基于遥感和数值模拟技术的河口水流及水质过程模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人类对河口的开发与利用已有悠久的历史,现在的河口地区仍然是世界上人类经济活动最频繁、人口最稠密、环境变化影响最为深远的地带之一。然而,在经济高速发展的同时,河口地区的环境遭到人类高强度活动的干扰,影响了河口地区的可持续发展。对河口的水环境进行系统、科学的模拟、分析,对于今后进行水环境质量的规划、管理具有十分重要的意义。
     本论文以2007年7月对射阳河口进行实地观测所得数据为依据,主要研究射阳河口的水动力特征和水质情况。通过对射阳河口潮流和水质的计算分析,研究了其潮流场特征。在此基础上,对水质要素的扩散进行了研究。由于海洋污染主要来自于内陆河流的排放,因此本论文的研究工作对于河口陆源污染对江苏沿海河口及其邻近海域的影响,海域环境容量的确定,近海海域的环境保护策略的制订等都具有重要的理论价值和实践意义。论文主要内容和成果包括以下几个方面:
     (1)通过实测资料和翻阅国外相关参考文献,并经过多次的调试,确定了射阳河口EFDC模型的相关水动力水质参数,为后面的进一步模拟水质水动力条件奠定了基础。尝试引入了遥感影像反演海表温度的技术,初步反演出射阳河口海水表层温度。通过对遥感影像的大气、几何校正,利用影像的热红外波段进行计算,从而得到射阳河口海表温度,作为数值模拟的部分数据资料。
     (2)通过对潮位站和测点的流速、流向计算值和实测值的比较,得出模型不仅能够较好地体现潮位的变化过程,而且在射阳河口岸线、地形较为复杂的射阳河口也能较好地反映潮流的分布和变化。模型模拟的结果表明流场在垂向上存在一定差异,下层流速明显小于上层流速。这种现象是由于底部摩擦和垂直紊流混合作用形成的。这说明要模拟射阳河口流场应该充分考虑径流的作用,使用三维模拟。
     (3)利用建立的水质模型模拟射阳河口水质情况分布,误差分析表明水质模型具有较高精度。研究表明污染物主要来自径流的输入,易降解的有机氮颗粒和溶解性有机氮浓度基本上由河口向外围衰减的趋势,易降解有机碳颗粒、磷酸盐等物质受涨落潮的影响,逐渐向偏南方向扩散。
     (4)研究结果显示污染源对水体的影响范围主要是在污染源附近,随着时间的推移,污染源逐渐向外围扩散。射阳河口的水动力条件有利于污染物的稀释扩散。
     射阳河口是江苏省的典型河口,其排污总量在江苏省23条入海河流中仅次于长江口北支。因此研究其水动力过程和水质情况对于阐明人类活动对近海海域生态环境的影响有着非常重要的意义。
It has been a long history since human began the development and utilization of the estuary regions, which is still of the most intensive economic activities, the densest population and the profoundest impact of environmental change on the world until now. However, with the rapid development of economy, environment of estuary regions are interrupted by intensive human activities, impeding the sustainable development of the estuary regions. A systematic and scientific simulation and analysis on estuarial water environment is of great importance for the planning and management of the quality of water environment in the future.
     In this thesis, it is mainly studied the hydrodynamic behavior and water quality condition of Sheyang Estuary area based on in situ observation there on July 2007. According to the calculation and analysis of tidal current and water quality on Sheyang Estuary region, the characteristic of tidal field and thereby the diffusion of water quality elements are studied. The research of this thesis has both theoretical and practical significance to water environment protection of Sheyang Estuary and the adjacent sea areas. Main contents and achievements of the thesis are as follows:
     1. Based on observation data and lots of references, after many times of experiments and adjustments, relative hydrodynamic and water quality parameters of EFDC model for the study area are determined, which sets up basis for the simulation of hydrodynamic and water quality condition in the next step. The retrieval of sea surface temperature by remote sending image is adopted to obtain the sea surface temperature of Sheyang Estuary. By atmospheric and geometric modification of the remote sensing image, and based on wave band calculation on thermal infrared wave band, sea surface temperature of Sheyang Estuary is obtained. This method reasonably depicts the variation of sea surface temperature, and provides sufficient data for the determination of temperature field in the model.
