二氮嗪对幼龄大鼠深低温低流量脑损伤的影响及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
【目的】
     通过建立幼龄大鼠深低温低流量(DHLF)脑损伤模型,研究二氮嗪通过线粒体凋亡通路的脑保护机制。
     【方法】
     将198只3周龄SD大鼠随机分为三组:假手术组、模型组和二氮嗪组。模型组和二氮嗪组在大鼠肛温降至(21±0.5)℃时阻断两侧颈总动脉120 min后再开放。假手术组除不阻断两侧颈总动脉外,其余操作相同。利用激光多普勒血流监测仪连续监测假手术组、模型组和二氮嗪组(每组6只)大鼠局部脑血流量。然后,每组60只大鼠再随机分成5个亚组:再灌注后1h,6h,24h,72h和7d(n=12)。二氮嗪组于缺血前30min腹腔内注射二氮嗪5 mg/kg(溶解于0.25 ml二甲基亚砜(DMSO)),模型组和假手术组则予腹腔内注射等体积的DMSO。TUNEL法检测各组脑组织细胞凋亡,RT-PCR检测各时间点细胞色素C和Caspase-3的mRNA表达的变化,免疫组织化学检测各时间点细胞色素C和Caspase-3的蛋白表达的变化。
     【结果】
     大鼠局部脑血流量在模型组和二氮嗪组均显著下降。模型组和二氮嗪组在DHLF 0~5 min内分别降至正常水平的(15.73±3.47)%和(14.74±3.60)%,且在DHLF期间无明显改变。模型组中TUNEL-阳性细胞在再灌注后6h,24h,72h和7d均显著增高(P<0.01),细胞色素C和Caspase-3的mRNA表达在再灌注后6h,24h和72h亦明显增高(P<0.05 or P<0.01),同时细胞色素C和Caspase-3的蛋白表达分别在再灌注后6 h~72 h和24 h~72 h增高(P<0.05 orP<0.01)。二氮嗪组TUNEL阳性细胞显著下降,并且明显抑制了细胞色素C的释放和Caspase-3的活化(P<0.05 or P<0.01)。
     【结论】
     本实验结果表明幼龄大鼠深低温低流量模型可近似于临床心脏手术深低温低流量过程。二氮嗪在深低温低流量脑缺血损伤中通过阻止细胞色素C的释放和抑制Caspase-3的活化发挥抗细胞凋亡的保护作用,为临床防治深低温低流量术后神经系统损伤提供新的治疗思路,具有重要的临床研究应用价值。
Objective:
     The purpose of this study was to determine the effects of diazoxide on apoptosis and the relative mechanisms in a model of brain injury induced by deep hypothermia low flow (DHLF).
     Methods:
     198 three-week-old Sprague-Dawley rats were randomly and equitably divided into sham-operated group, placebo-treated group and diazoxide-treated group respectively. Placebo-treated and diazoxide-treated rats were experienced bilateral common carotid arteries (CCAs) occlusion for 120 min during deep hypothermia at (21±0.5)℃. Sham-operated rats were only without occlusion of the CCAs. Specific examination of the regional cerebral blood flow (rCBF) was measured in the three groups (n=6 for each group) continuously during the operation by laser Doppler flowmetry (LDF). Then 60 rats for each group was redistributed into five subgroups: 1 hour (1 h), 6 hours (6 h), 24 hours (24 h), 72 hours (72 h) and 7 days (7 d) after reperfusion. Diazoxide (5 mg/kg) or the same volume of DMSO was administered intraperitoneally 30 min before brain ischemia. In situ end-labeling of nuclear DNA fragmentation (TUNEL) was employed to determine the level of apoptosis. The mRNA expressions of cytochrome c and caspase-3 were determined by RT-PCR, and the protein expressions of cytochrome c and caspase-3 were determined by immunohistochemistry.
