星载GPS自主定轨理论及其软件实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国航天科技的发展,航天任务不断增加,传统的地面测控系统一直处于高负荷工作状态。尤其是近年来迅猛发展的小卫星,需要全弧段高精度的轨道参数。如果仍采用地面测控系统测定全球覆盖的小卫星轨道,不仅消耗的费用与日俱增,而且地面站的布局难以达到全球覆盖。因此,发展高精度的航天器自主定轨技术迫在眉睫。
     GPS卫星导航系统的发展和完善、精密轨道确定理论与方法的发展、星载GPS接收机技术的改进,为高精度自主定轨理论的研究创造了有利的条件。然而受星上处理器有限的计算能力和轨道参数的实时确定等条件限制,自主定轨理论与精密定轨存在着很大的区别。本文在现有轨道确定的理论基础上,针对自主定轨系统的工作环境,从理论上建立了星载GPS测量进行米级精度的自主定轨算法,在实践上成功研制出星载GPS自主定轨软件——SATODS。用大量的星载GPS实测数据模拟自主定轨试验,结果表明,使用GPS广播星历,低轨卫星自主定轨可以达到±1.5~3.0米的轨道精度,±3毫米/秒的速度精度;而且自主定轨软件可以应用于轨道机动期间的实时轨道确定。具体的研究内容和主要贡献如下:
     1、在简要总结动力学定轨基本理论的基础上,通过数值模拟计算分析,提出了用4阶Runge-Kutta-Fehlberg单步积分法作为自主定轨系统的轨道积分方法,并用直接法计算状态转移矩阵。考虑到星上处理器有限的计算能力,论文对自主定轨系统进入工程应用的几个关键问题进行了细致研究。其中包括:在需要大量计算耗时的地球引力加速度计算中,引入了优化递推算法;针对不同轨道高度(低轨卫星),用大量数值积分模拟计算,在不影响轨道精度的情况下,确定合理的重力场模型的阶次和摄动力模型的取舍,确定合理的数值积分步长;给出了与轨道积分相等精度的5阶Hermite多项式轨道内插算法,实现高密度的轨道输出。
     2、因为星载GPS接收机在地球的电离层中间运行,且其速度为每秒几公里,所以星载GPS测量与地面GPS测量存在一定的差异。本文详细讨论了星载GPS测量的各项误差源及其改正模型,给出了适用于单频星载GPS测量的电离层改正模型。推导了星载GPS伪距观测数据的实测精度的评价方法,用CHAMP和SAC-C星载GPS实测数据进行了验算,为自主定轨的观测噪声协方差矩阵确定以及精密定轨的观测数据加权提供了依据。
     3、结合自主定轨的轨道预报信息,提出了伪距粗差的探测方法——新息序列探测法。用该方法对星载GPS实测数据进行了处理,结果表明,CHAMP和SAC-C卫星的伪距粗差观测值所占的比例分别达到1.2%和3.0%。如果不加以探测和剔除,几何法实时定轨将出现几百米甚至上千米的轨道偏差。新息序列探测法已经应用于星载GPS自主定轨软件,提高了自主定轨系统的定轨精度和稳定性。
     4、讨论了几何法实时确定卫星轨道和卫星速度的原理,用星载GPS实测数据进行了模拟试验,总结了几何法实时定轨作为卫星的自主定轨系统存在因观测中断无法定轨、轨道预报精度差等主要问题。
     5、在卡尔曼滤波的理论基础上,充分考虑了引起卡尔曼滤波发散的主要原因,提出了星载GPS自主定轨的揉合算法——DMC-UDEKF算法。在此理论基础上,使用标准C/C++编程语言,自主研制出一套星载GPS自主定轨软件SATODS。并用大量的星载GPS实测数据进行模拟自主定轨的试验,该算法和软件能够达到±1.5~3.0米轨道精度和±3毫米/秒的速度精度,与国外的自主定轨软件精度水平相当。而且SATODS软件具有较强的可移植性、源代码简洁、占用内存少和运行速度快等特点。
     在本文的研究成果中,主要创新点可总结为:
     (1)提出了星载GPS伪距粗差探测方法——新息序列探测法。新息序列探测法与自主定轨系统滤波测量更新阶段的粗差检验方法相结合,不仅可以消除星载GPS伪距观测值的粗差,而且可以消除质量较差的GPS广播星历和钟差对自主定轨系统的影响。
     (2)提出了星载GPS测量自主定轨的揉合算法,它是动力学定轨理论、动力学补偿算法、推广卡尔曼滤波、U-D分解滤波与星载GPS观测模型等理论的集成应用。用大量的星载GPS实测数据模拟自主定轨计算表明,该算法不仅能够达到±1.5~3米的实时定轨精度,而且具有轨道机动期间的实时定轨能力。
     (3)成功研发了星载GPS自主定轨软件SATODS,该软件已成功地对大量的星载GPS实测数据进行了模拟自主定轨计算。软件具有较强的可移植性、代码简洁、占用内存少和运行速度快等特点。
     星载GPS自主定轨理论的建立和软件的成功研制,填补了我国在星载GPS自主定轨方面的一项空白,有助于推动GPS在我国航天领域的应用。
With the development of our country astronautics science and technology, the astronautical mission will increase unceasingly; so the traditional earth-based TT&C are in the high activity, especially the rapid development of small satellite which required the high accuracy parameters of the entire trajectory recently. If the earth-based TT&C will still be used to track these small satellites, not only it will take expensive cost day by day, but also it is much difficult to build the ground stations all over the world. Therefore, the technical development of the high accuracy spacecraft autonomous orbit determination is an imminent task.
