快速子空间估计方法研究及其在阵列信号处理中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在最优化、微分方程、通信、信号处理和系统科学等领域中,子空间扮演着非常重要的角色,尤其是在阵列信号处理中,子空间的获取是至关重要的。这是因为用于参数估计的大多数高分辨算法均要求准确地估计到信号子空间或噪声子空间。然而,常规的子空间估计方法由于涉及到阵列协方差矩阵的估计及其特征值分解,从而需要较高的计算复杂度。尤其是在阵元数较多的情况下,基于特征值分解的子空间估计方法的运算量是相当可观的,难以满足工程应用中实时处理的要求。另一方面,为了获得阵列协方差矩阵的有效估计,还要求有足够多的样本数据。在小样本支撑或快时变的信号环境中,基于特征值分解的子空间估计方法几乎是失效的。本文的工作是围绕着不需要特征值分解的快速子空间估计(FSE-E)来展开的。本文内容大体可以划分为两部分:子空间的快速估计及其在阵列信号处理中的具体应用。在快速估计到信号子空间或噪声子空间后,我们采用基于信号子空间或噪声子空间的超分辨算法估计信号的波达方向(DOA)参数,从而不但能够有效地降低算法的计算复杂度而且还可以提高参数估计的精度。主要工作概括如下:
     1.系统阐述了降维自适应滤波技术的基本算法。为了方便后续章节的讨论,首先给出阵列信号的基本模型。然后,对三种基本的降维自适应滤波算法:主分量方法(PC)、互谱法(CSM)和多级维纳滤波器(MSWF)技术作了介绍,重点讨论了多级维纳滤波器。
     2.研究了多级维纳滤波器的若干性质,为第四章提出的快速信源数检测方法提供了理论依据。证明了多级维纳滤波器经过P级分解后,以后各级分解得到的观测数据均是白色的随机过程,而且具有特殊的表达式。这里尸表示信源数。仿真结果与本文多级维纳滤波器的若干性质的理论分析完全吻合。
     3.根据多级维纳滤波器的多级分解思想,提出了一种快速子空间估计方法。由Krylov子空间与MSWF的关系,我们建立了信号子空间快速估计的基础,并证明了由该快速方法得到的信号子空间和基于阵列协方差矩阵的特征值分解得到的信号子空间是完全等价的;由基于相关相减结构的多级维纳滤波器(CSA-MSWF)的归一化匹配滤波器的相互正交特性,我们得到噪声子空间
    
    H摘要
    ...豆......口.....
    的估计方法;经MSWF预滤波后,新的观测数据的协方差矩阵是一个三对角
    矩阵。利用三对角矩阵的对角元素,我们提出一种信源数检测的有效方法,
    并证明了该方法依概率1收敛于常规的AIC和MDL方法。仿真结果也证明了快
    速子空间估计方法和新的信源数检测方法的有效性。
    4.提出了基于快速子空间估计(FSE一E)算法的DOA超分辨估计方法。针对相
     干信源的情况,我们给出了两种平滑的方案。如果阵列协方差矩阵是已知的,
     我们采用空间平滑的Lanczos算法快速估计信号子空间和噪声子空间。如果阵
     列协方差矩阵是未知的,我们采用空间平滑的CSA一MSWF快速计算信号子空
     间和噪声子空间的基矢量。仿真结果表明,基于由快速子空间估计方法得到
     的信号子空间的ESPIUT方法可以给出更好的估计精度和更低的计算复杂度。
     同样地,采用由快速子空间估计方法得到的噪声子空间的MUsIC算法的性能
     和运算量也明显优于常规的MUSIC算法。
    5.提出了基于压缩信号子空间的信号子空间拟合方法(CSS一SSF)。我们推导了
     一个新的信号子空间拟合的代价函数,并证明了压缩信号子空间可以由
     MSWF的前若干个匹配滤波器有效地张成。理论分析和数值结果均表明,
     CSS一ssF方法在压缩信号子空间的维数远远小于信源数的情况下仍然有效,
     而且其估计性能接近于常规的加权信号子空间拟合方法(WSF)。
    6.提出了一种渐近有效的降维加权信号子空间拟合方法(R-WSF)。推导了降维
     的加权子空间拟合的代价函数,分析了R-WSF方法的计算复杂度。理论分析
     表明,当加权矩阵取不同的值时,R-WSF方法的代价函数可以分别渐近地等
     效于确定性最大似然法(DML)和常规WsF方法的代价函数。仿真结果表明,
     对独立信号和相干信号DOA的估计,R-WSF方法的估计性能在信噪比较高时
     和常规的WSF方法几乎相同,在信噪比较低的情况下优于常规的WSF方法。
     此外,R-WSF方法的计算复杂度要明显低于常规的WSF方法。
    关键词:维纳滤波器,降维滤波,主分量,互谱,多级维纳滤波器,Lanczos算法,
     阵列信号处理,超分辨,参数估计,波达方向,子空间,空间谱,特征值分
     解,AIC,MDL。
    份越们全号丸班曰农ltJ民翻脸宜
It is interesting to fast estimate signal subspace and noise subspace in the area of optimization, differential equation, communication, signal processing and system science. Especially in the field of array signal processing, it is crucial to correctly estimate the subspaces since a large number of super-resolution algorithms for parameter estimation are based on the signal subspace or the noise subspace. Normally, the conventional method for subspace estimation resorts to estimating the array covariance matrix and performing the eigenvalue decomposition (EVD) to the estimate of the array covariance matrix. However, the EVD technique tends to be computationally intensive, in particular for the case of large array. On the other hand, presuming the formation of a sample covariance matrix indicates that it is necessary to have sufficient sample support. Nevertheless, in many practical applications such as in low sample support or when the signal statistics are rapidly time-varying, we may not have enough sample to form the sample covariance matrix. Therefore, it is very interesting to obtain the subspaces without the estimate of the sample covariance matrix and its EVD. In this thesis, we develop a fast subspace estimation method without eigendecomposition (FSE-E) to acquire the signal subspace and the noise subspace, and exploit the subspace estimations to resolve the narrow-band signals impinging upon a uniform linear array (ULA).