     Results:
     rCBF was significantly decreased in both of placebo-treated and diazoxide-treated group. rCBF showed flow reduction to (15.73±3.47)% (placebo-treated group) and (14.74±3.60)% (diazoxide-treated group) of baseline value just after ischemia in the time interval 0-5 min, and had no obviously changes in all the time intervals during the operation. In the placebo-treated group, the increased the percentage of TUNEL-positive staining cells were significantly observed at 6 h, 24 h, 72 h and 7 d after reperfusion (P<0.01 vs sham). The mRNA expressions of cytochrome c and caspase-3 were also increased at 6 h, 24 h and 72 h after reperfusion (P<0.05 or P<0.01 vs sham), while the protein expressions of cytochrome c and caspase-3 were increased from 6 h or 24 h to 72 h after reperfusion, respectively (P<0.05 or P<0.01 vs sham). Diazoxide preconditioning markedly decreased the percentage of TUNEL-positive staining cells, and inhibited the release of cytochrome c and activation of caspase-3 (P<0.05 or P<0.01 vs placebo).
     Conclusion:
     These results suggest that this animal model is approximately to clinic cardiac operation DHLF procedure, and the protective effects of diazoxide preconditioning in our model correlated with the reduction of DNA fragmentation, the prevention of mitochondrial cytochrome c release and inhibition of caspase-3 activation. These findings demonstrate that diazoxide may become a therapeutic drug for the brain injury during DHLF cardiopulmonary bypass.
引文
[1] Kinney HC, Panigrahy A, Newburger JW, et al. Hypoxic-ischemic brain injury in infants with congenital heart disease dying after cardiac surgery[J]. Acta Neuropathol (Berl). 2005, 110(6): 563-578.
    [2] Jonas RA. Hypothermia circulatory arrest and the pediatric brain[J]. J Cardio Thorac Vasc Anesth. 1996, 10: 66-74.
    [3] Vannucci RC. Mechanisms of perinatal ischemic brain damage. In Janos RA, Newburger JW, Volpe JJ, eds. Brain injury and pediatric cardiac surgery. Newton: Butterworth-Heinemann. 1996, 201-204.
    [4] Jonas RA. Brain injury and pediatric cardiac surgery. 1995, 201-204.
    [5] Kristian T, Siesjo BK. Calcium-related damage in ischemia[J]. Life Science. 1996, 59:357-367.
    [6] Karibe H, Chen SF, Zarow GJ, et al. Mild intra ischemic hypothermia suppresses consumption of endogenous antioxidants after temporary focal ischemia in rats [J]. Brain Res. 1994, 649: 12-18.
    [7] Cooper WA, Duarte IG, Thourani VH, et al. Hypothermic circulatory arrest causes multisystem vascular endothelial dysfunction and apoptosis[J]. Ann Thorac Surg. 2000, 69(3): 696-703.
    [8] Ditsworth D, Priestley MA, Loepke AW, et al. Apoptotic neuronal death following deep hypothermic circulatory arrest in piglets[J]. Anesthesiology. 2003, 98(5): 1119-1127.
    [9] Zaitseva T, Schultz S, Schears G, et al. Regulation of brain cell death and survival after cardiopulmonary bypass[J]. Ann Thorac Surg. 2006, 82(6): 2247-2253.
    [10] Eskes R, Desagher S, Antonsson B, et al. Bid induces the oligomerization and insertion of Bax into the outermitochondrial membrane[J]. Mol Cell Biol, 2000, 20(3): 929-935.
    [11] Miramar MD, Costantini P, Ravagnan L, et al. NADH oxidase activity of mitochondrial apoptosis-inducing factor[J]. J Biol Chem, 2001, 276(19): 16391-16398.
    [12] Ardehali H, O'Rourke B.Mitochondrial K(ATP) channels in cell survival and death[J].J Mol Cell Cardiol. 2005 Jul;39(1):7-16.
    [13] Busija DW, Lacza Z, Rajapakse N, Shimizu K, Kis B, Bari F, Domoki F, Horiguchi T.Targeting mitochondrial ATP-sensitive potassium channels-a novel approach to neuroprotection[J] .Brain Res Brain Res Rev. 2004 Nov;46(3):282-94.
    [14] Shake JG, Peck EA, Marban E, et al. Pharmacologically induced preconditioning with diazoxide:a novel approach to brain protect[J]. Ann Thorac Surg. 2001, 72(6): 1849-1854.
    [15] Nahibin VS, Dosenko Vie, Pyvovar SM, et al. Fluorine-containing analog of diazoxide prevented apoptosis in neonatal cardiomyocytes during anoxia-reoxygenation[J]. Fiziol Zh. 2004, 50(3): 3-8.