     2. On the comparison of flow rate and flow direction between calculation and observation at tide gauging station and observation plot, it is concluded that the model can both depict tidal fluctuation process and capture fairly well the distribution and variation of tidal current at Sheyang Estuary where the coastal line and topography are very complex. Results of simulation reveal that there are some differences in vertical flow field, that is, flow rate of lower layer is obviously smaller than that of the upper layer, which is a result of the compound function of friction at the bottom and vertical mixture of turbulence. Therefore a 3D simulation model should be applied to simulate flow field in Sheyang Estuary, to fully take into consideration the effect of runoff.
     3. Distribution of water quality in Sheyang Estuary area is simulated by the established water quality model, which reveals fairly high precision by residual analysis. It is indicated that pollutant mainly comes from runoff input, the density of degradable organic nitrogen particle and dissolvable organic nitrogen show a decline trend from the river mouth outwards.
     4. Research results reveal that the incidence to pollutant source to water body is mainly close to the pollutant source, while expand gradually with time. The hydrodynamic condition of the study advantages the dilution and diffusion of pollutant. As a typical estuary in Jiangsu Province, the total pollutant discharge at Sheyang Estuary ranks the second after north branch of Yangtze River among all the 23 rivers that flow to the sea in Jiangsu Province, therefore the research on hydrodynamic process and water quality condition of this region is of great importance to understand the human impact on eco-environment of coastal sea areas.
引文
[1]金腊华,徐峰俊.河口及近海水质模拟[M].北京:化学工业出版社,2007.
    [2]廖振良,宋卫锋.应用水质模型方法研究河流污染控制[J].环境与开发,2000,15(4):15-16.
    [3]陈美丹,姚琪,徐爱兰.WASP水质模型及其研究进展[J].水利科技与经济,2006,12(7):420-426.
    [4]车进胜,周作付.河口海岸水动力模拟技术研究的进展[J].台湾海峡。2003.22(1):125-219.
    [5]Saint-Venant B De.Theories du movement non-permannent des seaux avec application aux cures des riviees rl.l'introdaction des marees dans leur lit,Acad.Sci.Comptes renkus[J],1871,73(1):148-154.
    [6]DAMES A M.Review of recent developments in tidal hydrodynamic modeling[J].J Hydr Engrg[J],1997,123(4):278-292.
    [7]Leendertse J J.A Three-Dimensional Model for Estuaries and Coastal Seas[M].Santa Manica:The Rord Corporation,1973,78-86.
    [8]Yanenko N N.The Method of fractional steps[M].Springer-Verleg,Berlin&New York,1971
    [9]MELLOR G L,EZER T,OEY L Y.The pressure gradient conundrum of sigma coordinate ocean models[J].J Atmos Oceanic Technol,1994,(11):1126-1134.
    [10]朱建荣,沈焕庭,朱首贤.三维陆架模式及其应用[J].青岛海洋大学学报,1997,27(2):145-156
    [11]CASULLI V,CHENG R.Semi-implicit finite difference methods for three dimensional shallow water flow[J].Inter J for Num Methods in Fliuds,1992,15:629-648.
    [12]张存智.黄海北部海域三位潮流数值模型[J].海洋预报,2000,17(1):1-13
    [13]赵士清.长江口三维潮流数值模拟[J].水利水运研究,1985,1:18-20.
    [14]宋志尧,薛鸿超等.潮汐动力场准三维数值模拟[J].海洋工程,1998,16(3):54-61.
    [15]徐祖信,华祖林.长江口南支三维水动力及污染物输送数值模拟[J].同济大学学报,2003,31(2):239-243.
    [16]韩国其,汪德灌,许协庆.潮汐河口三维水流数值模拟[J].水利学报,1989,12:54-60.
    [17]刘桦,何友声.长江口水环境数值模拟研究[J].水动力学研究与进展,2000,15(1):17-30.
    [18]窦振兴,杨连武,Ozerj.渤海湾三维潮流数值模拟[J].海洋学报,1993,15(5):1-15.
    [19]于凤香,宋志尧,李瑞杰.长江口三维潮流数值计算及动力分析.海洋湖沼通报,2003,3:14-23.
