化的硝酸根浓度。
     采用BaPS测定反硝化系统,测定了当含水层中输入硝酸根浓度时间的不同,含水层中的反硝化速率值。揭示了在受到硝酸根影响时间不同的情况下,含水层中反硝化作用的发生时间与强度。而后,结合上述水位与水质的实测值与计算值,与溶质输入含水层稳定后的,反硝化速率与含水层的水位值、硝酸根含量关系进行分析,发现硝酸氮的含量与含水层水位都影响了反硝化作用的发生速率。
     因此通过上述研究内容初步揭示了,由于湖泊补给地下水,含水层中所产生的水流运移、溶质分布以及硝酸根与以上因子共同作用对反硝化作用所产生的影响。
This thesis is represented Wuliangsuhai lake, to investigate the seepage way, recharge function and the dentrification of the lakeshore. Soil tank had been designed and been taken to reproduction the lakeshore circumstances. The reappeared groundwater flow showed the transport way and features of the junction between the lake and the underground , the reappeared circumstances indicated the movement of the water quality.
     The combination of using the soil tank test and the mathematics simulation had been testified during the lake recharge the aquifer, the seepage velocity showed the regularly way in the junction zone. The velocity of the dentrification of the lakeshore had been calculated by using the Visual Modflow 4.0.
     When the simulation is taking place, it is necessary to build the differential equation to describe the dentrification and seepage test where the initial condition and the formation also have been under the consideration. After build the Visual Modflow 4.0, the step of correction had been taken place,the result of simulation showed in well matched . It showed the 60 days flow and concentration distributing situation by using software.
     The velocity of the dentrification were measured by the BaPS instrument, the result showed the velocity was different when the concentration of the nitrate were different. Both the measured and simulated hydraulic head and water quality of the stable aquifer, that affect the happening of the dentrification.
     Therefore, through the research aboved, the regular pattern of the affection to the dentrification both by the water movement , the quality distribution and concentration of the nitrate, have been revealed preliminary.
引文
Andrzej, B., 2004. Nutrient TMDL for Lake Hunter. Florida Department of Environmental Protection, 37-46.
    Bartesh, A.F., 1972. Nutrients and eutrophication-prospect and options for the future. In nutrients And Eutrophication: The Limiting Nutrients Controversy. The American Society of Limnology and Oceanography, Lawrence, Kansas, 297-300.
    Bear,J.,1972,《多孔介质流体力学》。America Elsevier(中译本,1983,建工出版社)。Bear,J.,1979,地下水水力学,McGraw-Hill(中译本,1985,地质出版社)。
    Belanger, T.V. and Walker, R.B., 1990. Groundwater seepage in the Indian River Lagoon. Tropical Hydrology and Caribbean Water Resource, 134, 367-375.
    Brock, T.D., Lee, D.R., Janes, D., 1982. Groundwater seepage as a nutrient source to a drainage lake: Lake Mendota, Wisconsin. Water Res., 16, 1255-1263.
    Bevin Weeks, Alan H. Friedman. Training pediatric residents to evaluate congenital heart disease in the current era. Pediatric Clinics of North America, Volume 51, Issue 6, December 2004, Pages 1641-1651
    Bijay-Singh, Ryden J.C., Whitehead, D.C., 1988. Some relationships between denitrification potential and fractions of organic carbon inair-dried and field-moist soils. Soil Biological Biochemistry, 20, 37-41.
    Born, S.M., Smith. S.A., Stephenson, D.A., 1979. Hydrogeology of glacial-terrain lakes, with management and planning applications. Journal of Hydrology, 43, 7-43.
    Brezonik, P.L., 1994. Chemical Kineties and Process Dynamics in Aquatic System. Germany, Lewis Pubishers CRC Press, 753.
    Brunk, M. and Gonser, T., 1997. The ecological significance of exchange processes between rivers and groundwater. Freshwater Biol., 37, 31-33.
    Burt, T.P., Bates, P.D., Stewart, M.D., Claxton, A.J., Anderson, M.G., Price, D.A., 2002. Water table fluctuations within the floodplain of the River Severn, England. Journal of Hydrology, 262, 1-20.
    Chun-Hian Lee and Ralph Ta-Shun Cheng, 1974, On seawater encroachement in coastal aquifers, Water Resour. Res., Vol.10, No.5.
    Collins, M.A. and L.W. Gelhar, 1971, Seawater intrusion in layed aquifer, Water Res., Vol.7, No.4, p971-979.
    Cook, P.G., Solomon, D.K., 1997. Recent advances in dating groundwater: Chlorofluorocarbons, 3H/3He and 85Kr. Journal of Hydrology, 191,245-265.