     The developed science and technology such as spaceborne GPS reciver, GPS satellite navigation system and the precise orbit determination theory, has provided the advantageous condition for the high accuracy autonomous navigation. However, the autonomous navigation system will determine satellite real-time trajectory on the processor onborne, so that the autonomous navigation theory is much different from the precise orbit determination. According to the existing orbit determination theory, this dissertation established the high accuracy autonomous algorithm with spaceborne GPS measurements theoretically, and developed spaceborne GPS autonomous navigation software (SATODS) practically. The autonomous navigation experimental results from plenty of data collected from CHAMP and SAC-C missions are presented. The results have demonstrated that the orbit accuracy can achieve±1.5~3.0 meter and velocity accuracy±3 millimeters/second with GPS broadcast ephemeris. Moreover the autonomous navigation software may apply in the period of orbit maneuver. The concrete contents and the main contributions are as follows:
     On the basis of brief summary of dynamics orbit determination theory, 4 step Runge-Kutta-Fehlberg integrator was used as orbit integration method of autonomous navigation with numerical simulations and the state transition matrix was calculated directly instead of numerical integration method. In view of processor onboard with limited computation ability, serval key problems were researched in order that autonomous navigation will enter into practical application in the future. These problems include that: the optimized recursion algorithm was introduced to reduce computation consumes; the reasonable order of gravitational field model and which of the other perturbation forces were selected and the reasonable step time of integrator was determined with plenty of numerical analysises, 5 step Hermite polynomial interpolation algorithm was introduced to output high density trajectory parameters and so on.
     Spaceborne GPS measurements are different from that on the ground because of spaceborne GPS receiver move at the speed of several kilometer/second. Therefore each erroneous source and the correction model in the spaceborne GPS measurements were discussed in detail. Ionospheric correction model for single frequency spaceborne GPS users was presented. A valuable accuracy assessment method of pseudorange of spaceborne GPS measurements was reduced. The results computed from data collected from CHAMP and SAC-C missions will contribute to determine the observation noise covariance matrix in autonomous navigation and support the design of optimal data weighting strategies in precise orbit determination applications.
     Innovation sequence detecting outlier method was presented to delete outlier data of spaceborne GPS pseudorange measurements with orbit parameters predicted. The observation data collected from CHAMP and SAC-C onboard GPS receivers were tested with this method that code outliers amount to 1.2% and 3.0% respectively. The geometry real-time orbit determination will appear on several hundred meter even kilometer trajectory errors if these outlier can not be deleted.
