单管中超临界CO_2换热特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氟利昂类制冷剂具有良好的热力性能、输运性能和安全性能,以及与制冷设备中的润滑油和材质具有良好的兼容性,使其在制冷和空调领域得到非常广泛的应用。但是氟利昂的泄露导致臭氧层空洞和温室效应。鉴于此,专家们提倡使用自然工质作为制冷剂,重新启用了二氧化碳作为制冷剂。1992,前制冷协会主席Lorentzen分析了二氧化碳作为制冷剂采用跨临界循环方式的可行性。目前,这种循环方式已成为国内外研究的重点和热点,且采用二氧化碳跨临界循环方式已经在汽车空调、热泵领域得到了应用。但是对于CO_2在空调系统中和热泵过程中的换热机理尚未清楚。尤其是二氧化碳达到超临界状念时,对流换热机理非常复杂,即使在相同的工况之间,一个微小变化也会导致二氧化碳流体对流换热的差异。本文以超临界二氧化碳为研究对象,对其在水平单管和竖直单管中向下流动(顺流)和向上流动(逆流)做了数值模拟研究。主要研究内容有以下几个方面:
     (1)分析影响超临界二氧化碳换热的因素有质量流、流动方向、管径、重力等等,但归根到底是由于流体物性参数变化引起的,因此采用了Refprop7.0计算了二氧化碳在相同压力7.5MPa下,不同温度下CO_2流体的比热、黏度、导热系数和密度。
     (2)把计算参数值拟合回归成曲线函数导入CFD-Fluent模拟,采用定壁温冷却的对流换热情形,在整个模拟过程中主要考虑了重力、流体入口温度、不同单管管径和不同质量流入口4种影响因素对超临界二氧化碳在单管中流动换热的影响。
     (3)计算出超临界CO_2流体对流换热的平均努谢尔数和不同管长与管径比处局部努谢尔数,比较努谢尔数的大小,得出在相同条件下的最佳流体入口温度、最佳单管管径和最佳质量流以及得出超临界CO_2流体在冷却对流换热的强烈程度与流体特征温度的关系;同时计算局部努谢尔数与三种关联式计算值相比得,陶宇兵推荐的关联式与文中的计算值误差较小。
     (4)水平单管换热比竖直单管换热剧烈;竖直单管顺流换热比逆流换热剧烈。
As a natural and environmentally favorable fluid, the refrigerant carbon dioxide has been revived due to its good thermal properties recently. In recent years, lots of theoretical analysis and experimental studies have been proved that the transcritical carbon dioxide cycle has a widely future and the automobile air conditioning refrigeration and heat pump systems used CO_2 as working fluid at home and abroad, but also have some difficulties to conquer. Therefore the dissertation principally presents the heat convection of supercritical carbon dioxide flowing in horizontal and vertical single tube with downward and upward flowing cooled by wall. The major researches are summarized as follows:
     (1) In the dissertation, SC-CO_2 thermal properties and the related charts are systematically described firstly. The main effects SC-CO_2 heat convection are flow direction, mass flow, diameter and gravity force and so on, ultimately its physical parameters affected it, such as density, viscosity, thermal conduction and specific heat. Therefore Refprop7.0 used in the calculation of the carbon dioxide's parameters under the same pressure of 7.5 MPa.
     (2) The parameter values are curve fitting using Matlab, and then compiled function to UDF, added into CFD-Fluent. In the whole simulated process, main consideration is four kinds of influence factors on the supercritical carbon dioxide in the single-tube heat convection, including gravity, inlet fluid temperature, different single-tube diameters and different quality affected it, and using fixed-wall temperature (T=300k) as cooling condition.
     (3) Calculated mean Nu_m and local Nu_b, which at the same ratio of the length and diameter, of supercritical CO_2 flowing in single tube. Under the same conditions we can know the optimum inlet fluid temperature, the best single-tube's diameter and the prime mass flowing from comparing with Nu_m. We can also know the relation between heat convection intensity and distinction temperature. At the same time calculated Nu_b values compared to three correlations, it presents the correlation which is recommended by Tao-yubing is anastomosed best.
     (4) The intense of heat convection in horizontal single-pipe is best among vertical single-tube, and intense of heat convection in downward flow condition is better than upward flow condition.
引文
[1]Lorentzen G.Ammonia:an Excellent Alternative[J].International Journal of Refrigeration,1988,July,11:248-252.
    [2]Lorentzen G.The use of natural refrigerants:a complete solution to the CFC/HCFC predicament[J].International Journal of Refrigeration,1995,18(3):190-197.
