分布式小卫星合成孔径雷达高分辨率成像算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分布式小卫星合成孔径雷达(Distributed Small Satellites Synthetic Aperture Radar)是近年来在航天技术领域提出的一种利用多颗卫星编队飞行实现空间对地观测任务的天基雷达系统新概念。和传统星载SAR系统相比,小卫星编队飞行SAR系统有很多优势,包括:多基线干涉三维成像、地面运动目标指示、多极化成像、高分辨率成像以及宽域成像。本论文详细深入地研究了分布式小卫星SAR轨道设计、基线分析以及高分辨率成像算法等相关问题。主要研究内容和创新点有:
     1.研究了分布式小卫星SAR的轨道设计方法,得到了一种改进的采用卫星相对轨道根数进行编队轨道设计的方法。推导了分布式小卫星SAR卫星的轨道要素计算公式。研究了分布式小卫星SAR的模糊函数,分析了小卫星编队构形、卫星数目和模糊函数的关系。2.深入研究了分布式小卫星SAR基线的三维特征,推导了其数学模型,得到了分布式小卫星SAR垂直轨迹基线随地球自转以及编队卫星群自旋的变化规律。研究了满足三维成像、动目标检测、高分辨率成像的分布式小卫星SAR系统基线设计的方法。
     3.深入研究了分布式小卫星SAR距离向和方位向频谱合成高分辨率成像的技术,提出了距离向和方位向频谱合成产生的误差补偿方法。
     4.建立了分布式小卫星SAR空域滤波成像数学模型,研究了匹配滤波成像算法、最大似然估计滤波成像算法、最小均方差估计滤波成像算法和卡尔曼滤波的成像算法,提出了RLS空域滤波成像算法。研究了不同编队构型情况下的分布式小卫星SAR点目标空域滤波成像。5.研究了顺轨模式下的分布式小卫星SAR高分辨率成像信号处理方法。将Capon谱估计和传统SAR多视处理的方法引入顺轨道模式的分布式小卫星SAR的信号处理中,成功地实现了方位向多普勒模糊抑制和相干斑噪声的抑制。
Distributed Small Satellites Synthetic Aperture Radar (DSS SAR) systems hasbeen proposed recently in the field of Earth observation, this kind of SAR systemstake the formation flying satellites as its carriers. They possess several assets:multibaseline interferometry, ground moving target indication, multi-polarimetricimaging, high resolution imaging, wide-swath imaging. The DSS SAR orbit design,baseline analysis and design, high resolution imaging algorithm are studied in thisdissertation. The main works and innovations of this dissertation are as follows:
     1. The distributed satellites SAR orbit design method is investigated. A formationflying orbit design method based on satellites relative trajectories is proposed. Themathematic formula of formation flying orbit elements is derived. The ambiguityfunction of distributed satellites SAR is studied. The relation between satellitesformation configurations, number and ambiguity function is analyzed.
     2. The 3D characteristic of distributed satellites SAR baseline is investigated deeply.Mathematic mode is delivered; the baseline variety law in the distributed satellitesSAR cross track mode is given. The general distributed satellites SAR systembaseline design method which satisfies 3D imaging, MTI and high resolutionimaging is studied.
     3. The basic spectrum combination theory and realizing approach are deriveddeeply. The error and compensation method when range and azimuth spectrumcombination is carried through are analyzed first in this dissertation.
     4. The spatial filtering imaging mathematics mode is presented. Various spatial filtering imaging algorithms such as Matched Filtering, Maximum likelihood,Minimum Mean Square Error, Kalman Filtering are studied. The RLS spatialfiltering imaging algorithm is proposed. Through the spatial filtering imagingsimulation with different satellites formation configurations, the relationshipbetween satellites formation configurations and system resolution characteristic isstudied.
     5. The distributed satellites SAR high resolution imaging signal processing methodin along track mode is investigated. The Capon spectrum estimation method andmultilook processing are introduced into the along track mode distributedsatellites SAR signal processing. The approach restrains the azimuth Dopplerambiguity and noise of the system.
引文
[1] Elachi C. Spaceborne Radar Remote Sensing: Applications and Techniques, New York, IEEE Press, 1987, 72-109.
    [2] Tomiyasu K. Tutorial review of Synthetic-Aperture Radar (SAR) with applications to imaging of the ocean surface, Proc. of the IEEE, 1978, 66(5), 563-583.
    [3] John C. Curlander, Robert N. McDonough, Synthetic Aperture Radar Systems and Signal Processing, New York, Wiley Interscience, 1991.
    [4] 张澄波,综合孔径雷达—原理,系统分析及应用,北京,科学出版社,1989.
    [5] Philippe Lacomme, Jean-Philippe Hardange, Jean-Clande Marchais, Eric Normant, Air and Spaceborne Radar Systems: An Introduction, William Ardrew Publishing, LLC, NY.
    [6] Moreira A, Krieger G. Spaceborne synthetic aperture radar(SAR) systems: state of art and future developments. 33rd European Microwave Conference, 2003,101-104.
    [7] Luding M, buck C H, et al. Impact of new technologies on future spaceborne radar design, International Geoscience and remote Sensing Symposium(IGARSS), Vol. 3,2003, 2137-2139.
    [8] Curlander J C, McDonouogh R N. Synthetic Aperture Radar: System and Signal Processing. John Wiley&Sons, Inc, 1991.
    [9] 袁孝康,星载合成孔径雷达导论,北京:国防工业出版社,2003.
    [10] 微小卫星编队飞行组成虚拟卫星研究.微小卫星编队飞行及应用论文集,北京,2000.7,1-35.
    [11] G. Canavan, D. Thompson and I. Bekey, "Distributed Space Systems," in New World Vistas, Air and Space Power for the 21st Century, United States Air Force, 1996.
    [12] A. Das, R. Cobb, and M. Stallard, "Techsat 21: a Revolutionary Concept in Distributed Space Based Sensing," in Proc. AIAA Defense and Civil Space Programs Conf. Exhibit, Huntsville, AL, Oct. 1998, AIAA 98-5255.
    [13] M. Martin and M. Stallard, "Distributed Satellite Missions and technologies the TechSat 21 Program," in Proc. AIAA Space Technology Conf. Exposition, Albuquerque, NM, Sept. 1999, AIAA 99-4479.
    