     The geometry real-time orbit determination with spaceborne GPS measurements was discussed and tested with two days data collected from CHAMP and SAC-C onboard GPS receivers. Serval key problems were summarized according to the results of simulation computation if the spacecraft had used geometry real-time orbit determination as main method of autonomous navigation.
     Based on theory of Kalman filtering, the integration algorithm of autonomous navigation with spaceborne GPS measurements was presented and deduced. And autonomous navigation software (SATODS) was independently developed with standard C/C++ programming language according to this new algorithm. Many simulation experiments were carried on with observation data from CHAMP and SAC-C missions. The computation results demonstrated that the orbit accuracy could achieve±1.5~3.0 meter and velocity accuracy±3 millimeter/second with this algorithm and software. This accuracy of automous navigation with spaceborne GPS measurements is equal to international ones. Moreover because this algorithm had considered some resons of Kalman filtering divergence, the SATODS software has strong stability, replantability, fast computation speed and so on.
     In this dissertation, main innovating points of some research contents were summarized as follows: Innovation sequence detecting outlier method was presented to delete outlier data of spaceborne GPS pseudorange measurements with orbit parameters predicted. This method can not only delete code outliers of spaceborne GPS measurements, with other methods in the measurement update of Kalman filtering, but also eliminate the effects of bad GPS broadcast ephemeris and clock error.
     The integration algorithm of autonomous navigation with spaceborne GPS measurements was presented and deduced. It integrated serval theory such as dynamic orbit determination, dynamic model compensation, extended Kalman filtering, U-D decomposition filtering and spaceborne GPS measurement.
     Autonomous navigation software with spaceborne GPS measurements was developed successfully. This software has successfully been carried on the simulation computation with plenty of data collected from CHAMP and SAC-C missions.
     The autonomous navigation theory and software with spaceborne GPS measurements have filled in a blank of spaceborne GPS autonomous navigation in our country. It will be helpful to extend GPS to astronautics application.
引文
1. 陈俊勇. 适用于中纬度地区的单频 GPS 导航的电离层改正公式及其计算. 导航,1995,第 2 期:33-39
    2. 陈俊勇. 美国 GPS 现代化概述. 测绘通报,2000,第 8 期:44~46
    3. 陈小明. 高精度 GPS 动态定位的理论与实践[博士论文]. 武汉测绘科技大学,1997.12
    4. 崔希璋,於宗俦,陶本藻,刘大杰等. 广义测量平差(新版). 武汉:武汉测绘科技大学出版社. 2001.2
