独立分量分析及其在阵列信号处理中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
独立分量分析是一种从多维统计数据中寻找独立分量的方法,这种方法与其它方法相比较,其特点是所寻找的分量间满足独立非高斯性。独立分量分析只利用观测数据,在源信号和混合信道未知的情况下来提取独立分量。本文将从独立分量分析的学习算法和应用两方面进行研究,主要工作概括如下:
     1.本文从独立分量分析的定义和假设条件出发,分析了独立分量分析的一些基本准则和常用方法;白化处理以及独立分量分析中信号的分类方法:利用非线性函数完成独立性分析的条件;给出了独立分量分析算法性能评价指标方法:将独立分量分析与主分量分析进行了比较。
     2.在独立分量分析的理论研究框架下,研究了最优估计函数形式,获得了一种对得分函数进行估计的独立分量分析研究方法;本文通过利用混合高斯模型,给出了估计概率密度函数的EM算法,在此基础上利用高斯混合模型法获得了对分离矩阵的梯度学习算法。为了提高算法的稳定度和精确度,给出了一种迭代概率密度估计的独立分量分析学习算法。这种块处理方法可实现超、亚高斯混合信源的情况,同时在仿真实验过程中,研究了学习速率对学习算法的影响。
     3.对于复值信号基于频率域的分析优于时域分析法,因为频率域分析能够提供更准确的信息。针对复值信号的独立分量分析问题,本文通过广义EHA准则和快速复值定点算法的研究,给出了一种改进的广义EHA准则算法,分析结果表明,这种算法可以实现对独立复值信号的分离。
     4.研究了独立矢量基特性在阵列信号处理中的应用。独立分量分析方法针对统计独立信源的混合情况,在学习过程中所获得的分离矩阵提供了一组投影基矢量,具有相应的投影独立性。在此基础上,本文定义了独立矢量基,并利用独立矢量基的投影关系,对阵列中常见的DOA问题进行了研究,获得了对阵列信号的方位角估计。同时研究了白化过程所具有的自适应波束形成器特性。
Independent component analysis(ICA) is a method for finding underlying components from multivariate (multidimensional) statistical data. What distinguishes ICA from other methods is that it looks for components that are both statistically independent and non-Gaussian. The aim of ICA is to extract independent components given only observed data that are mixtures of the unknown sources without any knowledge of the mixed channel. This dissertation aims at the study of the theories and applications ICA. The main work can be summarized as follows:1. This dissertation reviews briefly the principles and the methods in the ICA. The prewhitening and the classify of signals is presented. The conditions of nonlinear function in ICA are discussed, and the ICA is compared with PCA.2. Based on the optimal estimation function, a method for estimation of the score function is developed. By using the Gaussian mixture model, an EM algorithm for approximating the probability density of the data is presented, and a stochastic gradient method is given to separate the independent components. To improved the accuracy and stability of the algorithm, an iterative method for estimating the pdf of data is presented, which can perform the separation of mixed sub-Gaussian and super-Gaussian sources. The optimal learning rate problem is studied, and the performance of the method is shown by computer simulations.3. For separation of complex valued signals, frequency domain implementations is better than time domain implementations. By studying the Hebbian learning and the fast fixed-point algorithm, a improved EHA is obtained. The simulations show the effectiveness of this method.4. The application of the independent bases in array signal processing is studied. The independent bases are denned for ICA. Using the independent
    