    Cornwell, J.C., Kemp, W.M., Kana, T.M., 1999. Denitrification in coastal ecosystems: methods, environmental controls and ecosystem level controls, a review. Aquatic Ecology, 33, 41-54.
    Custodio, E, 1985,咸水入侵,国际水文地质学家协会18届大会论文集(中译本, 1987,地质出版社)。
    Dierch, H-J., 1988, Finite element modeling of recirculating density-driven saltwater intrusion processes in groundwater, Advances in water Resources, Vol.11, No.2, p25-43.
    Dodds, W.K., 2002. Freshwater ecology: concepts and environmental applications. Academic Press, New York, 337-366.
    Dong, L.F., Thornton, D.C.O,, Nedwell, D.B., et al., 200. Denitrification in sediments of the river Colne Estuary, England. Marine Ecology Progress Series, 2000, 203, 109-122.
    Fellows, C., Hunter, H., Grace, M., 2007. Managing diffuse nitrogen loads: instream and riparian zone nitrate removal. In: Lovett, S., Price, P., Edgar, B. (Eds.), Salt, Nutrient, Sediment and Interactions: Findings from the National River Contaminants Program. Land and Water Australia, Canberra, 43-58.
    Ferguson, H.L., Znamensky, V.A., 1981. Methods of computation of the water balance of large and reservoirs. Paris, United Nations Educational, Scientific and Cultural Organization (UNESCO), 23-45.
    Fukuo, Y., 1991. Studies on groundwater seepage rate in Lake Biwa. Jap. J. Hydrol. Sci., 21, 93-102.
    Groffman, P.M., Axelrod, E.A., Lemunyon, J.L., Sullivan, W.M., 1991.Denitrification in grass and forested vegetative filter strips. Journal of Environmental Quality., 20, 671-4.
    Gupta, A.D. and P.N.D.D. Yapa, 1982, Saltwater Encroachment in an aquifer: A case study, Water Resour. Res., Vol.18, No.3, p546-556.
    Guyonnet, D.A., 1991. Numerical modeling of effects of small scale sedimentary variations on groundwater discharge into lakes. Limnol. Oceanogr., 36, 787-796.
    Henry, H.R., 1964, Effects of dispersion on salt water encroachment in coastal aquifers, U.S. Geol, Survey, Water Supply Paper, p1613.
    Holland M.M., 1988. SCOPE/MAB technical consultations on landscape boundaries: report of a SCOPE/MAB workshop on ecotones. Biology International (Special Issue), 17, 47-106.
    Hornsby, A.G. and J.M. Davidson, 1973, Solution and adsorbed fluometuron concertration distribution in a water-saturated soil: experimental and evaluation. Soil Sci. Soc. Am. J., Vol.37, p823-828.
    James, W. Mercer, Steven P. Larson and Chanles R., Faust, 1980, Simulation of salt-water interface motion, Ground Water, Vol.18, No.4.
    J. Hauck .Phase relations of interstitial alloys related to binary and ternary oxides II: The influence of crystal field effects.Journal of the Less Common Metals, Volume 77, Issue 1, January 1981, Pages 113-120
    Josselin, G.E., G.E. Jong, G. and C.J. Van Dayk, 1986, Transverse dispersion from an originally sharp fresh salt interface caused by shear flow, J. of Hydrology, Vol.84, p55-79.
    Katz, B.G., Terrie, M., Lee, L., 1995. Niel Plummer and Rurybiades Busenberg. Chemical evolution of groundwater near a sinkhole lake, northern Florida 2.Flow patterns, age ofgroundwater, and influence of lake water leakage. Water Resources Research, 31,1565-1584.
    Lane, R. R., Day, J.W., Kemp, G.P., Demcheck, D.K., 2001. The 1994 experimental opening of the Bonet Carre Spillway to divert Mississippi River water into lake Pontchartain, Louisiana. Ecological Engineering, 17,411-422.
    Lin, P.L-F, A.H-D. Cheng, J.A.Liggett and I.H.Lee, 1981, Boundary intergral equation solutions to moving interface between two fluids in porous media, Water Resour. Res., Vol.17, No.5, p1445-1452.
    Lai, S. H., J.J. Jurinak and R.J. Wagenet, 1978, Multicomponent cation adsorption during convective-dispersive flow through soils: experimental study. Soil Sci. Soc. Am. J., Vol.42, p240-243.
    Mansell, R.S., S.A. Bloom, H.M. Selim and R.D. Rhue, 1988, Simulated transport of multiple cations in soil using variable selectivity coefficients. Soil. Sci. Soc. Am. J., Vol.52, p1533-1540.