    5. 段玉波. 最优滤波理论及其应用. 哈尔滨:哈尔滨工程大学出版社. 1994.10
    6. 葛茂荣. GPS 卫星精密定轨理论及软件研究[博士论文]. 武汉测绘科技大学,1995.4
    7. 葛茂荣,过静珺. 低轨卫星 GPS 实时定轨方法研究. 大地测量学论文专集:祝贺陈永龄院士 90寿辰. 北京:测绘出版社,1999.8
    8. 郭华东,许健民等. 对地观测系统与应用. 北京:科学出版社,2001
    9. 贾沛璋,朱征桃. 最优估计及其应用. 北京:科学出版社. 1984
    10. 贾沛璋,熊永清. 星载 GPS 卡尔曼滤波定轨算法. 天文学报. 2005,46(4):441~451
    11. 李德仁,袁修孝. 误差处理与可靠性理论. 武汉:武汉大学出版社,2002
    12. 李琳琳,孙辉先. 一种卫星天文自主定轨定姿方法研究. 空间科学学报,2003,23(2):127~134
    13. 李勇,魏春岭. 卫星自主导航技术发展综述. 航天控制,2002,第 2 期:70~74
    14. 刘基余. GPS 信号测定低轨卫星的实时位置. 导航,1993,第三期:39~50
    15. 刘基余,李征航,王跃虎,桑吉章. 全球定位系统原理及其应用. 北京:测绘出版社. 1993.10
    16. 刘基余. GPS 卫星导航定位原理与方法. 北京:科学出版社. 2003.8
    17. 刘林. 航天器轨道理论. 北京:国防工业出版社. 2000.6
    18. 刘林,王海红,胡松杰. 卫星定轨综述. 飞行器测控学报,2005,24(2):28~33
    19. 吕从民,顾逸东,林宝军,郭炯. 神舟四号飞船综合精密定轨. 中国科学 E 辑,2004,34(9):1061~1068
    20. 马剑波,徐劲,曹志斌. 一种利用星敏感器的卫星自主定轨方法. 中国科学 G 辑,2005,35(2):213~224
    21. 茅旭初,WadaMassaki,桥本秀纪. 一种用于 GPS 定位估计滤波算法的非线性模型. 上海交通大学学报,2004,38(4):610~615
    22. 潘科炎,航天器的自主导航技术. 航天控制,1994,N(2),18~27
    23. 史忠科. 最优估计的计算方法. 北京:科学出版社. 2001.5
    24. 宋福香,左文辑. 近地卫星的 GPS 自主定轨算法研究. 空间科学学报. 第一期,2000
    25. 孙阳,李超军. 2004 年中国航天测控网经受高密度多型号任务考验. 中国航天,2005.1
    26. 汤锡生,陈贻迎,朱民才. 载人飞船轨道确定和返回控制. 北京:国防工业出版社,2002.9
    27. 王建琦,曹喜滨,孙兆伟. 基于 UKF 算法的航天器自主导航研究. 飞行力学,2004,22(2):41~44
    28. 王广运,郭秉义,李洪涛. 差分 GPS 定位技术与应用. 北京:电子工业出版社,1996
    29. 王甫红, 刘基余. 星载 GPS 载波相位测量的周跳探测方法研究. 武汉大学学报·信息科学版. 2004, 29(9):772~774
    30. 王解先. GPS 精密定轨定位. 上海:同济大学出版社,1997.5
    31. 魏子卿,葛茂荣. GPS 相对定位的数学模型. 北京:测绘出版社,1998.2
    32. 夏南银,张守信,穆鸿飞. 航天测控系统. 北京:国防工业出版社,2002.10
    33. 许尤楠. GPS 卫星的精密定轨(模型、软件和测轨网布设研究),北京:解放军出版社,1989.11
    34. 杨元喜,何海波,徐天河. 论动态自适应滤波. 测绘学报,30(4)。P293~298,2001.11
    35. 张强,刘林. 轨道改进中计算状态转移矩阵的分析方法. 天文学报,1999,40(2):113~121.
    36. 赵齐乐. GPS 导航星座及低轨卫星的精密定轨理论和软件研究[博士论文]. 武汉大学,2004.11
    37. 中国人民解放军总装备部军事训练教材编辑工作委员会. 航天器轨道确定. 北京:国防工业出版社,2003.4
    38. 中国人民解放军总装备部军事训练教材编辑工作委员会. 航天器飞行控制与仿真. 北京:国防工业出版社,2004.2
    39. 周忠谟,易杰军,周琪. GPS 卫星测量原理与应用(修订版).北京:测绘出版社,1997.1
    40. Arbinger. C, D’Amico. S. Impact of Orbit Prediction Accuracy on Low Earth Remote Sensing Flight Dynamics Operations. 18th International Symposium on Space Flight Dynamics, Munich, Germany, 11-15 Oct. 2004
    41. Ashkenazi. V, Chen. W, Hill. C.J, etc. Real-Time Autonomous orbit determination of LEO satellites using GPS. Proceedings of ION-97, Kansas City, Missouri, 1997.9.16-19
    42. Bae T S , Kwon J H , Grejner Brzezinska D A. Data Screening and Quality Analysis for Kinematic Orbit Determination of CHAMP Satellite. ION Technical Meeting , San Diego , 2002
    43. Bae. T. S. LEO dynamic orbit enhancement using atmospheric and empirical force modeling. ION GNSS Long Beach, CA, September 2005.