· The fundamental algorithms for reduced-rank adaptive filters are systematically addressed. To facilitate the discussion of the coming chapters, the data model of array signals is firstly given. Then, the conventional reduced-rank adaptive filtering algorithms, i. e., the principal component (PC) method, the cross-spectral metric (CSM) and the multi-stage wiener filter (MSWF) is presented. Emphasis is placed on the review of the MS WF.· Some useful properties of the MSWF are studied to provide the theory to develop a fast detection algorithm for the number of signal sources. It is proved that, after P multi-stage decompostition, the array data matrix becomes a temporal white random process. Furthermore, all the data matrices after the Pth stage are also white random processes, and take the special forms. Numerical results are consistent with the
    
    analysis, thereby indicating the discussion of the properties of the MSWF is valid.· Based on the multi-stage decomposition of the MSWF, a fast algorithm for estimating the signal subspace and the noise subspace is proposed. In view of the relationship between the Krylov subspace and the MSWF, a novel basis is derived for fast subspace estimation. The novel signal subspace attained by the fast algorithm is completely equivalent to that yielded by the classical EVD based method. Furthermore, considering the orthogonality of the matched filters of the MSWF based on the correlation subtractive architecture (CSA) (CSA-MSWF), a new method for fast noise subspace estimation is developed. Noting that after pre-filtered, the sample covariance matrix becomes a tridiagonal matrix, we propose two efficient methods for detennining the number of signal sources. Moreover, it is proved that the proposed criterion functions converge to the classical AIC and MDL criterion functions with probability one when the number of snapshots tends to infinity. The effectiveness of the proposed methods is strengthened by numerical results.· Since the signal subspace and the noise subspace are capable of being readily obtained by the fast subspace estimation method without eigendecomposition (FSE-E), the classical subspace based methods, more specifically the MUSIC and ESPRIT algorithms, can be exploited to estimate the directions of arrival (DOAs) of narrow-band signals impinging upon a uniform linear array (ULA). For complete correlated (coherent) signal sources, we proposed two different smoothing schemes to decorrelate the coherent signals. In the case where the sample covariance matrix is given, we perform the spatially smoothed Lanczos algorithm to fast compute
引文
[1] Burg J. P., Maximum-entropy spectral analysis, Proc. 37th meeting of society of exploration Geophysicists, Oct. 1967.
    [2] Capon, J., High-resolution frequency wavenumber spectrum analysis, Proc. of IEEE, vol. 57, no. 8, Aug. 1969.
    [3] Schmidt R. O., A signal subspace approach to multiple emitter location and spectral estimation, Ph. D dissertation, Stanford Univ., 1981.
    [4] Kumaresan R. and Tufts D. W., Estimating the angle of arrival of multiple plane waves, IEEE Trans. AES-19(1), 1983.
    [5] Reddi S. S., Multiple source location-a digital approach, IEEE Trans. AES, no. 15, pp. 95-105, Jan. 1979.
    [6] Li F., Vaccaro J. and Tufts D. W., Min-norm linear prediction for arbitrary sensor array, in Int. Conf. on ASSP, pp. 2613-2616, 1989.