    bases in ICA, the DOA of signals can be estimated. Then the property of the prewhitening as a self-organizing beamformer is discussed.
引文
[1] Amari S. and Cichocki A. Adaptive blind signal processingmeural network approaches. Proceeding of IEEE, 86(10):2026-2047, 1998.
    [2] Amari S. Natural gradient works efficiently in learning. Neural Computation, 10:251-276, 1998.
    [3] Amari S.and Cichocki A. and Yang H. H. A new learning algorithm for blind signal separation. In Touretzky D., Mozer M., and Hasselmo M., editors, Advances in Neural Information Processing Systems, volume 8. Cambridge MA:MIT press, 1996.
    [4] Amari S. and Cardoso J.F. Blind source separation - semiparametric statistical approach. IEEE Transaction on SignalProcessing, 45(ll):2692-2700, 1997.
    [5] Amari S. and Chen T. P.and Cichocki A. Stability analysis of learning algorithms for blind source separation. Beural Networks, 10(8):1345-1351, 1997.
    [6] Amari S. Natural gradient for over- and under-complete bases in ica. Neural Computation, 11, 1999.
    [7] Amari S., Cichocki A., and Yang H.H. Blind signal separation and extrac-tion:neural and information-theoretic approches. Unsupervised Adaptive Filtering, I, 2000. in Haykin S.(ed.).
    [8] Andrew D.B. and Ah C.T. Blind deconvolution of signals using a complex recurrent network. In Proceedings of IEEE workshop:Neural Networks for Signal Processing 4, pages 565-574, 1994.
    [9] Asano F., Ikeda S., Asoh H., and Kitawaki N. Combined approach of array processing and independent component analysi for blind separation of acoustic signals. IEEE Trans. Speech and Audio Processing, 11(3):204-215, 2003.
    
    [10] Attias H. Independent factor analysis. Neural Computation, 11:803-852, 1999.
    [11] Attias H. and Schreiner C.E. Blind source separation and deconvolution:the dynamic component analysis algorithm. Neural computation, 10:1373-1424, 1998.
    [12] Back A.D. and Trappenberg T.P. Selecting inputs for modeling using normalized higher order statistics and independent component analysis. IEEE Trans. Neural Networks, 12(3):612-617, 2001.
    [13] Barlow H.B. Unsupervised learning. Neural Computation, 1:295-311, 1989.
    [14] Baldi P. Learning in linear neural networks:A survey. IEEE. Trans. Neural Networks, 6:837-858, 1995.
    [15] Bell A. J. and Sejnowski T.J. An information-maximization approach to lind separation and blind deconvolution. Neural Computation, 7(6): 1129-1159, 1995.
    [16] Bell A.J. and Sejnowski T.J. Edges are the 'independent components' of natural scenes. Computational Neurobiology Laboratory, 2003.
    [17] Bingham E. and Hyvarinen A. A fastfixed-point algorithm for independent component analysis of complex valued signals. International Journal of Neural Systems, 10(1): 1-8, 2000.
    [18] Cardoso J.F. Source separation using higher order moments. In ICASSP, pages 2109-2112, Glasgow.UK, 1989.
    [19] Cardoso J.F. and Souloumiac A. Blind beamforming for non Gaussian signals. IEEE Processings-F, 140(6):362-370, 1993.
    [20] Cardoso J.F. and Laheld B.H. Equivariant adaptive source separation. IEEE Trans. Signal Proceeding, 44 (12): 3017-3029, 1996.
    [21] Cardoso J.F. and Souloumiac A. Jacobi angles for simultaneous diagonal-ization. SIAMJ. Marrix Anal. Appl., 17:161-164, 1996.
    
    [22] Cardoso J.F. Infomax and maximum likelihood for blind source separation. IEEE Signal Processing Letters, 4(4): 112-114, 1997.
    [23] Cardoso J.F. Blind signal separation: Statistical principles. Proceedings of IEEE, 86:2009-2025, 1998.
    [24] Cardoso J.F. and Laheld B. Space or time adaptive signal processing by neural network model. In Neural networks for computing: A IP conf. proceedings 151, New York:American Institute for physics, 1986.
    [25] Cardoso J.F. High-order contrasts for independent component analysis. Neural Computation, 11(1):157-192, Jan. 1999.
    [26] Cardoso J.F. and Donoho L.D. Some experiments on independent component analysis of non-gaussian processes. In Proc. IEEE SP Int. Workshop on High Order Statistics, Caeserea:Israel, 1999.
    [27] Cichocki A.and Sabala I., Choi S., Orsier B., and Szupiluk R. Self-adaptive independent component analysis for sub-gaussian and super-gaussian mixtures with unknown number of source signals and additive noise. Int. Symp. On Nonlinear Theory and applications (NOLTOA '97),Honolulu, pages 731— 734, 1997.
    [28] Cichocki A.and Georgiev P. Blind source separation algorithms with matrix constraints. IEICE Trans. Fundamentals, E86-A(3):522-531, 2003.
    [29] Cichocki A. and Amari S. Adaptive blind signal and Image processing. John Wiley, Chichester, 2002.
    [30] Cichocki A. and Unbehauen. Robust neural networks with on-line learning for blind identification and blind separation of sources. IEEE Trans. Circuits Syst.I,Fundam. Theory Appl., 43(ll):894-960, 1996.
    [31] Cichocki A, Amari S., and Siwek. ICALAB Toolboxes for signal and image processing, www.bsp.brain.riken.go.jp.
    