    [3]Petterson J.An efficient new automobile air conditioning system based CO2 vapor compression[J].ASHRAE Transactions,1994,100:657-665.
    [4]Neksa P,Rekstal H,Zakeri G R,COsoheat pump water heater.Characteristics,system design and experimental results[J].Int.J Refrig,1998,21(3):172-179.
    [5]Lorentzen G.Revival of carbon dioxide as a refrigerant[J].Part 2.H & V Engineer,1993,66(722):10-12.
    [6]Lorentzen G,Petterson J.A new efficient and environmentally benign system for car air conditioning[J].Int J Refrig,1993,16(1):4-12.
    [7]马一太,王景刚,吕灿仁等.超临界流体及超(跨)临界循环的特征研究[J].暖通空调,2002,32(1):101-104.
    [8]Gungor.E.and R.H.S.Winterton.A General Correlation for Flow Boiling in Tubes and Annuli,International Journal of Heat Transfer,1986,29(3):351-358.
    [9]Shiralkar B S,Peter Griffith P.Deterioration in heat transfer to fluids at supereritical pressure and high fluxes [J].ASME,Journal of Heat Transfer,1969,91(1):27-36.
    [10]S.M.Liao,T.S.Zhao.A numerical investigation of laminar convection of supercritical carbon dioxide in Vertical mini/micro tubes[J].Progress in Computational Fluid Dynamic.Nos.2/3/4,2002,2:144-152.
    [11]饶政华,廖胜明.超临界CO_2水平细微管内层流流动与换热的数值模拟[J].热科学与技术,2005,4(2):113-117.
    [12]S.M.Liao,T.S.Zhao.Measurements of Heat Transfer Coefficients From Supercritical Carbon Dioxide Flowing in Horizontal mini/micro Channels[J].Journal of Heat Transfer June 2002,124:413-420.
    [13]Liao S M,Zhao T S.An experimental investigation of convection heat transfer to supercritical carbon dioxide in miniature tubes[J].Int.J.Heat and Mass Transfer,2002,45(25):5025-5034.
    [14]范晓伟,付光轩,龚毅.二氧化碳管内流动与换热研究现状及展望[J].中原工学院学报,2002,13(3):7-9.
    [15]杨亮,丁国良,黄冬平等.超临界二氧化碳流动和换热研究进展[J].制冷学报,2003(2):51-56.
    [16]Jian Min Yin,Clark W Bullard,Predrag S Hrnjak.R-744 gas cooler model development and validation.[J].International Journal of Refrigeration,2001,24:692-701.
    [17]PETTERSON J,LORENTZEN G.A new efficient and environmentally benign system for automobile air conditioning.[J].J SAE Transaction,1993,102(5):135-145.
    [18]Friedrich Kauf.Determination of the optimum high pressure for transcritical CO2 refrigeration cycles[J]. Int J Therm Sci,1999,38:325-330.
    [19]Douglas M.Robinson,Eckhard A.Grotl.Efficiencies of transcritical CO2 cycles with and without an expansion turbine.[J].Int J.Refrig,1998,21(7):577-589.
    [20]Yunho Hwang,Reinhard Radermacher.Theoretical evaluation of carbon dioxide refrigeration cycle.[J].HAVC and Research,1998,4(3):245-263.
    [21]林高平,顾兆林.跨临界CO02循环性能的研究[J].西安交通大学学报,1998,22(8):35-38.
    [22]廖胜明.跨临界二氧化碳循环的热力学分析及其应用前景[A].高校工程热物理研究会第七届全国学术会议论文集[C],上海,1998:448-453.
    [23]沈裕浩,廖胜叨.二氧化碳-下世纪实用制冷剂[J].流体机械,1998(02):57-61.
    [24]马一太,杨昭,吕灿仁.CO2跨临界(逆)循环的热力学分析[J].工程热物理学报,1998,19(6):665-668.
    [25]马一太.王侃宏.带膨胀机的CO2跨(超)临界循环的热力学分析[J].工程热物理学报,1999,20(6):661-665.
    [26]王景刚,马一太.CO2跨临界双级压缩带膨胀机制冷循环研究[J].制冷学报.2001,2.
    [27]马一太,魏东.CO2跨临界制冷循环应用两相螺杆膨胀机的理论分析[J].工程热物理学报.2001,22(2):137-140.
    [28]Lu Wei.Ma Yitai.Image of energy consumption of well off society in China.Energy Conversion &Management.2004,45:1357-1367.
    [29]蒯大秋,马一太.混合工质匹配性能的热力学分析[J].工程热物理学报.2004,25(1):34-36.