    Mei, L.J., Yang. L.Z., Wang, D.J. et al. 2004. Nitrous oxide production and consumption in serially diluted soil suspensions as related to in situ N2O emission in submerged soils Soil Biology and Biochemistry, 36, 1057-1066.
    Mitchell-Bruker, S.M., 1993. Modeling Steady State Groundwater and Surface Water Interactions. Indiana Univ., 1-94.
    National Research Council, 2007. Riparian Areas: Functions and Strategies for Management. National Academy Press, Washington, D.C.
    N. J. Barwell.1981.RECURRENCE AND EARLY ACTIVITY AFTER GROIN HERNIA REPAIR. The Lancet, Volume 318, Issue 8253, 31 October 1981, Page 985.
    Otz, M.H, Otz, H.K, Siegel, D,I., 2003 Surface water/groundwater interaction in the Piora aquifer, Switzerland: evidence from dye tracing tests. Hydrogeology Journal, 11, 228-239.
    Panigrahi, B.K., A. Das Gupta and A. Arbhabhirama, 1988, Approximation for salt-water intrusion in unconfined coastal aquifer, Ground Water, Vol.108, N0.2.
    Persaud, N. and P.J. Wierenga, 1982, A differential model for one-dimensional cation transport in discrete homoionic ion exchang media. Soil Sci. Soc. Am. J., Vol.46, p482-490.
    Pfannkuch, H.O., and Winter, T.C., 1984. Effect of anisotropy and groundwater system geometry on seepage through lakebeds, 1. Analog and dimensional analysis. J. Hydrol., 75, 213-237.
    Rabalais, N.N., 2002. Nitrogen in Aquatic Ecosystems. A Journal of the Human Environment, 31,102-112.
    Ralph, R., Rumer, Jr. and J. G. Shiau, 1968, Salt Water interface in a layered coastal aquifer, Water Resour. Res., Vol.4, No.6.
    Ramsing, F.J., 2000. Measurement of Groundwater Seepage into Lake Tahoe and Estimation of Nutrient Transport from a Lake Tahoe Watershed [Thesis], 35-42.
    Rassam, D.W., 2005. Impacts of hillslope-floodplain characteristics on groundwater dynamics: implications for riparian denitrification. The International Congress on Modelling andSimulation, December 12-15, Melbourne, Australia.
    Rodin, M.J.L., and D.E. Elrick, 1985, Effect of cation exchange on calculated hydrodynamic dispersion coefficients. Soil. Sci. Soc. Am. J., Vol.49, p39-45.
    Rubin, H. and G.F. Pinder, 1977, Approximater analysis of upcoming, Adv. Water Resour., Vol.1, p97-101.
    Shaw, R.D., Shaw, H.F., Perpas, E.E., 1990. An integrated approach to quantify groundwater transport of phosphorus to Narrow Lake, Alberta. Limnol.Oceanog., 35, 870-886.
    Silliman, S.E, Booth, D.F., 1993. Analysis of time-series measurements of sediment temperature for identification of gaining vs. losing portions of Juday Creek, Indiana. J. Hydrol., 146, 131-148.
    Simmons, C.T., Narayan, K.A., Juliette, A., Andrew, L.H., 2002. Groundwater flow and solute transport at Mourquong saline-water disposal basin, Murray Basin, southeastern Australia. Hydrologeology Journal, 10, 278-295.
    Smith, C.J., Delaune, R.D., Patrick, W.H., 1983. Nitrous oxide emission from Gulf Coast Wetlands. Geochim Cosmochim Acta, 47, 1805-1814.
    Sophocleous, M., 2003. Interactions between groundwater and surface water: The state of the science[J]. Hydrogeology Journal, 10, 52-67.
    Sunil Narumalani, Yingchun Zhou, John R. Jensen. Application of remote sensing and geographic information systems to the delineation and analysis of riparian buffer zones. Aquatic Botany, Volume 58, Issues 3-4, October 1997, Pages 393-409.
    Syam, K. D., Jim, J. W., Ron, D. D., Robert. L. C., 2008. Denitrification potential and its relation to organic carbon quality in three coastal wetland soils. Science of the total environment, 1-10.
    Teranes, J.L., Bernasconi, S.M., 2000. The record of nitrate utilization and productivity limitation provided by 15N values in lake organic matter: A study of sediment traps and core sediments from Baldeggersee, Switzerland. Limnol oceanogr, 45, 801-813.
    Theis, C.V., 1941. The effect of a well on the flow of a nearby stream. Geophys, 22, 734-738.