    [32] Comon P. Independent component analysis: a new concept? Signal processing, 36(3):287-314, 1994.
    [33] Comon P. and Rota L. Blind separation of independent sources from con-volutive mixtures. IEICE Trans. Fundamentals, E86-A(3):542-549, 2003.
    [34] Cover T. and Thomas J. Elements of Information Theory. New York:Wiley, 1991.
    [35] Cruces S. and Castedo L. Stability analysis of adaptive algorithm for blind source separation of convolutive mixtures. Signal Processing, 78(3):265-276, 1999.
    [36] Cruces S., Cichocki A., and Amari S. On a new blind signal extraction algorithm: Different criteria and stability analysis. IEEE Signal Processing Letters, 9(8):233-236, 2002.
    [37] Deville Y. Analysis of the convergence properties of self-normalized source separation neural networks. IEEE Trans. Signal Processing, 47(5): 1272-1287, 1999.
    [38] Ding Z. and Nguyen T. Stationary points of a kurtosis maximization algorithm for blind soruce separation and antenna beamforming. IEEE Trans. Signal Processing, 48(6): 1587-1596, 2000.
    [39] Douglas S. C. and Cichocki A. Adaptive step size techniques for decor-relation and blind source separation. In Proc. 32nd Asilomar Conf. on Signals Systems and computers, pages 1191-1195, Pacific Grove,CA,New York:IEEE press, 1998.
    [40] Douglas S.C. Self-stabilized gradient algorithms for blind source separation with orthogonal constraints. IEEE Trans. Neural Networks, 11(6): 1490-1497, 2000.
    [41] Douglas S. and Kung S.Y. Grandien adaptive algorithms for constrast-based blind deconvolution. J. of VLSI Signal Processing, 26(1):47-60, 2000.
    
    [42] Eric M. and Odile M. Complex self-adaptive algorithms for source separation based on higher order contrasts. In Proc. EU-SIPCO'94, pages 1157-1160, Edinburg:Scotland, 1994.
    [43] Everitt B. S. and Hand D.J. Finite mixture distribution. Chapman & Hall, London, 1981.
    [44] Everson R. and Roberts S. Independent component analysis: a flexible nonlinearity and decorrelating manifold approach. Neural Computation, 11:1957-1983, 1999.
    [45] Fiori S. On blind separation of complex-valued sources by extended hebbian learning. IEEE Signal Processing Letters, 8(8):217-220, 2001.
    [46] Friedman J.H. and Tukey J.W. A projection pursuit algorithm for exploratory data analysis. IEEE Trans, of Computers, c-23(9):881-890, 1974.
    [47] Gaeta Z. and Lacoume J.L. Sources separation without prior knowledge:the maximum likelihood solution. In Proc. EUSIPCO, pages 621-624, 1990.
    [48] Girolami M. and Fyfe C. Generalised independent component analysis through unsupervised learning with emergent bussgang properties. In Proc. ICNN, pages 1788-1891, Houston.USA, 1997.
    [49] Girolami M. Self-organisation Neural networks: independent component analysis and blind source separation. Spinger-Verlag, London, 1999.
    [50] Grellier O. and Comon P. Blind separation of discrete sources. IEEE Signal Process. Lett, 5(8):212-214, 1998.
    [51] Haykin S.(ed.). Unsupervised adaptive filtering, Vol II:Blind deconvolution. New York:Wiley, 2000.
    [52] Haylin S. Unsupervised adaptive filtering, Vol I:Blind source separation. Wiley, New York, 2000.
    [53] Haykin S. Neural networks: A comprehensive foundation. Macmillan College Publishing, New York, 1994.
    