    [20]张越美,孙英兰.渤海湾三维变动边界潮流数值模拟[J].青岛海洋大学学报(自然科学版),2002,32(3):337-344.
    [21]Grenney,W J.,Teusher,M.C.,Dixon,L.S.WPCF,1978,50(1):151-157.MORTON,TAYLOR,TURNER.Turbulent gravitational convection from maintained and instantaneous sources[J].Proc Roy Soc,1956,Part A (234):1-23.
    [22]LIST E,IMBERGER.J.,Turbulent entrainment in buoyant jets and plumes[J],J Hydr Div,ASCE,1973,99(HY8);1461-1474.
    [23]LEE.J H,CHEUNG V.Generalized Lagrangian model for buoyant jets in current[J].J Envir Engrg,ASCE,1990,116(6):1085-1106.
    [24]RODI W.Turbulent buoyantjets and plumes[A].The science&application of heat and mass transfer[C].New York:Academic press,HMT,1988.
    [25]CHEN CJ,LI W.Vertical plane buoyant jets in stratified environment[J].Engrg Mech,1984,110(2):224-238.
    [26]刘成,李行伟,韦鹤平,王兆印.长江口水动力及污水稀释扩散模拟[J].海洋与湖沼,2003,34(5):472-483.
    [27]王祥三,李重荣.河口海域SDZY水质预测模型的研究及应用[J].水科学进展,2002,13(6):707-713
    [28]管卫兵,王丽娅,潘建明,董礼先.POM模式在河口湾污染物质输运过程模拟中的应用[J].海洋学报,2002,24f3):9-17.
    [29]赵棣华,李提来,陆家驹.长江江苏段二维水流-水质模拟[J].水利学报,2003,(6):72-72.
    [30]沈永明,郊永红,邱大洪.近海水域三维水动力学和水质的精细模型研究[J].云南环境科学,2000,19:17-21.
    [31]李适宇.近岸海域三维水质富营养化数值模型的开发及应用[A].环境科学研究与应用[C],北京:中国环境科学出版社,1998:8-18.
    [32]Zou,R.,Carter,S.,Shoemaker,L.,Parker,A.,and Henry,T.An integrated hydrodynamic and water quality modeling system to support nutrient TMDL development for Wissahickon Creek.Journal of Environmental Engineering,2006,132,555-566.
    [33]Moustafa,M.Z.,and J.M.Hamrick.Calibration of the wetland hydrodynamic model to the Everglades nutrient removal project.Water Quality and Ecosystem Modeling,2000,1,141-167.
    [34]Yang,Z.,A.Baptista,and J.Darland.Numerical modeling of flow characteristics in a rotating annular flume.Dynamics of Atmospheres and Oceans,2000,31,271-294.
    [35]Shen,J.and A.Y.Kuo.:Numerical investigation of an estuarine front and its associated topographic eddy.Journal of Waterway,Port,Coastal,and Ocean Engineering,1999,125,127-135.
    [36]Kuo,A.Y.,J.Shen,and J.M.Hamrick.The effect of acceleration on bottom shear stress in tidal estuaries.Journal of Waterways,Ports,Coastal and Ocean Engineering,1996,122,75-83.
    [37]Tuckey,B.J.,M.T.Gibbs,B.R.Knight,and P.A.Gillespie.Tidal circulation in Tasman and Golden Bays:implications for river plume behavior[J].New Zealand Journal of Marine and Freshwater Research,2006,40:305-324.
    [38]Bai,S.,and W.-S.Lung.Modeling sediment impact on the transport of fecal bacteria[J].Water Research,2005,39:5232-5240.
    [39]Khangaonkar T.P.,Z.Yang,C.DeGasperi,and K.Marshall.Modeling hydrothermal response of a reservoir to modifications at a high-head dam[J].Water International,2005,30:378-388.
    [40]Wool,T.A.,S.R.Davie,and H.N.Rodriguez.Development of three-dimensional hydrodynamic and water quality models to support TMDL decision process for the Neuse River estuary,North Carolina[J].Journal of Water Resources Planning and Management,2003,129:295-306.