    [14] M. Martin, P. Klupar, S. Kilberg and J. Winter, "TechSat 21 and Revolutionizing Space Missions using Microsatellites," in Proc. 15~(th) AIAA Conference on Small Satellites, Utah, USA, 2001.
    
    [15] Kim Luu, et al. University Nanosatellite Distributed Satellite Capabilities to Support TechSat21[C]. USA: 13~(th) AIAA/USU Conference on Small Satellites (SSC99-III-3), 1999:1-9.
    
    [16] Hans Steyskal et al.: "Pattern Synthesis for TechSat21-A Distributed Space-Based Radar System", IEEE Antennas and Propagation Magazine, Vol.45, NO.4, August 2003.
    
    [17] D.Massonnet.The interferometric cartwheel:a constellation of passive satellites to produce radar images to be coherently combined[J].Int.J.Remote Sensing, 2001, 22(12): 2413-2430.
    
    [18] J.MittermayerP, reliminaryI nterferometicP erformance Estimation for the Interferometric Cartwheel in Combination with ENVISAT AS.& CEOS 2001,SAR01-071.
    
    [19] Amiot, Douchin, Thouvenot, Souyris, Cugny: "The Interferometric Cartwheel. A multi-purpose formation of passive microsatellites", IGARSS02, 2002, Toronto Canada.
    
    [20] Nies, Loffeld, Gebhardt, Peters: "Orbit Estimation of the Interferometric Cartwheel using an Extended Linearized Kalman Filter," submitted to IGARSS'03.
    [21] U. Gebhardt, O. Loffeld, H. Nies, V. Peters: "Orbit Modeling Related to Cartwheel Geometry," IEEE Trans.on GRS ,2003, 42(4): 3604-3606.
    
    [22] S. Ramongasie, L. Phalippou, E. Thouvenot and D.Massonnet, "Preliminary Design of Payload for the Interferometric Cartwheel," in Proc. IGARSS 2000, Honolulu,24-28.
    