    [54] Hathaway R. J. A constrained formulation of maximum-likelihood estimation for normal mixture distributions. Ann. Statist., 13:795-800, 1985.
    [55] He Z.Y., Yang L., Liu J., He C, and Shi Y. Blind source separation using clustering-based multivariate density estimation algorithm. IEEE Tans. Signal Processing, 48(2):575-579, 2000.
    [56] Heinz Mathis and Scott C. Douglas. On the existence of universal non-linearities for blind source separation. IEEE Trans, on Signal processing, 50(5):1007-1016, May 2002.
    [57] Heinz Mathis, Tomas P.von Hoff, and Marcel Joho. Blind separation of signalwith mixed kurtosis signs using threshold activation function. IEEE Trans, on Neural Networks, 12(3):618-624, May 2001.
    [58] Herault J. and Jutten C. Space or time adaptive signal processing by neural network model. In Neural networks for computing:AIP conf. proceedings 151, New York:American Institute for physics, 1986.
    [59] Hild K.E. andErdogmus D. and Principe J. Blind source separation using renyi's mutual information. IEEE Signal processing letters, 8(6): 174-176, 2001.
    [60] Hoff T. P., Lindgren A. G., and Kaelin A. N. Transpose properties in the stability and performance of the classic adaptive algorithms for blind source separation and deconvolution. Signal Processing, 80(9):1807-1822, 2000.
    [61] Hyvarinen A. Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans. Neural Networks, 10:626-634, 1999.
    [62] Hyvarinen A. and Oja E. A fast fixed-point algorithm for independent component analysis. Neural Computation, 9(7): 1483-1492, 1997.
    [63] Hyvarinen A. One-unit contrast function for independent component analysis: a statistical analysis. In Proc. IEEE Workshop on Neural Networks for signal processing, pages 388-397, Amelia Island, Florida, Sweden, 1997.
    
    [64] Hyvarinen A. Survey on independent component analysis. Neural Computing Surveys, 2(1):94-128, 1999.
    [65] Hyvarinen A. and Oja E. Independent component analysisby general nonlinear hebbian rules. Signal Processing, 64:301-313, 1998.
    [66] Hyvarinen A., Karhunen J., and Oja E. Independent component analysis. John Wiley & Sons, New York, 2001.
    [67] Hyvarinen A. and Pajunen P. Nonlinear independent component analysis: Existence and uniqueness results. Neural Networks, 12:429-439, 1999.
    [68] Ikeda S. and Murata N. A method of ICA in time-frequency domain. In Int. Conf. ICA and Signal Separation, pages 1483-1492, Aussois,Prance, 1999.
    [69] Jacobs R. A. Increased rates of convergence through learning rate adaptation. Neural NEtworks, 1:295-307, 1988.
    [70] Jolliffe L.T. Principal Component Analysis. Spinger-Verlag, 1986.
    [71] Jutten C. and Herault J. Independent components analysis(INCA) versus principal components analysis, in Signal Processing IV: Theories and Applications,Proc. EUSIPCO-88, pages 643-646, 1988.
    [72] Jutten C. and Herault J. Blind separation of sources, Part I: an adaptive algorithm based on neuromimetic. Signal Proceesing, 24(l):l-10, 1991.
    [73] Karhunen J. Neural approaches to independent component analysis and sources separation, in Proc 4th, Europen Symp. artificial Neural Networks. Belgium:Bruges, pages 249-266, 1996.
    [74] Karhunen J. and Jousensalo J. Representation and separation of signals using nonlinear pca type learning. Neural Networks, 7:113-127, 1994.
    [75] Karhunen J., Pajunen P., and Oja E. The nonlinear PCA criterion in blind source separation:Relations with other approaches. Neural computing, 22:5-20, 1998.
    