    [7] Barabell A. J., Improving the resolution performance of eigenstructure-based direction finding algorithms, in Proc. ICASSP, Boston, MA, 1983.
    [8] Paulraj A., Roy R. and Kailath T., Estimation of signal parameters via rotational invariance techniques-ESPRIT, Proc. 19th Asilomar Conf, Pacific Grove, CA, Nov. 1985.
    [9] Paulraj A., Roy R. and Kailath T., A subspace rotation approach to signal parameter estimation, Proc. oflEEE, pp. 1044-1045, July 1986.
    [10] Viberg M. and Otterstem B., Sensor array processing based on subspace fitting, IEEE Trans. Signal Processing, vol. 39, no. 5, pp. 1110-1121, May 1991.
    [11] Otterstem B., Viberg M. and Kallath T., Analysis of subspace fitting and ML techniques for parameter estimation from sensor array data, IEEE Trans. Signal Processing, vol. 40, no. 3, pp. 590-600, Apr. 1992.
    [12] 李有明,稳健的超角分辨阵列信号处理及快速算法研究,西安电子科技大学博士学位论文,1995年5月.
    [13] 何焰兰,苏勇,雷达中时延估计的新方法,信号处理,Vol.15,No.2,1999.
    [14] Park H., ESPRIT direction-of arrival estimation in the presence of spatially correlated noise, SLAM matrix anal. appl., Vol. 15, No. 1, pp. 185-193, 1994.
    
    [15] Zha H., Fast algorithm for direction-of-arrival finding using large ESPRIT arrays, Signal Processing, Vol. 48, No. 2, 1996.
    [16] Erikssion A., Stoica P. and Soderstrom T., On-line subspace algorithms for tracking moving sources, IEEE Trans. Signal Processing, Vol. 42, 1994.
    [17] Jakobsson A., Swindlehurst A. L. and Stoica P., Subspace-based estimation of time-delays and doppler shifts, IEEE Trans. Signal Processing, Vol. 46, No. 9, 1998.
    [18] 雷中定,黄绣坤,张树京,马承敏,宽带非高斯信号波达方向的估计方法,电子学报,No.10,1998.
    [19] 葛凤翔,万群,刘申建,彭应宁,基于特征分析和二次规划的窄带信号超分辨率频率估计,电子学报,Vol.30,No.9,2000.
    [20] 黄知涛,周一宇,姜文利,基于循环平稳特性的源信号到达角估计方法.电子学报,Vol.30,No.3,2002.
    [21] 王建国,龙腾,一种在Kalman滤波中引入径向速度测量的新方法,信号处理,Vol.18,No.5,2002.
    [22] 金梁.基于时空特征结构的阵列信号与智能天线技术研究,西安交通大学博士学位论文,1999年3月。
    [23] Robert J. U. and Geraniotis E., wideband TDOA/FDOA processing using summation of short-time CAF's, IEEE Trans. Signal Processing, Vol. 47, No. 12, 1999.
    [24] Stein S., Differential delay-doppler ML estimation with unknown signals, IEEE Trans. ASSP, Vol. 41, No. 8, 1993.
    [25] Hua Y., Sarkar T. K., and Weiner D. D., An L-shaped array for estimating 2-D directions of wave arrival, IEEE Trans. on Antennas and Propagation, 1991, 39(2), 143-146.
    [26] Zoltowski M. D., Haardt M. and Mathews C. P., Closed-Form 2-D Angle Estimation with Rectangular Arrays in Element Space or Beamspace Via Unitary ESPRIT, IEEE Trans. Signal Processing, vol. 44, Feb., 1996.
    [27] Katkovnik V., Discrete-time local polynomial approximation of instantaneous frequency, IEEE Trans. Signal Processing, vol. 46, pp. 2626-2637, Oct. 1998.
    [28] KatkovnikV., Gershman A. B., A local polynomial approximation based beamforming for source localization and tracking in nonstationary environments, IEEE Signal Processing letters, vol. 7, no. 1, 2000.
    [29] 刘德树,罗景青,张剑云,空间谱估计及其应用,中国科技大学出版社(1997).
    [30] Liu K., O'Leary K., Stewart G., and Wu Y. J., URV ESPRIT for Tracking Time-Varing Signals, IEEE Trans. Signal Processing, vol. 42, pp. 3441-3448, January 1995.
    [3
    
    [31] 苏卫民,阵列信号处理技术研究,南京理工大学博士学位论文,1998。
    [32] Zeira A., Fdedlander B., On the performance of direction finding with timw-varying arrays, Signal Processing, 43(2), pp. 133-147.
    [33] Katkovnik V., and Gershman A. B., Performance study of the local polynomial approximation based beamforming in the presence of moving sources.