    [23] J. Mittermayer, "Interferometric Performance Estimation for the Interferometric Cartwheel in Combination with a Transmitting SAR-Satellite," in Proc. IGARSS 2001.
    [24] H. Fiedler, G. Krieger, F. Jochim. et al. "Analysis of Bistatic Configurations for Spaceborne SAR Tnterferometry," in EUSAR 2002, Cologne, Germany, 2002: 29-33.
    [25] G. Krieger,H. Fiedler, J. Mittermayer, K. Papathanassiou and A. Moreiira, "Analysis of Multistatic Configurations for Spaceborne SAR Interferometriy," IEE Proceedings-Radar, Sonar and Navigation, vol. 150, no. 3, 2003, 87-96.
    [26] G. Krieger, and A. Moreiira, "Multistatic SAR Satellite Formations: Potentials and Challenges," in Proc. IGARSS 2005, Seoul, Korea, 2005.
    [27] 林来兴,小卫星编队飞行及其轨道构成[J],中国空间科学技术,2001,21(1):23-28.
    [28] Sabol C. Satellite Formation Flying Design and Evolution, AAS 99-121, 1999.
    [29] 林来兴,卫星编队飞行动力学仿真及其应用,2003全国仿真技术学术会议论文集,2003,19-24.
    [30] F. H. Wong and T.5.Yeo.New APPI icatons of Nonlinear ChlrP Scaling in SAR Data Processing. IEEE Trans.on GRS, 2001, 39(5):946-953.
    [31] 章任为,卫星轨道姿态动力学与控制,北京,北京航空航天大学出版社1998.
    [32] 刘林,人造地球卫星轨道动力学,北京,高等教育出版社,1992
    [33] 陈芳允,贾乃华,卫星测控手册,北京,科学出版社,1992.
    [34] Clohessy W H, Wiltshire R S. Terminal guidance system for satellite rendezvous [J]. Journal of the Aerospace Science, 1960, 27: 653-674.
    [35] Yan Q, Kapila V, Sparks A G, Pulse-based period control for spacecraft formation flying [A]. In: Proceeding of the American Control Conference [C]. Chicago, Illinois, 2000,374-378.
    [36] Inalhan G. How J. Relative Dynamics & Control of spacecraft formations in eccentric orbits. AIAA Guidance, Navigation and Control Conference and Exhibit, Denver CO, August 2000: 14-17.
    [37] Kaplia V, Sparks A G, Buffington J M, et al. Spacecraft formation flying: dynamics and control [A]. in Poceeding of the American Control Conference[C]. San Diego, California, 1999, 4137-4141.
    [38] Goodman N, Stiles J. Resolution and synthetic aperture characterization of sparse radar arrays. IEEE Transactions on Aerospace and electronics Systems, 2003, 39(3): 921-934.
    [39] Goodman N, Stiles J M. Synthetic Aperture Characterization of radar satellite constellations. International Geoscience and Remote Sensing Symposium (IGARSS), vol. 1, 2002, 665-667.
    [40] Massonnet, D., Capabilities and Limitations of the Interferometric Cartwheel. IEEE TGRS, 39, 3, 2001,506-520.
    [41] D. Massonnet, " The interferometric cartwheel, a constellation of low cost receiving satellites to produce radar images that can be coherently combined," Int. J. Remote Sensing, to be published.
    [42] D. Cerutti-Maori, J.H.G. Ender: An Approach to Multistatic Spaceborne SAR/MTI Processing and Performance Analysis. IGARSS, July 2003, Toulouse.
    [43] 刘建平,梁甸农,何峰.主星带伴随小卫星编队系统的顺轨干涉SAR性能研究.电子与信息学报.2004,26Suppl:500-506.
    [44] 张晓玲,曾斌,黄顺吉,分布式卫星的环绕对InSAR测高精度的影响,电子与信息学报,2003,26(1):157-162.
    [45] Xu Huaping et al.: "The analysis of baseline in Spceborne Interferometric SAR", ACTA ELECTRONICA SINICA, Mar 2003, 31 (3), 437-439.
    [46] 徐华平,周荫清,李春升.分布式星载干涉SAR中空间基线的分析和设计,电子与信息学报.2003,25(9):1194-1199.
    [47] 陈杰,周荫清,李春升.分布式星载干涉SAR中基线设计与性能分析,电子与信息学报.2004,32(12):1974-1977.
    [48] Prati C, Rocca F. Improving slant-range resolution with multiple SAR surveys, IEEE Trans. On Geosci. Remote Sen. 1993,29(1): 135-143.