    [76] Karhunen J. and Pajunen P. Blind source separation using least-squares type adaptive algorithms. ICASSP'97, pages 3361-3364, 1997.
    [77] Karhunen J., Oja E., Wang L., and Joutsensalo J. A class of neural networks for indenpendent aomponent analysis. IEEE. Trans. Neural Netwoks, 8(3):486-504, 1997.
    [78] Laheld and Joutsensalo J. Representation and separation of signals using nonlinear pea type learning. Neural Networks, 7(1):113-127, 1994.
    [79] Laheld B. and Cardoso J.F. Adaptive source separation with uniform performance. In Proc. EUSIPCO, pages 183-186, Edinburgh, 1994.
    [80] Lambert R. Multichannel blind deconvolution: FIR matrix algebra and separation of multipath mixtures. PhD thesis, Univ. of Southern California, 1996.
    [81] Lee T. W., Girolami M.and Bell A.J., and Sejnowski T.J. A unifying information theoretical framework for independent component analysis. Computers and Mathmatics with Application, 31(11):1-21, 2000.
    [82] Lee T.W., Girolami M., and Sejnowski T.J. Independent component analysis using an extended informax algorithm for mixed sub-gaussian and super-gaussian sources. Neural Computation, 1998. in Press.
    [83] Lee T.W. Independent component analysis :Theory and Applications. Kluwer Academic Publishers, 1998.
    [84] Lee T.W., Lewick M.S., Girolami M., and Sejnowski T.J. Blind source separation of more sources than mixtures using overcomplete representations. IEEE Signal Processing Letters, 6(4):87-90, 1999.
    [85] Lee T.W., Girolami M., and Sejnowski T.J. Independent component analysis using an extended infomax algorithm for mixed sub-Gaussian and super-Gaussian sources. Neural Computation, 11(2):409-433, 1999.
    
    [86] Lewick M and Sejnowski T.J. Learning overcomplete representations. Neural computation, 12:337-365, 2000.
    [87] Li Y.Q., Wang J., and Zurada J.M. Blind extraction of singularly mixed source signals. IEEE Trans. Neural Networks, 11:1413-1422, 2000.
    [88] Li Y.Q. and Wang J. Sequential blind extraction of instantaneously mixed sources. IEEE Trans. Signal Processing, 50(5):997-1006, 2002.
    [89] Li Y.Q., Cichocki A., and Zhang L.Q. Blind separation and extraction of binary sources. IEICE Trans. Fundamentals, E86-A(3):580-589, 2003.
    [90] Luenberger D.G. Optimization by vector space methods. Wiley, New York, 1969.
    [91] Luo J., Ling X.T., and Liu R.W. Principal independent component analysis. IEEE Trans. Neural Networks, 10(4):912-917, 1999.
    [92] Mackay D. maximum likelihood and covariant algorithms for independent component analysis. Technical report, University of Cambridge,Cavendish Lab, 1996.
    [93] Mansour A. and Jutten C. Whant should we say about the kurtosis? IEEE Signal Processing Letters, 6(12):321-322, 1999.
    [94] Mansour A. and Kawamoto M. ICA papers classified according to their applications and performances. IEICE Trans. Fundamentals, E86-A(3):620-633, 2003.
    [95] Mathis H., Hoff T.P., and Joho M. Blind separation of signals with mixed kurtosis signs using threshold activation functions. IEEE Trans. Neural Networks, 12(3):618-624, 2001.
    [96] Matsuokal K., Ohya M., and Kawamoto M. A neural net for blind separation of nonstationary signals. Neural Networks, 8(3):411-419, 1995.
    [97] Mitianoudis N. and Davies M.E. Audio source separation of convolutive mixtures. IEEE Trans. Speech and Audio Processing, 11(5):489-497, 2003.
    
    [98] Moreau E. and Macchi O. High-order contrasts for self-adaptive source separation. Int. J. of adaptive control and signal processing, 10(1):19-46, 1996.
    [99] Moreau E. and Moreau N.T. Nonsymmetrical constrasts for source separation. IEEE Trans. Signal processing, 47(8):2241-2252, 1999.
    [100] Moreau E. and Macchi 0. Complex self-adaptive algorithms for source separation based on higher order constrasts. In Proc. EUSIPCO, pages 1157-1160, Edinburgh, 1994.
    [101] Murata N, Muller K. R. Ziehe A., and Amari S. Adaptive on-line learning in changing environments. In Advances in Neural Information Processing Systems, pages 599-605, Cambridge,MA:MIT Press, 1997.
    [102] Nadal J.O. and PArga N. Nonlinear neurons in the low noise limit:a factorial code maximizes information transfer. Network, 5:565-581, 1994.
    [103] Obradovic D. and Deco G. Informax and ica: is there a difference? Neural Computation, 10(8):2085-2101, 2002.
    [104] Oja E. Principal components, minor components, and linear neural networks. Neural Networks, 5:927-935, 1992.
    [105] Oja E., Karhunen J., and Hyvarinen A. From neural principal components to neural independent components. In Proc. ICANN'98, Lausanne,Switzerland, 1997.
    [106] Oja E. The nonlinear PCA learning rule and signal separation: Mathematical analysis. Neurocomputing, 17(1):25-46, 1997.
    [107] Oja E. Subspace methods of pattern recognition. Res.Studies Press, Letch-worth.U.K., 1985.
    [108] Pajunen P. An algorithm for binary source separation. Technical Report A36, Lab. of Computer and Information Science, Helsinki University of Technology, 1996.
    