    [16] Liu D, Lu C, Wan RA, et al. ctivation of mitochondrial ATP-dependent potassium channels protects neurons against ischemia-induced death by a mechanism involving suppression of Bax translocation and cytochrome c release[J].J Cereb Blood Flow Metab.2002,22(4):431-443.
    [17]Hausenloy DJ,Yellon DM,Mani-Babu S,et al.Preconditioning protects by inhibiting the mitochondrial permeability transition.Am J Physiol Heart Circ Physiol 2004;287(2):H841-849.
    [18]Busija DW,Katakam P,Rajapakse NC,et al.Effects of ATP-sensitive potassium channel activators diazoxide and BMS-191095 on membrane potential and reactive oxygen species production in isolated piglet mitochondria[J].Brain Res Bull 2005;66(2):85-90.
    [19]Wu L,Shen F,Lin L,et al.The neuroprotection conferred by activating the mitochondrial ATP-sensitive K+ channel is mediated by inhibiting the mitochondrial permeability transition pore[J].Neurosci Lett 2006;402(1-2):184-189.
    [20]Farkas E,Institoris A,Domoki F,et al.The effect of pre- and posttreatment with diazoxide on the early phase of chronic cerebral hypoperfusion in the rat[J].Brain Res.2006,1087(1):168-174.
    [21]陶运明,莫绪明,谷兴琳,等。深低温停循环脑保护大鼠模型的建立[J]。江苏医药,2005,31(7):536-538.
    [22]Kim CS,Park JB,Kim KJ,et al.Effect of Korea red ginseng on cerebral blood flow and superoxide production[J].Acta Pharmacol Sin.2002,23:1152-1156.
    [23]Hoyte LC,Papadakis M,Barber PA,et al.Improved regional cerebral blood flow is important for the protection seen in a mouse model of late phase ischemic preconditioning[J].Brain Res.2006,1121:231-237.
    [24]Kinney HC,Panigrahy A,Newburger JW,et al.Hypoxic-ischemic brain injury in infants with congenital heart disease dying after cardiac surgery[J].Acta Neuropathol(Berl)2005,110:563-578.
    [25]Clancy RR,McGaurn SA,Wernovsky G,et al.Risk of seizures in survivors of newborn heart surgery using deep hypothermic circulatory arrest[J].Pediatrics.2003,111:592-601.
    [26]陶运明,莫绪明。彭卫深低温停循环对大脑皮层神经细胞凋亡的影响[J]。现代医学,2004,32(3):187-190.
    [27]陈凤,莫绪明,顾群,等。二氮嗪对深低温脑缺血再灌注大鼠脑组织NR1表达的影响[J]。现代医学,2007,35(4):276-279.
    [28]彭卫,莫绪明,顾群,等。甲泼尼龙对深低温脑缺血-再灌注大鼠脑组织S-100 mRNA表达的影响[J]。医学研究生学报,2006,19(12):1070-1072.
    [29]彭卫,莫绪明,顾群,等。甲泼尼龙对深低温脑缺血再灌注大鼠血清S-100β蛋白的影响医学研究生学报[J]。2006,19(4):338-340.
    [30]顾群,莫绪明,陈凤,等。甲基强的松龙对深低温停循环大鼠 脑保护作用的研究[J]. 现代医学, 2007, 35 (4) : 283-286.
    [31] Bagetta G, Chiappetta O, Amantea D, Iannone M, Rotiroti D, Costa A, et al. Estradiol reduces cytochrome c translocation and minimizes hippocampal damage caused by transient global ischemia in rat[J]. Neurosci Lett. 2004,368:87-91.
    [32] Kerendi F, Halkos ME, Kin H, et al. Upregulation of hypoxia inducible factor is associated with attenuation of neuronal injury in neonatal piglets undergoing deep hypothermic circulatory arrest[J]. J Thorac Cardiovasc Surg. 2005, 130:1079-1089.
    [33] Gaynor JW, Nicolson SC, Jarvik GP, et al. Increasing duration of deep hypothermic circulatory arrest is associated with an increased incidence of postoperative electroencephalographic seizures[J]. J Thorac Cardiovasc Surg. 2005,130:1278-1286.