    [34] Degroat R. D., Noniterative subspace tracking, IEEE Trans. Signal Processing, vol. 40, pp. 571-577, Mar. 1992.
    [35] Yang B., Projection approximation subspace tracking, IEEE Trans. Signal Processing, vol. 43, pp. 95-107, Jan., 1995.
    [36] Rao C. R., Sastry C. R., and Zhou B., Tracking the direction of arrival of multiple moving targets, IEEE Trans. Signal Processing, vol. 42, pp. 1133-1144, May, 1994.
    [37] Wigren T., Eriksson A., Accuracy aspects of DOA and angular velocity estimation in sensors array processing, IEEE Signal Processing Letters, vol. 2, pp. 60-62, Apr., 1995.
    [38] Stoica P. and Nehorai A., MUSIC, Maximum likelihood and Cramer-Rao bound. IEEE Trans. ASSP, vol. 37, no. 5, pp. 720-741, May 1989.
    [39] Stoica P. and Nehorai A., MUSIC, Maximum likelihood and Cramer-Rao bound: Further Results and Comparisons, IEEE Trans. ASSP, vol. 38, no. 12, pp. 2140-2150, 1990.
    [40] Friedlander, B., A sensitivity analysis of the MUSIC algorithm, IEEE Trans. ASSP, vol. 38, no. 10, 1990.
    [41] Friedlander, B. and Porat. B, Sensitivity analysis of the maximum likelihood direction-finding algorithm, IEEE Trans. AES, Vol. 26, No. 6, 1990.
    [42] Rockah, Y. and Schultheiss, P. M., Array shape calibration using sources in unknown locations-Part Ⅰ: far-field sources, IEEE Trans. ASSP, vol. 35, no. 3, 1987.
    [43] Lo J. T., Marple S. L., Eigenstructure method for array sensor location, Proc. IEEE, ICASSP'87, Texas, Dallas, 1987.
    [44] Paulraj, A. and Kailath, T., Direction of arrival estimation by eigenstructure methods with unknown sensor gain and phase, Proc. of ICASSP-85, 1985.
    [45] Weiss, A. J., and Friedlander, B., Array shape calibration using sources in unknown locations-A maximum likelihood approach, IEEE Trans. ASSP, vol. 37, no. 12, 1989.
    [46] Chunchao, W and Cadzow J. A., Direction-Finding with sensor gain, phase and location uncertainty, Proc. IEEE ICASSP'91, 1991.
    
    [47] Swindlelhurst A. L. and Kailath T., Passive direction of arrival and range estimation for near-field sources, IEEE Spec. Est. and Mod. Workshop, 1988, pp: 123-128.
    [48] Kim J. H., Yang I. S., Kim K. M., and Oh W. T., Passive ranging sonar based on multi-beam towed array, Proc. IEEE Oceans. Eng, vol. 3, September, 2000, pp:1495-1499.
    [49] Asano F., Asoh H., and Matsui T., Sound source localization and separation in near-field, IEICE Trans. Fundamentala,vol. E83-A, no. 11,2000.
    [50] Huang Y. D. and Barkat M., Near-field multiple sources localization by passive sensor array, IEEE Trans. Antennas Propagation, vol. 39, July, 1991,pp. 968-975.
    [51] Russell J., Kristine L. B., Harry L. and Van T., Broadband passive range estimation using MUSIC, ICASSP 2002, pp. 2920-2922.
    [52] Starer D. and Nehorai A., Path-following algorithm for passive localization of near-field sources, 5th ASSP Workshop on Spectrum Estimation and Modeling, October, 1990, pp. 322-326.
    [53] Lee J. H., Lee C. M., and Lee K. K., A modified path-following algorithm using a known algebraic path, IEEE Trans. Signal Processing, vol. 47, May 1999, pp. 1407-2409.
    [54] Lee C. M., Yoon K. S. and Lee K. K., Efficient algorithm for localising 3-D narrowband multiple sources, IEE Proc. Radar, Sonar Navig. vol. 148, February, 2001, pp. 23-26.
    [55] Weiss A. J. and Friedlander B., Range and bearing estimation using polynomial rooting, IEEE J. Ocean. Engr., vol. 18, April, 1993, pp. 130-137.
    [56] Emmanuele G. and Karim A. M., A weighted linear prediction method for near-field source localization, ICASSP'2002, pp. 2957-2960.
    [57] Challa R. N. and Shamsunder S., Higher-order subspace based algorithms for passive localization of near-field sources, in Proc. 29th Asilomar Conf. Signals. System. Computer., Pacific Grove. CA, Oct. 1995, pp. 777-781.