    [30]马一太,卢苇.蒸气压缩式集中空调机组能效的探讨[J].暖通宁调,2004,34(2):18-21.
    [31]杨亮,丁国良,黄冬平等.超临界二氧化碳流动和换热研究进展[J].制冷学报,2003(2):51-56.
    [32]丁国良CO_2制冷技术新发展[J].制冷空调与电力机械,2002(02):49-51.
    [33]陈江平.新型高效的跨临界二氧化碳汽车空调系统[J].制冷技术,2002(03):32-36.
    [34]陈江平,穆景阳,陈芝久.二氧化碳汽车空调系统应用研究进展[J].低温与特气,2001(02):3-7.
    [35]陈江平,穆景阳,刘军朴等.二氧化碳跨临界汽车空调系统开发[J].制冷学报,2002(03):16-19.
    [36]陈江平,穆景阳,简晓文等.二氧化碳汽车空调系统应用研究进展(一)--系统结构、性能及其优化[J].流体机械,2000,4:50-54.
    [37]陈江平,简晓文,穆景阳等.二氧化碳汽车空调系统应用研究进展(二)--部件设计改进[J].流体机械,2000.5:53-57.
    [38]淮秀兰,Shigeru Koyama.微通道内超临界二氧化碳的压降与传热特性[J].工程热物理学报,2004,25(5):843-845.
    [39]马富芹.水平微小通道内CO_2沸腾换热研究[D].东华大学,2004.
    [40]尹从绪.超临界二氧化碳水平管内对流换热特性的实验研究[D].天津商学院,2005.
    [41]徐轶君,姜培学,向恒等.竖直细圆管中超临界压力CO2在低雷诺数下对流换热研究[J].工程热物理学报,2005,26(3):468-470.
    [42]陶于兵,吴志根,周俊杰等.CO_2超临界管内冷却换热和压降关联式比较[J].暖通空调,2006,36(3): 25-28.
    [43]韩布兴等编著.超临界流体科学与技术[M].北京:中国石化出版社,2005.
    [44]Brennecke JF,Eckert C A.AICHE J,1989,35:1409
    [45]杨强生,浦保荣编著.高等传热学(第二版)[M].上海:上海交通大学出版社,2001.
    [46]章熙民,任泽霈编著.传热学(第四版)[M].北京:中国建筑工业出版社,2001.
    [47]朱自强.超临界流体技术:原理与应用[M].北京:化学工业出版社,2001.
    [48]王经编著.传热学与流体理学基础[M].上海:上海交通大学出版社,2007.
    [49]孙德兴编著.高等传热学-导热与对流的数理解析[M].北京:中国建筑工业出版社,2005.
    [50]Petrov.N.E.,V.N.Popov.Heat Transfer and Resistance of Carbon Dioxide Being Cooled in the supercritical Region.[J].Thermal Engineering,1985,32(3):131-134.
    [51]Krasmochekov E A,Protopopov V S.Experimental study of heat exchange in Carbon Dioxide in the supercritical Range at High Temperature Drops.[J].Teplofizika Vysokikh Temperature,1996,4(3):389-398.
    [52]Protopopov V S.Generalized Correlations for Local Heat Transfer Coefficient for Turbulent Flow of Water and Carbon Dioxide at Super-Critical Pressure in Uniformed Heated Tubes.(in Russian).[J].Teplofizika Vysokikh Temperature,1977,15(4):815-821.
    [53]Grigoriev V S,Polyakov A F,Rosnovsky S V.Heat Transfer of Fluids at Super-Critical Pressure with variable Heat Flux Along Length in Tubes.(in Russian).[J].Teplofizika Vysokikh Temperature,1977,15(6):1241-1247.
    [54]http://www.acsom.com.
    [55]Eric W.Lemmon,Mark O.Mclinden,Marcia L.Huber.NIST Reference Fluid Thermodynamic and Transport Properties-REFPROP Version 7.0 Users' Guide[M].Gaithersburg,Maryland 20899:U.S.Department of Commerce Technology Administration National Institute of Standards and Technology Standard Reference Data Program.2002.08.
    [56]王福军编著.计算流体动力学分析[M].北京:清华大学出版社.2004.
    [57]http://www.cfluid.com.
    [58]陶文铨编著.数值传热学(第2版)[M].西安:西安交通大学出版社,2001.
    [59]韩占忠,王敬,兰小平编.FLUENT流体工程仿真计算实例与应用[M].北京:北京理工大学出版社,2004.
    [60]饶政华,廖胜明.超临界二氧化碳管内湍流流动与换热的数值模拟[J].流体机械,2005,33(1):71-75.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700