    [34] Gaynor JW, Wernovsky G, Jarvik GP, et al. Patient characteristics are important determinants of neurodevelopmental outcome at one year of age after neonatal and infant cardiac surgery [J]. J Thorac Cardiovasc Surg. 2007, 133: 1344-1353.
    [35] Tsubokawa T, Jadhav V, Solaroglu I, et al. Lecithinized superoxide dismutase improves outcomes and attenuates focal cerebral ischemic injury via antiapoptotic mechanisms in rats[J]. Stroke. 2007, 38: 1057-1062.
    [36] Niquet J, Seo DW, Wasterlain CG. Mitochondrial pathways of neuronal necrosis[J]. Biochem Soc Trans. 2006, 34: 1347-1351.
    [37] Tanaka H, Yokota H, Jover T, et al. Ischemic preconditioning: neuronal survival in the face of caspase-3 activation[J]. J Neurosci. 2004,24: 2750-2759.
    [38] Liu D, Lu C, Wan R, et al. Activation of mitochondrial ATP-dependent potassium channels protects neurons against ischemia-induced death by a mechanism involving suppression of Bax translocation and cytochrome c release[J]. J Cereb Blood Flow Metab. 2002, 22: 431-443.
    [39] Shimizu K, Lacza Z, Rajapakse N, et al. MitoK(ATP) opener, diazoxide, reduces neuronal damage after middle cerebral artery occlusion in the rat[J]. Am J Physiol Heart Circ Physiol. 2002, 283: 1005-1011.
    [40] Domoki F, Kis B, Naqy K, et al. Diazoxide preserves hypercapnia-induced arteriolar vasodilation after global cerebral ischemia in piglets[J]. Am J Physiol Heart Circ Physiol. 2005, 289: 368-373.
    [41] Chan PH.Future targets and cascades for neuroprotective strategies[J]. Stroke, 2004,35:2748-50
    [42] Song G, Ouyang G, Bao S,et al. The activation of Akt/PKB signaling pathway and cell survival[J]. J Cell Mol Med, 2005, 9(1):59-71
    [43] Nakajima T,Iwabuchi S,Miyazaki H,et al. Preconditioning prevents ischemia-induced neuronal death through persistent Akt activation in the penumbra region of the rat brain[J]. J Vet Med Sci, 2004, 66(5):521-527
    [1]Kinney HC,Panigrahy A,Newburger JW,et al.Hypoxic-ischemic brain injury in infants with congenital heart disease dying after cardiac surgery[J].Acta Neuropathol(Berl),2005,110(6):563-578.
    [2]Semenza GL,Wang GL.A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation[J].Mol Cell Biol,1992,12(12):5447-5454.
    [3]Maxwell PH.Hypoxia-inducible factor as a physiological regulator[J].Exp Physiol,2005,90(6):791-797.
    [4]Semenza GL,Shimoda LA,Prabhakar NR.Regulation of gene expression by HIF-1[J].Novartis Found Symp,2006,272:2-8.
    [5]Tian YM,Mole DR,Ratcliffe PJ,et al.Characterization of different isoforms of the HIF prolyl hydroxylase PHD1 generated by alternative initiation[J].Biochem J,2006,397(1):179-186.
    [6]Chan DA,Sutphin PD,Yen SE,et al.Coordinate regulation of the oxygen-dependent degradation domains of hypoxia-inducible factor lalpha[J].Mol Cell Biol,2005,25(15):6415-6426.
    [7]Woo KJ,Lee TJ,Park JW,et al.Desferrioxamine,an iron chelator, enhances HIF-1alpha accumulation via cyclooxygenase-2 signaling pathway[J]. Biochem Biophys Res Commun, 2006, 343(1): 8-14.
    [8] Treins C, Giorgetti-Peraldi S, Murdaca J, et al. Insulin stimulates hypoxia-inducible factor 1 through a phosphatidylinositol 3-kinase/target of rapamycin-dependent signaling pathway [J]. J Biol Chem, 2002, 277(31): 27975-27981.
    [9] Bemaudin M, Nedelec AS, Divoux D, et al. Normobaric hypoxia induces toleranced to focal permanent cerebral ischemia in association with an increased expression of hypoxia-inducible factor-1 and its target genes, erythropoietin and VEGF, in the adult mouse brain[J]. J Cereb Blood Flow Metab, 2002, 22(4): 393-403.