    [58] Yuen N. and Friedlander B., Performance analysis of higher order ESPRIT for localization of near-field sources, IEEE Trans. Signal Processing, 46(3), 1998.
    [59] Challa R. N. and Shamsunder S., Passive near-field localization of multiple non-Gaussian sources in 3-D using cumulants, Signal Processing, vol. 65, no. 1,1998.
    [60] Shapo B. and Bethel R., A novel passive broadband bayesian detector/tracker, First IEEE Sensor Array and Multichannel Signal Processing Workshop, pp: 92-96, March, 2000.
    
    [61] Wang K. and Ge H., "Joint estimation of time delays and DOAs for DS-CDMA system over multipath rayleigh fading channels," IEEE International Conference on Communications, vol. 5, pp. 1436-1440, 11-14 Jun. 2001.
    [62] 袁易全、雷家煜,姚治国,近代声学基阵原理及其应用,南京大学出版社,1994.
    [63] 郑兆宁、向大威,水声信号被动检测与参数估计理论,科学出版社,1983.
    [64] 李启虎,声呐信号处理引论,海洋出版社,1985。
    [65] Prasad S. and Chandna B., DOA estimation using rank revealing QR factorization, IEEE Trans. Signal Processing, vol. 39, pp. 1224-1228, 1991.
    [66] Stewart G. W., An updating algorithm for subspace tracking, IEEE Trans. SP, vol. 40, no. 6, 1535-1541, 1992.
    [67] Xu G. and Kailath T., A fast algorithm for signal subspace decomposition and its performance analysis, ICASSP, pp. 3069-3072, 1992.
    [68] Karhunen J. T., Joutsenalo J., Sinusoidal frequency estimation by signal subspace approximation, IEEE Trans. ASSP-40(12), 1992.
    [69] Kay S. M. and Shaw A. K., frequency estimation by principal component AR spectral estimation method without eigendecomposition, IEEE ASSP-36(1), 1988.
    [70] Tufts D. and Melissinos C. D., Simple effective computation of principal eigenvectors and their eigenvalues and application to high resolution estimation of frequencies, IEEE Trans. ASSP-34(5), 1986.
    [71] Ermolaev V. T. and Gershman A. B., Fast algorithm for minimum-norm direction of arrival estimation, IEEE Trans. Signal Processing, 42(9), 1994.
    [72] Hasan M. A., DOA and frequency estimation using fast subspace algorithms, Signal Processing, vol. 77, no. 1, 1999.
    [73] Stoica P. and Soderstrom T., Statistical analysis of a subspace method for bearing estimation without eigendecomposition, IEE Proc. F, vol. 139, no. 4, 1992.
    [74] Schell. S. V, An overview of sensor array processing for cyclostationary signals, in Gardner. W. A. ed Cyclostationarity in Communications and Signal Processing, New York, IEEE Press, 1994.
    [75] Li J. and Compton and R. T, maximum likelihood angle estimation for signals with known waveforms, IEEE Trans. Signal Processing, vol. 41, no. 9, 1993.
    [76] Zeira A. and Friedlander B., Array processing using parametric signal models, Proc. of IEEE ICASSP'95, pp. 1677-1680.
    [77] Wax M. and Leshem A., Joint estimation of time delays and directions of arrival of multiple reflections of a known signal, IEEE Trans. Signal Processing, vol. 45, no. 10, 1997.
    [7
    
    [78] Halder B., Viberg M., and Kailath T., An efficient non-iterative method for estimating the angles of arrival of known signals, ICASSP'93, pp. 1396-1400, 1993.
    [79] 吴洹,累量域参数估计方法研究,西安电子科技大学博士学位论文,1996年6月。
    [80] Yeh C. C., Simple computation of projection matrix for bearing estimations, Proc. Inst. Elect. Eng. F, vol. 134, no. 2, pp. 146-150, 1987.
    [81] Yeh C. C., Projection approach to bearing estimation, IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-34, pp. 1347-1349, May 1986.
    [82] Stoica P. and SOderstrtm T., Statistical analysis of a subspace method for beating estimation without eigendecomposition, Proc. Inst. Elect. Eng. F, vol. 139, no. 4, pp. 301-305, 1992.
    [83] Marcos S. and Benidir M., On a high resolution array processing method nonbased on the eigenanalysis approach, in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., Albuquerque, NM, Apr. 1990, pp. 2955-2958.
    [84] Marcos S., Marsal A., and Benidir M., The propagator method for source bearing estimation, Signal Process., vol. 42, no. 2, pp. 121-138, 1995.
    [85] Eriksson A., Stoica P., and Sderstrm T., On-line subspace algorithms for tracking moving sources, IEEE Trans. Signal Processing, vol. 42, pp. 2319-2330, Sept. 1994.