    [109] Pajunen P., Hyvarinen A., and Karhunen J.K. Nonlinear blind source separation by self-organizing maps. In Proc. Int. Conf. on Neural Information Processing, Hong Kong, 1996.
    [110] Parra L. and Spence C. Separation of non-stationary natural signals, pages 135-157. Cambridge University Press, 2001. Independent Component Analysis :Princeiples and Practice(eds.Roberts S. and Everson R.).
    [111] Parra L. and Spence C. Convolutive blind separation of non-stationary sources. IEEE Trans. Speech Audia Process, 8(3):320-327, 2000.
    [112] Parra L. An introduction to independent component analysis and blind source separation. Part of a course on Neural Network in the EE department in Princeton Univ, November 1998.
    [113] Pham D.T., Garrat P., and Jutten C. Separation of a mixture of independent sources through a maximum likelihood approach. In Proc. EUSIPCO, pages 771-774, 1992.
    [114] Pham D. T. Blind separation of instantaneous mixture of sources via an independent component analysis. IEEE Trans. Signal Processing, 44:2768-2779, 1996.
    [115] Plumbey M. and Fallside F. An information-theoretic approach to unsu-pervised connectionist models. In Proceedings of the 1998 Connectionist Models Summer School, pages 239-245, 1998.
    [116] Plumbey M. Algorithms for non-negative independent component analysis. IEEE Trans. Neural Networks, 2003. Web page: www.eee.kcl.ac.uk/member/staff/m-plumbley.
    [117] Redner R.A. and Walker H. F. Mixture densities, maximum likelihood and the em algorithm. SI AM Review, 26:195-239, 1984.
    [118] Roberts S.J., HUsmeier D., Rezek I., and Penney W. Bayesian approaches to gaussian mixture modeling. IEEE Trans. Pattern Analysis and Machines Intelligence, 20:1133-1142, 1998.
    
    [119] Roberts S. and Everson R. Independent component analysis :Principles and Practice. Cambridge University Press, 2001.
    [120] Roy R. and Kailath T. ESPRIT-A subspace rotation approach to estimation of parameter of cisoids in noise. IEEE Trans. Acoust.,Speech,Signal Processing, 34:984-995, 1989.
    [121] Sato Y. A method for self-recovering equalization for multilevel amplitude-modulation system. IEEE Trans, on Communications, 23(2):679-682, 1975.
    [122] Saruwatari H., Kawamura T., Nishikawa T., and Shikano K. Fast-convergence algorithm for blind separation based on array signal processing. IEICE Trans. Fundamentals, E86-A(3):634-639, 2003.
    [123] Sawai K., Saruwatari H., and Shikano K. Semi blind separation of moving sound sources based on ICA using direction of arrival information. Technical Report of IEICE, EA2001-34, 2001.
    [124] Schmidt R.O. Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propagat, 34:276-280, 1986.
    [125] Simone Fiori. On blind separation of complex-valued sources by extended hebbian learning. IEEE signal processing letters, 8(8):217-220, August 2001.
    [126] Silverman B. W. Density estimation for statistics and data analysis. London/New York:Chapman and Hall, 1986.
    [127] Smaragdis P. Blind separation of convolved mixtures in the frequency domain. In IEEE Workshop on Independence, Artificial Neural Networks University of La Laguna, pages 9-10, Tenerife, Spain, 1998.
    [128] Smaragdis P. Information theoretic approaches to source separation. Master's thesis, MAS Department, Massachusetts Institute of Technology, 1997.
    [129] Sudjianto and Hassoun M.H. Nonlinear hebbian rule: a statistical interpretation. Proc. of IEEE-ICNN, 2:1247-1252, 1994.
    