    [41]Yang,Z.and J.M.Hamrick.Variational inverse parameter estimation in a cohesive sediment transport model:an adjoint approach[J].Journal of Geophysical Research,2003:,108(C2):3055.
    [42]Ji,Z.-G.,J.H.Hamrick,and J.Pagenkopf.Sediment and metals modeling in shallow river[J].Journal of Environmental Engineering,2002,128:105-119.
    [43]Jin,K.R.,Z.G.Ji,and J.M.Hamrick,.Modeling winter circulation in Lake Okeechobee, Florida[J].Journal of Waterway,Port,Coastal,and Ocean Engineering,2002,128:114-125.
    [44]Ji,Z.-G.,M.R.Morton,and J.M.Hamrick.Wetting and drying simulation of estuarine processes[J].Estuarine,Coastal and Shelf Science,2001,53:683-700.
    [45]贺彬.滇池流域水污染控制仿真系统研究[J].云南环境科学,2004,23(2):14-16.
    [46]陈景秋,赵万星,季振刚.重庆两江汇流水动力模型[J].水动力学研究与进展,2005,12:829-835.
    [47]Wang Jianping,Cheng Shengrong,Jia Haifeng.Water quality changing trends of the Miyun Reservoir[J].Journal of Southeast University(English Edition),2005,21(2):215-219
    [48]袁国林,陈异晖.滇池水动力仿真研究[J].云南环境科学,2005,24:22-24.
    [49]党顺行,扬崇俊,王宇飞,等.卫星遥感海表温度反演研究[J].高技术通讯,2001,11(3):49-52.
    [50]鲍献文,万修全,高郭平,等.渤海、黄海、东海AVHRR海表温度场的季节变化特征[J].海洋学报,2002,24(5):125-133.
    [51]张里阳.EOS-MODIS资料处理方法及其遥感中国区域地表覆盖的初步研究[D].南京:南京气象学院,2002.
    [52]刘闯,葛成辉.美国对地观测(EOS)中分辨率成像光谱仪(MODIS)遥感数据的特点与应用[J].遥感信息,2002:45-48.
    [53]梁芸.利用EOS/MODIS资料监测森林火情[J].遥感技术与应用,2002,17(6):310-313
    [54]蒋岳新.应用EOD-MODIS数据进行林火监测的初步探索[J].森林防火,2002,(75):25-29.
    [55]张树誉.EOS-MODIS资料在陕西大雾监测中的应用[J].灾害学,2003,2:25-28.
    [56]马建文.东亚飞蝗灾害遥感监测机理与方法.以环渤海湾地区为例[M].北京:科学出版社,2004.
    [57]蒋耿明,刘荣高,牛铮等.MODIS 1B影像儿何纠正方法研究及其软件实现[J].遥感学报,2004,8(2):158-164.
    [58]Robert E Wolf,David P Roy,Eric Vermote.MODIS Land Data Storage,Gridding,and Compositing Methodology:Level 2 Grid[J].IEEE Transactions on Geoscience and Remote Sensing,1998,36(4):1324-1338.
    [59]刘玉洁,杨忠东,等.MOOIS遥感信息处理原理与算法[M].北京:科学出版社,2001.
    [60]黄家沽,万幼川,刘良明.MODIS的特性及其应用[J].地理空间信息,2003,1(4):20-23.
    [61]Brown O B,Minnett P J.MODIS Infrared Sea Surface Temperature Algorithm.Algorithm Theoretical Basis Document Version 2.0[EB].University of Miami Miami,1999:33149-1098.
    [62]James E.Davies.The IMAPP MODIS Sea Surface Temperature Algorithm[R].2004
    [63]Leendertse,J.J.A Water-quality Simulation Model for Well-mixed Estuaries and Coastal Seas[M].Principles of Computation.Rand,Santa Monica,1970,1.
    [64]陆永军等.波浪与潮流共同作用下二维泥沙数学模型[[J].泥沙研究,2005,12(6):1-12.
    [65]陆永军等.强潮河口围海工程对水动力环境的影响[J].海洋工程,2002,20(4):17-15.
    [66]张东生.张君伦.黄海海底辐射沙洲区的M_2潮波[J].河海大学学报.1996,24(5):35-40.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700