    [86] Xin J. and Sano A., Computationally Efficient Subspace-Based Method for Direction-of-Arrival Estimation Without Eigendecomposition, IEEE Trans. signal processing, vol. 52, no. 4, pp. 876-893, April 2004.
    [87] Kristensson M., Jansson M., and Ottersten B., Modified IQML and weighted subspace fitting without eigendecomposition, Signal Process., vol. 79, no. 1, pp. 29-44, 1999.
    [88] Swindlehurst A., Alternative algorithm for maximum likelihood DOA estimation and detection, Proc. Inst. Elect. Eng. Radar, Sonar Navig., vol. 141, no. 6, pp. 293-299, 1994.
    [89] Gardner W. A. and Chen C., Signal-selective time-difference-of-arrival estimation for passive location of man-made signal sources in highly corruptive environment, Part Ⅰ Theory and Method, IEEE Trans. signal processing, vol. 40, no. 5, pp. 1168-1184, May 1992.
    [90] Chen C. and Gardner W. A., Signal-selective time-difference-of-arrival estimation for passive location of man-made signal sources in highly corruptive environment, Part Ⅱ Algorithms and Performance, IEEE Trans. signalprocessing, vol. 40, no. 5, pp. 1185-1197, May 1992.
    
    [91] Xu G. and Kailath T., Direction-of-arrival estimation via exploitation of cyclostationarity-a combination of temporal and spatial processing, IEEE Trans. signal processing, vol. 40, pp. 1175-1187, July 1992.
    [92] Gooch R. and Lundell J., The CM array: an adaptive beamformer for constant modulus signals, in Proc. ICASSP 86, May 1986.
    [93] Li J. and Compton R. T., Jr., Maximum likelihood angle estimation for signals with known waveforms, IEEE Trans, signal processing, vol. 41, no. 9, pp. 2850-2862, Sept. 1993.
    [94] Li J., Haider B., Stoica P., and Verberg M., Computationally efficient angle estimation for signal with known waveforms, IEEE Trans. Signal Processing, vol. 43, no. 9, pp. 2154-2163, Sept. 1995.
    [95] Cedervall M. and Moses R. L., Efficient maximum likelihood DOA estimation for signals with known waveforms in the presence of multipath, IEEE Trans. Signal Processing, vol. 45, pp. 808-8113, March 1997.
    [96] Li H., Pu H., and Li J., Efficient maximum likelihood angle estimation for signals with known waveforms in white noise, Proceedings of the Ninth IEEE SP Workshop on, 14-16 Sept. 1998, pp. 25 - 28.
    [97] Witzgall H. E. and Goldstein J. S., "Detection performance of the reduced-rank linear predictor ROCKET, IEEE Trans. Signal Processing, vol. 51, no. 7, pp. 1731-1738, Jul. 2003.
    [98] Witzgall H. E. and Goldstein J. S., ROCK MUSIC-non-unitary spectral estimation, Tech. Rep. ASE-00-05-001, SAIC, May 2000.
    [99] Witzgall H. E., Goldstein J. S., and Zoltowski M. D., A non-unitary extension to spectral estimation, in the Ninth IEEE Digital Signal Processing Workshop Hunt, Texas, Oct. 15-18,2000.
    [100] Zoltowski M. D., Joham M., and Chowdhury S., Recent Advances in Reduced-Rank Adaptive Filtering with Application to High-Speed Wireless Communications. In Proc. of SPIE 2001, April 2001.
    [101] Huang L., Wu S., Feng D., and Zhang L., Low complexity method for signal subspace fitting, IEE Electronics Letters, vol. 40, no. 14, Jul. 2004.
    [102] Huang L., Zhang L., and Wu S., A new method for noise subspace estimation based on the spatial smoothing Lanczos algorithm, in 2004 IEEE AP-S International Symposium on Antennas and Propagation and USNC/URSI National Radio Science Meeting, Monterey, California, USA, June 20-26, 2004.
    [1
    
    [103] Huang L., Yuan W., Zhang L. and Wu S., Direction-of-arrival estimation via the multi-stage wiener filter, in Int. Conf. on radar system 2004, France, Oct. 2004.
    [104] Reed I. S., Mallett J. D. and Brenna L. E., Sample matrix inversion technique, in Proceedings of the 1974 Adaptive Antenna System Workshop, Washigton DC, vol. 1, pp. 219-222, March 1974.
    [105] Reed I. S., Mailer J. D. and Brenna L. E., Rapid convergence rate in adaptive arrays, IEEE Trans. on AES, vol. 10, no. 6, pp. 853-863, 1974.