    44. Bauer. F.H. The GPS attitude determination flyer(GADFLY): a space-qualified GPS attitude receiver on the SSTI Lewis spacecraft. Proceedings of the ION-95. Palm Springs, California, 1995.9
    45. Beran, T., D. Kim, and RB Langley. Multipath filtering in the spaceborne environment: simulation study. Poster presented at the GEOIDE 4th Annual Conference, Toronto, 2002
    46. Bertiger, W. Server, Y. B, etc. The First Low Earth Orbiter with Precise GPS Positioning: Topex/Poseidon. ION GPS-93 Proceedings. Salt Lake City, Sep 22-24,1993
    47. Bertiger, W. Haines B. Kuang D. etc. Precise Real-Time Low-Earth-Orbiter Navigation with the Global Positioning: System (GPS). TMO Progress Report 42-137, 1999.5.15
    48. Bisnath. S. B, Langley. R. B. Precise orbit determination of low earth orbiters with GPS point positioning. ION NTM2001, Long Beach, CA, 2001.1.22-24
    49. Bisnath. S. B, Langley. R. B. GPS phase-connected, precise point positioning of low earth orbiters. Poster presented at GNSS 2001, Spain. 2001.5
    50. Blewitt G. An Automatic Editing Algorithm for GPS Data. Geophysical Research Letters. 1990, 17(3): 199~202
    51. Bock. H, Huentobler. U, Springer. T.A, Beutler. G. Efficient precise orbit determination of LEO satellites using GPS. Presented at COSPAR 2000, Warsaw, Poland, 2000
    52. Bock. H, Beutler. G, Huentobler. U. Kinematic orbit determination for low earth orbiters (LEOS). paper presented a the IAG Scientific Assembly, Budapest, Hungary, 2001.9.2-7
    53. Bock. R, Lühr. H, Grunwaldt. L. CHAMP Scientific Payload and its Contribution to a Stable Attitude Control System. Poster presentation G61A-04, AGU Fall Meeting 2000
    54. Brown. R.G, P.Y.C. Wang. Introduction to random signals and applied kalman filtering, New York : John Wiley and Sons, 1997
    55. Byun. S.H, Schutz. B.E. Satellite orbit determination using GPS carrier phase in pure kinematic mode. Proceedings of ION GPS-98, Nashville, Tennessee, 1998.9.15-18
    56. Cannon, M. E. Lachapelle, G. Analysis of a high-performance C/A-code GPS receiver in kinematic mode. Navigation: Journal of ION, 39(3). 1992
    57. Chiaradia A.P.M. Gill, E. Montenbruck, O. Kuga, H K. Prado, A F B A. Algorithms for On-board Orbit Determination using GPS OBODE-GPS. German Space Operations Center, 2000
    58. Cruickshank, D.R. Genetic model compensation: theory and applications. Ph.D. Thesis, Aerospace Engineering Sciences, University of Colorado, 1998.