    [49] Prati C, Rocca F. range resolution enhancement with multiple SAR surveys combination. International Geoscience and Remote Sensing Symposium (IGARSS). Vol.2, 1992,1576-1578.
    [50] F. Gatelli, et al. The wavenumber shift in SAR interferometry, IEEE Trans. On Geoscience and Remote Sensing(J), 1994, GRS-32(4), 855-864.
    [51] 徐华平,周荫清,李春升.星载干涉SAR中的基线问题,电子学报(J),2003, 31(3),437-439.
    [52] T. L. Ainsworth, et al. INSAR imagery of surface currents, wave fields, andfronts, IEEE trans on Geoscience and Remote Sensing (J), 1995, GRS33 (5),1117-1123.
    [53] R Carande. Estimation Ocean coherence time using dual-baseline interferometric synthetic aperture radar [J]. IEEE Trans On Geoscience And Remote Sensing. 1994, 32(4): 846-854.
    [54] Thompson A A, Livingstone C E, Moving target performance for RADARSAT-2 [A]. IEEE Proceedings of IGARSS [C]. Honolulu, HI, USA: IEEE, 2000. 2599-2601.
    [55] Fabio Gatelli, Andrea M G, Francesco Parizzi, et al. The wavenumber shift in SAR interferometry [J]. IEEE Trans On Geoscience And Remote Sensing. 1994, 32(4): 855-865.
    [56] Freeman A. Evans D. and van Zyl J. J. SAP, Application since the 21st Century, EUSAR 96, Konigswinter Germany: 25-30.
    [57] Donald R. Wehner, High Resolution Radar, Boston, London: Artech House, 1995.
    [58] 杨士中,合成孔径雷达,北京:国防工业出版社,1981.
    [59] Ulaby F T,Moore R K,Fung A K.黄培康,汪一飞译.微波遥感.第二卷.北京,科学出版社,1987.
    [60] 袁孝康,星载合成孔径雷达的性能参数和设计要求,上海航天,1996(3):12-18.
    [61] 刘永坦,雷达成像技术,哈尔滨,哈尔滨工业大学出版社,2004.
    [62] Cantafio L J. Spase-Based Radar Handbook [M]. Boston: Artech House, 1989.
    [63] Fornaro G, Pascazio V. Schirinizi G, Resolution Improvement via Multipass S AR Imaging. Proc. IEEE 2001 International Geoscience and Remote Sensing Symposium, IGARSS01, Sydney(AUS), July 2001.
    [64] 袁孝康,星载合成孔径雷达导论,北京,国防工业出版社,2003.
    [65] Graham L C. Synthetic interferometric radar for topographic mapping. Proc. IEEE, 1974, 62(6):763-768.
    [66] 舒宁,雷达影像干涉测量原理,武汉,武汉大学出版社,2003.
    [67] 程佩青,数字信号处理教程,北京,清华大学出版社,1998.
    [68] 闫鸿慧,王岩飞,张冰尘.利用频谱合成实现分布式SAR高分辨力成像.电子与信息学报,2006,28(2):345-349.
    [69] Goodman N. SAR and MTI processing of sparse satellite clusters, Doctoral thesis, The University of Kansas, July 2002.
    [70] Goodman N. Stiles J M. The information content of multiple receive aperture SAR systems. International Geoscience and Remote Sensing Symposium (IGARSS), vol.4. 2001: 1614-1616.
    [71] Goodman N, Lin S, et al. Processing of multiple-receive spaceborne arrays for wide-area SAR. IEEE Transaction on Geoscience and Remote Sensing, 2002, 40(4): 841-852.
    [72] Goodman N, Rajakrishna D et al. Wide swath, high resolution SAR using multiple receive apertures. IEEE International Geoscience and Remote Sensing Symposium, Hamburg, Germany, June 1999:1767-1769.
    [73] 李俐,基于编队卫星的高分辨率微波成像技术研究,中国科学院电子所博士学位论文,2005.
    [74] Snyder D. L., O'Sullivan J. A., Miller M. I., The use of maximum likelihood estimation for formation images of diffuse radar targets from delay-doppler data, IEEE Transactions on Information Theory, May, 1989, 35(3): 536-548.
    [75] Gullapalli S. Application of Kalman filtering technique for SAR processing of sparse satellite clusters. Master thesis. University of Kansas, May 2000.
    [76] D' Aria D, Nonti A et al. Focusing bistatic synthetic aperture radar using dip move out. IEEE Transaction on Geoscience and Remote Sensing,2004, 42(7): 1362-1376.