    [106] Boroson D. M., Sample size considerations for adaptive arrays, IEEE Trans. on AES, vol. 16, no. 4, pp. 446-451, 1980.
    [107] Schreiber R., Implementation of adaptive array algorithms, IEEE Trans. on AES, vol. 34, pp. 1038-1045, 1986.
    [108] Lindskog E., Making SMI-beamforming insensitive to the sampling timing for GSM signals, in Proceedings of lEEE Int. Symp. Personal, Indoor and Mobile Radio Communications, Toronto, Canada, pp. 664-696, 1995.
    [109] Brenna L. E., et al, Adaptive array in airborne MTI radar, IEEE Trans. on Antenna Propagation, vol. 24, no. 5, pp. 607-615, 1976.
    [110] Horowitz L. E., Blatt H., Brodsky W. G. and Senne K. D., Controlling adaptive antenna arrays with the sample matrix inversion algorithm, IEEE Trans. on AES, vol. 15, pp. 840-847, 1978.
    [111] 张林让,自适应阵列处理稳健方法研究,西安电子科技大学博士学位论文,1998年12月.
    [112] Hotelling H., Analysis of a complex of statistical variables into principal components, J. Educ. Psychol., vol. 24, pp. 417-441 and 498-520, 1933.
    [113] Goldstein J. S. and Reed I. S., Reduced rank adaptive filtering, IEEE Trans. Signal Processing, vol. 45, pp. 492-496, Feb. 1997.
    [114] Goldstein J. S. and Reed I. S., A new method of wiener filtering and its application to interference mitigation for communications, in Proc. MILCOM 1997, vol. 3, pp. 1087-1091, Nov. 1997.
    [115] Goldstein J. S., Reed I. S., and Scharf L. L., A multistage representation of the wiener filter based on orthogonal projections, IEEE Trans. Inform. Theory, vol. 44, no. 7, pp. 2943-2959, Nov. 1998.
    [116] Goldstein J. S. and Reed I. S.. Subspace Selection for Partially Adaptive Sensor Array Processing. IEEE Trans. Aerospace and Electronic Systems, 33(2): 539-543, April 1997.
    
    [117] Goldstein J. S., Reed I. S., and Zulch P. A., Multistage Partially Adaptive STAP CFAR Detection Algorithm. IEEE Trans. Aerospace and Electronic Systems, 35(2):645-661, April 1999.
    [118] Honig M. L. and Xiao W., Performance of reduced-rank linear interference suppression, IEEE Trans. Inform. Theory, vol. 47, no. 5, pp. 1928-1946, Jul. 2001.
    [119] Honig M. L. and Goldstein J. S., Adaptive reduced-rank interference suppression based on the multistage wiener filter, IEEE Trans. Communications, vol. 50, no. 6, Jun. 2002.
    [120] Myrick W. L., Zoltowski M. D. and Goldstein J. S., Exploiting conjugate symmetry in power minimization based pre-processing for GPS: reduced complexity and smoothness, Proc. of 2000 IEEE Int'l Conf. on Acoustic, Speech and Signal Processing, pp. 2833-2836, vol. 5, Istanbul, Turkey, 5-9 June 2000.
    [121] Myrick W. L., Zoltowski M. D. and Goldstein J. S., Anti-jam space-time preprocessor for GPS based on multistage nested wiener filter, IEEE Military Communications (Milcom '99), Atlantic City, NJ, 3-6 Oct. 1999.
    [122] Myrick W. L. and Zoltowski M. D., Low-sample performance of reduced-rank power minimization based jammer suppression for GPS, IEEE Sixth International Symposium on Spread Spectrum Techniques and Applications (ISSSTA 2000), Parsippany, NJ, vol. 1, pp. 93-97,6-8 September 2000.
    [123] Myrick W. L. and Zoltowski M. D., GPS jammer suppression with low-sample support using reduced-rank power minimization, Proc. of the 10th IEEE Workshop on Statistical Signal and Array Processing, SSAP 2000, Pocono Manor, PA, pp. 514-518, 14-16 August
    [124] Dietl G, Zoltowski M. D., and Joham M., Recursive reduced-rank adaptive equalization for wireless communications, in Proc. SPIE 2001, vol. 4395, pp. 16-27, Apr. 2001.
    [125] Chowdhury S., Zoltowski M. D., and Goldstein J. S., Reduced-rank adaptive MMSE equalization for the forward link in high-speed CDMA, invited paper, 43rd IEEE Midwest Symposium on Circuits and Systems, East Lansing, MI, 8-11 August 2000.