    59. Dibble .J.A, Nicholsosn. M. A decentralized Kalman filter and smoother for formationg flying control of the earth observing-1 (EO-1) satellite. AAS/AIAA Astrodynamics Specialists Conference. Quebec, Canada, 2001.7.30~8.2
    60. Ebinuma, T. Precision spacecraft rendezvous using global positioning system: an integrated hardware approach. Ph. D dissertation, University of Texas, Austin, 2001
    61. Enderle. W, Feng. Y, Zhou. N. Orbit determination of FedSat based on GPS receiver position solutions—first results. Presented at SatNav 2003, Melbourne, Australia, 2003.7.22-25
    62. Fernandez.. M. G, Montenbruck. O. LEO satellite navigation errors and VTEC in single-frequency GPS tracking. Radio Science. 2005
    63. Florio. S.D, Zehetbauer. T, Neff. T. Operational aspects of orbit determination with GPS for small satellites with a SAR payload. 5th IAA Symposium on Small Satellites for Earth Observation, Berlin Germany, 2005.4.4-8
    64. FORD. T. J, Hamilton. J. A new positioning filter: Phase smoothing in the position domain. Navigation: Journal of the ION, 50(2), 2003
    65. GFZ Potsdam. CHAMP newsletter No.14. http://www.gfz-potsdam.de/pb1/op/champ/more/ newsletter_CHAMP_014.html, 2006.3.29
    66. Gill. E. Visibility analysis of the GPS space segment for the BIRD satellite mission. DLR-GSOC, TN99-04, 1999
    67. Gill. E. Montenbruck. O, Briess. K. GPS-Based Autonomous Navigation for the BIRD Satellite. 15th International Symposium on Spaceflight Dynamics, Biarritz, 2000.6.26-30
    68. Gill. E. Montenbruck. O, Briess. K. Flight experience of the BIRD onboard navigation system. 16th International Symposium on Spaceflight Dynamics, Pasadena, 2001.12.3-7
    69. Gill. E. Montenbruck. O, Montenegro. S. Flight Results from the BIRD onboard navigation system.5th International ESA Conference on Guidance, Navigation and Control System, Frascati, 2002.10.22-25
    70. Gill. E. Montenbruck. O, Arichandran. K, et al. High-precision onboard orbit determination for small satellites-the GPS-based XNS on X-SAT. 6th Symposium on small Satellites Systems and Services, La Rochelle, France, 2004.9.20-24
    71. Gill. E. Comparison of the performance of microprocessors for space-based navigation applications. DLR TN05-02, 2005.4
    72. Goddard Space Flight Center. GPS-Enhanced Onboard Navigation System. http://tco.gsfc.nasa.gov/ft-tech-GEONS.html
    73. Guinn. J.R, Jee .J.R, Munson .T.N. Topex/Poseidon orbit determination using global positioning satellites in anti-spoofing mode. AAS 94-138
    74. Guinn. J.R, Boain .R.J. Spacecraft autonomous navigation for formation flying earth orbiters using GPS. AIAA/AAS Astrodynamics Specialists Conference, San Diego, CA, 1996.7.29-31
    75. Gurevich. G, Wertz. J.R. Autonomous On-board Orbit Control: Flight Results and Cost Reduction. JHU/APL Symposium on Autonimous Ground Systems for 2001 and Beyond, Maryland, US, 2001.4.25~27
    76. Haines. B, Bertiger. W, Desai. S, et al. Initial Orbit Determination Results for Jason-1: Towards a 1-cm Orbit. Proceedings of GPS-ION2002, Portland, OR, 202.9.27
    77. Hart. R.C, Hartman. K.R. Global positioning system enhanced orbit determination experiment(GEODE) on the small satellite technology initiative(SSTI) Lewis spacecraft. Proceedings of the ION-96, Kansas city, Missouri, 1996.9.17-20
    78. Hart. R.C, Long. A.C, Lee. T. Autonomous navigation of the SSTI/Lewis spacecraft using the global positioning system. Flight Mechanics Symposium 1997. GSFC, 1997.5.19-21
    79. Hart. R.C, Truong. S, Long. A.C, Lee. T, etc. GPS navigation initiatives at Goddard space flight center flight dynamics division. Proceedings of the 1997 American Astronautical Society Space Flight Mechanics Meeting, 1997.
    80. Hatch. R. The synergism of GPS code and carrier measurements, Proceedings of the Third International Geodetic Symposium on Satellite Doppler Positioning, New Mexico State University, Feb 1982.
    81. Hofmann-Wellenhof. B, Lichtenegger. H, Collins. J. GPS: Theory and Practice (Fifth Revised Edition). New York: Springer-Verlag. 2001
    82. ICD-GPS-200C. Navstar GPS Space Segment/Navigation User Interfaces (Revision C). GPS Joint Program Office, 1993.10
    83. IS-GPS-200. Interface Specification Navstar GPS Space Segment/Navigation User Interfaces (Revision D). GPS Joint Program Office, 2004.12
    84. IGS Products. http://igscb.jpl.nasa.gov/components/prods.html. 2005.11
    85. JPL, The NASA Global Differential GPS System. http://www.gdgps.net/index.html, 2006.6
    86. JPL, Internet-based Global Differential GPS: System Overview, Orbit determination. http://gipsy.jpl.nasa.gov/igdg/system/od/index.html.