    [130] Thawonmas R., Cichocki A., and Amari S. A cascade neural network for blind signal extraction without spurious equilibria. IEEICE Trans. Fundamentals, E-81A: 1833-1846, 1998.
    [131] Therrien C. Discrete random signals and statistical signal processing. Prentice Hall, 1992.
    [132] Titterington D.M. and Smith A. F. M.and Makov U.E. Statistical analysis of finite mixture distributions. Wiley, New York, 1985.
    [133] Titterington D.M. Some recent research in the analysis of mixture distributions. Statistics, 20:619-641, 1990.
    [134] Torkkola K. Blind separation of delayed sources based on information maximization. In Proc.CASSP, pages 7-10, Atlanta,GA,USA, 1996.
    [135] Torkkola K. Blind separation of convolved sources based on information maximization. In IEEE Workshop on Neural Networks for Signal Processing, pages 4-6, Kyoto, Japan, 1996.
    [136] Tong L.and Liu R., Soon V. C, et al. Indeterminacy and identifiability of blind identification. IEEE Trans, on Circuits and Systems, 38(5):499-506, 1991.
    [137] Valpola H., Oja E., and Karhunen J. Nonlinear blind source separation by variational Bayesian learning. IEICE Trans. Fundamentals, E86-A(3):532-541, 2003.
    [138] Xu L. Least mean square error reconstruction principle for self-organizing neural nets. Neural Networks, 6:627-648, 1993.
    [139] Yang H.H. and Amari S. Adaptive on-line learning algorithms for blind separation-maximua entropy and minimum mutual information. Neural Computation, 7:1457-1482, 1997.
    [140] Yang H.H. Serial updating rule for blind separation derived from the method of scoring. IEEE Trans. Signal Processing, 47(8):2279-2285, 1999.
    
    [141] Yang H.H. On-line blind equalization via on-line blind separation. Signal Processing, 68(3):271-281, 1998.
    [142] Yang H.H., Amari S., and Cichocki A. Information-theoretic approach to blind separation of sources in non-linear mixture. Signal Processing, 64(3):291-300, 1998.
    [143] Yang H.H., Amari S., and Cichocki A. Information back-propagation for blind separation of sources from non-linear mixture. In ICNN, Houston, Texas, USA, 1997.
    [144] B.Yang. Projection approximation subspace tracking. IEEE Trans. Signal Processing, 43:95-107, 1995.
    [145] Zibulevsky M. and Pearlmutter B.A. Blind source separation by sparse decomposition. Technical report cs99-1, Computer Science Department, University of New Mexico, 1999.
    [146] 张贤达.信号处理中的线性代数.科学出版社,1997.
    [147] 张贤达,保铮.通讯信号处理.国防工业出版社,北京,2000.
    [148] 张贤达,朱孝龙,保铮.基于分阶段学习的盲信号分离.中国科学,E辑,32(5):693-703,2002.
    [149] 张贤达,保铮.盲信号分离.电子学报,29(12A):1766-1771,2001.
    [150] 张贤达,保铮.现代信号处理.北京:清华大学出版社.1994.
    [151] 冯大政,保铮,张贤达.信号盲分量问题的多阶段分解算法.自然科学进展,12(3):324—328,2002.
    [152] 朱孝龙.盲自适应信号分离的并行实现方法研究.博士论文,西安电子科技大学,2003.
    [153] 朱孝龙,张贤达,冶继民.基于自然梯度的递归最小二乘盲信号分离.中国科学,E辑,33(8):741—748,2003.
    
    [154] 岳博.Bayes网络模型及其学习算法研究.博士论文,西安电子科技大学,2002.
    [155] 刘琚,何振亚.盲源分离和盲反卷积.电子学报,30(4):570-576,2002.
    [156] 刘琚,何振亚,杨绿溪.盲均衡和信道参数估计的一种ICA和进化计算方法.中国科学,E辑,30(1):1-7,2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700