    Townley, L.R., Trefry, M.G., 2000. Surface water-groundwater interaction near shallow circular lakes: Flow geometry in three dimensions. Water Resources Research, 36, 935-949.
    Valocchi, A.J.,1985, Validity of the local equilibrium assumption for modeling sorbing solute transport through homogeneous soils. Water Resour. Res., Vol.21, p808-820.
    Valocchi, A.J., Simulation of the transport of ion-exchangeing solutes using laboratory-determined chemical parameter values, Groundwater, Vol.19, No.6.
    Valocchi, A.J., R.L.Steet and P.V. Roberts, 1981, Transport of ion-exchanging solutions in groundwater: chromatographic theory and field simulation. Water Resour. Res., Vol.17,p1517-1527.
    Van Genuchten, M.Th. and P.J. Wierenga, 1976, Mass transfer studies in sorbing porous media. I. Analytical solution. Soil Sci. Soc. Am. J., Vol.40, p473-480.
    Van Mooy, B.A.S., Keil, R.G., Devol, A.H., 2002. Impact of suboxia on particulate organic carbon: enhanced carbon flux and preferential degradation of amino acids via denitrification. Geochemica et Cosmochimica Acta, 66, 457-465.
    Warren, W.W., Ward, E.S., 1995. Chemical and isotopic methods for quantifying groundwater recharge in a regional, semiarid environment. Groundwater, 33, 458-468.
    Winter, T.C., 1998. Relation of stream, lakes, and wetlands to groundwater flow systems[J]. J Hydrogeol, 7, 28-45.
    Wolf, R.J., Helgesen, J.O., 1993. Ground-and surface-water interaction between the Kansas River and associated alluvial aquifer, northeastern Kansas . U S Geol. Surv. Water-Resour. Inv. Rept. 59, 92-137.
    Wright, C.E., 1980. Surface water and groundwater interaction. Paris, United Nations Educational, Scientific and Cultural Organization (UNESCO), 56-57.
    Yamashita, Y. and Tanoue, E., 2003. Chemical characterization of protein-like fluorescences in DOM in relation to aromatic amino acids. Marine Chemistry, 82, 255-271.
    胡俊锋,王金生,滕彦国, 2004.地下水与河水相互作用的研究进展[J].水文工程地质31(1), 108-113.
    何朋朋,姚磊华,刘立鹏等。地下水位随机性影响下的边坡可靠性分析。2009,Vol.39,No.2.288~293.
    侯爱新;陈冠雄;吴杰等。1997.稻田CH_4和N_2O排放关系及其微生物学机理和一些影响因子.应用生态学报.
    金相灿, 2008.湖泊富营养化研究中的主要科学问题——一代“湖泊富营养化研究”专栏序言[J].环境科学学报28, 22-24.
    李勇, 2006.潜水层地下水及其营养物质入湖实验与数学模拟研究[D].河海大学.
    孟伟,张远,王西琴,张楠,2008.流域水质目标管理技术研究:Ⅴ水污染防治的环境经济政策[J].环境科学研究,21,1-4.
    宋长青等.湖泊及流域科学研究进展与展望.湖泊科学.2002.14(4).289~300.
    沈振荣,瑜芳,杨诗秀. 1992.水资源科学实验与研究[M].北京:中国科学技术出版社,1992,415-418.
    滕彦国,左锐,王金生,2007.地表水——地下水的交错带及其生态功能[J].地球与环境,35,1-8.
    吴吉春.海水入侵含水层中交换阳离子运移行为研究. [博士学位论文].南京大学. 1994.
    王超,李勇,包振琪, 2002.河道污染物饱和入渗对沿岸地下水环境影响规律的试验研究[J]. 水动力学研究与进展17(2), 23-28.
    仵彦卿,慕富强,贺益贤,2000.河西走廊黑河鼎新至哨马营段河水与地下水转化途径分[J]. 冰川冻土,22,74-77.
    薛禹群主编,1986,地下水动力学原理,地质出版社。
    姚磊华,李竞生,李钊. 2003.用改进的遗传算法反演地下水数值模型参数.水力学报. 12(12).p40-46.
    燕华云,贾绍风.2003.青海湖水量平衡分析与水资源优化配置研究[J].湖泊科学,2003, 35-40.
    赵化德,姚子伟,关道明. 2007.河口区域反硝化作用研究进展[J].海洋环境科学26(3), 296-300.
    张建春,彭补拙, 2003.河岸带研究及其退化生态系统的恢复与重建.生态学报, 21(2), 56-63.
    张锡辉. 2002水环境修复工程学原理与应用[M].北京:化学工业出版社.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700