    87. Klobuchar. J.A. Ionospheric effects on GPS. GPS World, 2(4), 1991,48-51
    88. Koenig, R; Reigber, C; Neumayer, KH. Satellite dynamics of the CHAMP and GRACE leos as revealed from space- and ground-based tracking. Advances in Space Research, 31(8): 1869-1874,2003
    89. Luhr, H. Grunwaldt, L. Forste, Ch. CHAMP Reference Systems, Transformations and Standards. GFZ Potsdam, 2002.02
    90. Luthcke. S.B, Zelensky. N.P, Rowlands. D.D, etc. The 1-Centimeter Orbit: Jason-1 Precision Orbit Determination Using GPS, SLR, DORIS and Altimeter Data. Marine Geodesy, 26:399~421, 2003
    91. Martin Mur. T, Dow. J, Bondaenco. N. et al. Use of GPS for precise and operational orbit determination at ESOC. Proceedings of GPS-ION95, Palm Springs, CA,1995.9.12-15
    92. McCarthy D, D. IERS conventions(1996). IERS Technical Note 21. Central Bureau of IERS – Observatoire de Paris. Paris, 1996
    93. Meek. M, Gold. K, Hwang. Y, etc. Orbit determination for the QuickBird spacecraft. coretech2002.
    94. Mehra. R. K. Approaches to Adaptive Filtering. IEEE Transactions on Automatic Control, October 1972.
    95. Melbourne . W.G, Davis .E.S, Yunck .T.P, etc. The GPS flight experiment on Topex/Poseidon. Geophysical Research Letters, 1994, 21(19):2171~2174
    96. Misra. P, Burke. B. P, Pratt. M. M, GPS performance in navigation. Proceedings of the IEEE, 87(1), 1999
    97. Montenbruck O., Gill E., Satellite Orbits – Models, Methods, and Applications, Springer-Verlag, Heidelberg, 2000.
    98. Montenbruck O. An epoch state filter for use with analytical orbit models of low earth satellites. Aerospace Science and Technology 4, 2000: 277~287
    99. Montenbruck O., Gill E, Kayal. H. The BIRD Satellite Mission as Milestone towards GPS-based Autonomous Navigation. Proceedings of GPS-ION 2000, Salt Lake City, 2000.9.19-22
    100. Montenbruck O. CHAMP single point positioning using raw and carrier smoothed GPS pseudoranges. DLR-GSOC TN01-07, 2001
    101. Montenbruck O., Gill E. State Interpolation for On-board Navigation Systems. Aerospace Science and Technology, 2001, 5 (3), S. 209 - 220
    102. Montenbruck O. Kinematic GPS positioning of LEO satellites using ionosphere-free single frequency measurements. Aerospace Science and Technology 7. 2003, 396 -405
    103. Montenbruck O. In-flight performance analysis of the CHAMP BlackJack GPS receiver. GPS Solutions 7(2). 2003, 74-86
    104. Montenbruck O.A miniature GPS receiver for precise orbit determination of the Sunsat 2004 Micro-Satellite. ION NTM 2004, San Diego, California, 2004.1.26-28
    105. Moreau. M, Naasz. B, Leitner. J, etc. Hardware in-the-loop demonstration of real-time orbit determination in high earth orbits. ION NTM-2005, San Diego, CA, 2005.1.24`26
    106. NASA Goddard Space Flight Center. SAC-C Satellite. http://www.gsfc.nasa.gov/gsfc/service /gallery/fact_sheets/spacesci/sac-c.htm
    107. Reichert, A. Meehan, T. Munson, T. Toward decimeter-level real-time orbit determination: A demonstration using the SAC-C and CHAMP spacecraft. ION GPS 2002, Portland, 2002.9
    108. Rim, H J; Davis, G W; Schultz, B E. Dynamic orbit determination for the EOS Laser Altimeter Satellite (EOS ALT/GLAS) using GPS measurements. Proceedings of the AAS/AIAA Astrodynamics Conference, Halifax, Canada; P1187-1201. 1996