    [77] Kalman R. E., A new approach to linear filtering and prediction problems, Journal of Basic Engineering, Trans. ASME, March 1960, 82-D(1): 35-46.
    [78] Ramachandra K. V., Kalman filtering Techniques for radar tracking, New York: Marcel Dekker, Inc, 2000.
    [79] Stuart C. MAhood R. Azimi-Sadjadi, A full-plane block kalman filter for image 110 restoration, IEEE Transactions on Image Processing, Oct., 1992.1 (4):488-495.
    [80] Massonnet D, Thouvenot E, et al. A wheel of passive radar microsats for upgrading existing SAR projects. International Geoscience and Remote Sensing Symposium(IGARSS), vol.3, 2000:1000-1003.
    [81] Soumekh M. Bistatic synthetic aperture radar inversion with application in dynamic object imaging. IEEE Trans. on Signal Processing, 1991, Sp-39(9): 2044-2O55.
    [82] Soumekh M. A system model and inversion for synthetic aperture radar imaging. IEEE Trans. on Image Processing, 1992,1 (1): 64-67.
    [83] Krieger G, Wendler M, et al. Performance analysis for bistatic interferometric SAR configurations. International Geoscience and Remote Sensing Symposium (IGARSS), vol. 1,2002: 650-652.
    [84] Kitts C. et al. Emerald: a low-cost spacecraft mission for validating formation flying technologies, Proc. IEEE Aerospace Conference, 1999, Aspen: 217-226.
    [85] Mehlis J G. Synthetic aperture radar range-azimuth ambiguity design and constrains. In Proc. IEEE Int. Radar Conf. April 1980: 143-152.
    [86] Li F K et al. Ambiguities in spaceborne synthetic aperture radar systems. IEEE Trans. Aerosp. Electron. Syst. 1983; 19(3): 389-395.
    [87] 袁孝康,星载合成孔径雷达的模糊性研究,上海航天,1998,15(1):6-11.
    [88] Zhenfang Li, Zheng Bao et al. "Performance Improvement for Constellation SAR using Signal Processing Techniques," IEEE Trans. on AES, vol.42 no.2, 2006: 436-452.
    [89] Zhenfang Li and Zheng Bao, "A Novel Approach for Wide-swath and High-Resolution SAR Image Generation from Distributed Small Spaceborne SAR Systems, " International Journal of Remote Sensing, vol. 27,no.3, 2006:1015-1033.
    [90] 阎鸿慧,王岩飞,于海锋,李俐.一种基于距离补偿的分布式小卫星双基SAR成像方法,电子与信息学报,2005,27(5):771-774.
    [91] Choi H, Munson D C, Jr. On the optimality and exactness of wavenumber-domain SAR data processing. IEEE International conference on Image Processing, Austin, 1994: 456-460.
    [92] 张贤达等,现代信号处理,北京,清华大学出版社,1995.
    [93] Naidu P. S., Sensor array signal processing, London: CRC Press, 2001.
    [94] Simon Haykin, Array processing application to radar, America: Dowden, Hutchinson & Ross, Inc, 1980.
    [95] Nicholas Fourkis, Advanced array systems, applications and RF technologies, San Diego, San Francisco, New York, Boston, London, Sydney, Tokyo: A Harcourt Science and Technology Company, 2000.
    [96] Capon J. High-resolution frequency-wavenumber spectrum analysis. Proc. IEEE, 1969, 57: 1408-1418.
    [97] 袁孝康,合成孔径雷达的辐射特性,上海航天,1998,15(3):9-15.
    [98] Oucki K. On the multilook images of moving targets by synthetic aperture radars. IEEE Trans. Antennas and Propagation, 1985,33(8): 823-827.
    [99] 雷万明,分布式星载SAR系统侧视阵列处理成像研究,电子科技大学博士学位论文,2002.
    [100] Elachi C, Bicknell T, Jordan R L, Wu C. Spaceborne synthetic aperture radars: Applications, Techniques, and Technology. Proceedings of IEEE, 1982, 70(10): 1174-1209.
    [101] 公岷,分布式SAR系统若干问题研究,电子科技大学博士学位论文,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700