    [10] Jones NM, Lee EM, Brown TG, et al. Hypoxic preconditioning produces differential expression of hypoxia-inducible factor-1 alpha (HIF-1 alpha) and its regulatory enzyme HIF prolyl hydroxylase 2 in neonatal rat brain[J]. Neurosci Lett, 2006, 404(1-2): 72-77.
    [11] Hamrick SE, McQuillen PS, Jiang X, et al. A role for hypoxia-inducible factor-1alpha in desferoxamine neuroprotection[J]. Neurosci Lett, 2005, 379(2): 96-100.
    [12] Kerendi F, Halkos ME, Kin H, et al. Upregulation of hypoxia inducible factor is associated with attenuation of neuronal injury in neonatal piglets undergoing deep hypothermic circulatory arrest[J]. J Thorac Cardiovasc Surg, 2005, 130(4): 1079-1089.
    [13] Jones NM, Bergeron M. Hypoxia preconditioning induces changes in HIF-1 target genes in neonatal rat brain[J]. J Cereb Blood Flow Metab, 2001,21(9): 1105-1114.
    [14] Papandreou I, Cairns RA, Fontana L, et al. HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption[J]. Cell Metab, 2006,3(3): 187-197.
    [15] Matsuda T, Abe T, Wu JL, et al. Hypoxia-inducible factor-1alpha DNA induced angiogenesis in a rat cerebral ischemia model[J]. Neurol Res, 2005,27(5): 503-508.
    [16] Wick A, Wick W, Waltenberger J, et al. Neuroprotection by hypoxic preconditioning requires sequential activation of vascular endothelial growth factor receptor and Akt[J]. J Neurosci, 2002, 22: 6401-6407.
    [17] Kawakami M, Sekiguchi M, Sato K, et al. Erythropoietin receptor-mediated inhibition of exocytotic glutamate release confers neuroprotection during chemical ischemia[J]. J Biol Chem, 2001, 276(42): 39469-39475.
    [18] Keller M, Yang J, Griesmaier E, et al. Erythropoietin is neuroprotective against NMDA-receptor-mediated excitotoxic brain injury in newborn mice[J]. Neurobiol Dis, 2006, 24(2): 357-366.
    [19] Digicaylioglu M, Garden G, Timberlake S, et al. Acute neuroprotective synergy of erythropoietin and insulin-like growth factor I [J]. Proc Natl Acad Sci USA, 2004,101(26): 9855-9860.
    [20] Baek JH, Jang JE, Kang CM, et al. Hypoxia-induced VEGF enhances tumor survivability via suppression of serum deprivation-induced apoptosis[J]. Oncogene, 2000, 19(40): 4621-4631.
    [21] Zaman K, Ryu H, Hall D, et al. Protection from oxidative stress-induced apoptosis in cortical neuronal cultures by iron chelators is associated with enhanced DNA binding of hypoxia-inducible factor 1 and ATF-1/CREB and increased expression of glycolytic enzymes, p21(waf1/cip1), and erythropoietin[J]. JNeurosci, 1999,19(22): 9821-9830.
    [22] Kim JY, Ahn HJ, Ryu JH, et al. BH3-only protein Noxa is a mediator of hypoxic cell death induced by hypoxia-inducible factor lalpha[J]. J Exp Med, 2004, 199(1): 113-124.
    [23] Lee MJ, Kim JY, Suk K, et al. Identification of the hypoxia-inducible factor 1 alpha-responsive HGTD-P gene as a mediator in the mitochondrial apoptotic pathway [J]. Mol Cell Biol, 2004, 24(9): 3918-3927.
    [24] Hammond EM, Giaccia AJ. The role of p53 in hypoxia-induced apoptosis[J]. Biochem Biophys Res Commun, 2005, 331(3): 718-725.
    [25] Cramer T, Yamanishi Y, Clausen BE, et al. HIF-1 alpha is essential for myeloid cell-mediated inflammation[J].Cell,2003,112(5):645-657.
    [26]Helton R,Cui J,Scheel JR,et al.Brain-specific knock-out of hypoxia-inducible factor-lalpha reduces rather than increases hypoxic-ischemic damage[J].J Neurosci,2005,25(16):4099-4107.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700