    109. Schildt,H(著),周志荣等译. C++参考大全:第四版. 北京:电子工业出版社,2003.9
    110. Schutz B, Tapley B, Abusali P and Rim H. Dynamic orbit determination using GPS measurements from TOPEX/POSEIDON. Geophys. Res. Lett., 19, pp. 2179~2182, 1994
    111. Standish. E.M. JPL planetary and Lunar Ephemerides, DE405/LE405. JPL ION 312.F-98-048, 1998.8
    112. Svehla D. and M. Rothacher. Kinematic and Reduced-Dynamic Precise Orbit Determination of Low Earth Orbiters. Paper presented at EGS2002, Nice, France, 2002
    113. Svehla D. Kinematic orbit determination of LEOs based on zero or double-difference algorithms using simulated and real SST data, IAG 2001 scientific assembly, Budapest, Hungary, 2001
    114. Tapley, B.D., Fundamentals of orbit determination, in: Theory of Satellite of Geodesy and Gravity Field Determination, Sansò F and Rummel R (eds), Lecture Notes in Earth Sciences, Vol. 25, Springer-verlag, New York, pp235-260, 1989.
    115. Tapley, B.D, Ries. J.C, Davis. G.W, etc. Precision orbit determination for Topex/Poseidon. Journal of Geophysical Rersearch, 1994, 99(12): 24383~24404
    116. Thornton C.L, Lichten S.M, Young L.E, Yunck T.P. Novel concepts for precise low earth orbiter navigation with GPS. http://hdl.handle.net/2014/22710,1997.10.6
    117. Visser. P.N.A.M. Van Den Ijssel. J. Aiming at a 1-cm orbit for low earth orbiters: reduced-dynamic and kinematic precise orbit determination. Space Science Reviews, 108:27~36, 2003
    118. Warren. D.L.M, Raquet. J.F. Broadcast vs. precise GPS ephemerides: a historical perspective. GPS Solution, 7:151~156, 2003
    119. Wu. S.C, Yunck. T.P, Thornton, C.L. A reduced-Dynamic Technique for precise orbit determination. TDA progress report 42-101, 1990.5
    120. Wu S.C, Yunck. T.P, Thornton. C.L. Reduced-dynamic technique for precise orbit determination of low earth satellites. J. Guidance, Control and Dynamics, 14, p.24-30, 1991
    121. Wu. S.C, Yunck. T.P. Precise Kinematic Positioning with Simultaneous GPS Pseudorange and Carrier Phase Measurement. 1995 National Technical Meeting Proceedings, Anaheim, CA, 1995.1.18~29
    122. Yang. Y, Guo. W. An optimal adaptive Kalman filter. J. Geod, 2006.6
    123. Yoon. J.C, Lee. B.S, Choi. K.H. Spaceraft orbit determination using GPS navigation solutions. Aerosp. Sci. Technol. 4, 2000. pp215~221
    124. Yunck, T.P. Orbit determination, Global Positioning System: Theory and Applications. AIAA, 1996. 559~592
    125. Yunck, T.P, Wu. S.C, Wu, J. T, Thornton, C. L. Precise tracking of remote sensing satellites with the globe positioning system. IEEE Transactions on geosciense and remote sensing. 1990, 28(1): 108~116
    126. Yunck, T.P, Bertiger. W.I, Wu. S.C,etc. First Assessment of GPS-Based Reduced Dynamic Orbit Determination on Topex/Poseidon. Geophysical Research Letters, 21, 541~544, 1994
    127. Yunck, T.P. The promise of spaceborne GPS for earth remote sensing. The International workshop on GPS Meteorology. Japan, 2003.1.14~17
    128. Yunck, T.P, Melbourne. W.G. Spaceborne GPS for earth science. In GPS Trends in precise Terrestrail, Airborne, and Spaceborne Applications. Symposium No.115, Boulder, CO, USA, 1995.7.3~4

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700