    [126] Zoltowski M. D., Chowdhury S., and Goldstein J. S., Reduced-rank adaptive MMSE equalization for high-speed CDMA forward link with sparse multipath channels, Conf Record of the 34th Asilomar IEEE Conference on Signals, Systems, and Computers, 29 Oct. -Nov. 1, 2000.
    [1
    
    [127] Chowdhury S., Zoltowski M. D., and Goldstein J. S., Application of reduced-rank chip-level MMSE equalization to forward link DS-CDMA with frequency selective multipath, Proceedings 38th Annual Allerton Conference on Communications, Systems, and Computing, 4-6 Oct. 2000.
    [128] Huang L., Wu S., Feng D. and Zhang L., Fast subspace estimation, Submitted to IEEE Trans. Signal Processing.
    [129] Huang L., Wu S. and Zhang L., Low-Complexity ESPRIT Method for Direction Finding; in Proceedings of IEEE ICASSP 2005.
    [130] 黄磊,张林让,吴顺君,“一种低复杂度的信号子空间拟合的新方法”电子学报,(已录用,待发表)。
    [131] Huang L., Feng D., Wu S. and Zhang L., "Computationally Efficient Method of Signal Subspace Fitting for Direction-of-Arrival Estimation," to appear in IEICE Transactions on Communications.
    [132] Huang L., Wu S. and Zhang L., Low-Complexity Method of Weighted Subspace Fitting for Direction-of-Arrival Estimation, in Proceedings of IEEE International Radar Conference 2005.
    [133] Huang L., Wu S. and Zhang L., A Novel Method for Signal Subspace Fitting without Eigendecomposition, in Proceeding of IEEE VTC Spring 2005.
    [134] Huang L., Wu S. and Zhang L., Angle Estimation via a Computationally Efficient SSF Method, in Proceeding of IEEE VTC Spring 2005.
    [135] D. Ricks and J. S. Goldstein, Efficient implementation of multi-stage adaptive weiner filters, Antenna Applications Symposium, Allerton Park, Illinois, 20-22 Sept. 2000.
    [136] M. Joham and M. D. Zoltowski, Interpretation of the multi-stage nested wiener filter in the krylov subspace framework, Tech. Rep. TUM-LNS-TR-00-6, Munich University of Technology, Nov. 2000.
    [137] Wanshi Chen Urbashi Mitra and Philip Schniter, On the Equivalence of Three Reduced Rank Linear Estimators With Applications to DS-CDMAs, IEEE Trans. Information Theory, vol. 48, no. 9, September 2002.
    [138] Pados, D. A. and Batalama, S. N., Low-complexity blind detection of DS-CDMA signals: Auxiliary-vector receivers. IEEE Trans. Commun. 45 (1997), 1586-1594.
    [139] Pados, D. A. and Batalama, S. N., Joint space-time auxiliary-vector filtering for DS/CDMA systems with antenna arrays. In Proc. Conf. on Inform. Sci. and Systems. Vol. II, pp. 1007-1013, Princeton University, Princeton, NJ, March 1998.
    
    [140] Pados, D. A. and Batalama, S. N., Joint space-time auxiliary-vector filtering for DS/CDMA systems with antenna arrays. IEEE Trans. Commun. 47 (1999), 1406-1415.
    [141] Qian, H. and Batalama S. N., Data-record-based criteria for the selection of an auxiliary-vector estimator of the MVDR filter. In Proc. Asilomar Conf. Signals, Systems., Computers, pp. 802-807, Pacific Grove, CA, Oct. 2000.
    [142] George N. Karystinos, Haoli Qian, Michael J. Medley, and Stella N. Batalama, Short Data Record Adaptive Filtering: The Auxiliary-Vector Algorithm, Digital Signal Processing 12,193-222 (2002).
    [143] Dimitris A. Pados, Michael J. Medley, and Stella N. Batalama, Adaptive Antenna Array Receivers for Spread-Spectrum Signals in Non-Gaussian Noise, Digital Signal Processing 11,144-158 (2001).
    [144] Eckart C. and Young G., The Approximation of One Matrix by Another of Lower Rank. Psychometrika, 1(3):211-218, September 1936.
    [145] Tufts, D.; Kirsteins, I. and Kumaresan, R., "Data-adaptive signal estimation by singular value decomposition of a data matrix", Proceedings IEEE, Vol. 70, No. 6, pp. 684-685,1982.
    [146] Hien N. Nguyen, Robust Steering Vector Mismatch Techniques for Reduced Rank Adaptive Array Signal Processing, Dissertation of the Virginia Polytechnic Institute and State University, Fallschurch, Virginia, Oct 10,2002.
    [147] S. P, N. A, "MUSIC, maximum likelihood, and Cramer-Rao bound," IEEE Trans. signal processing, vol. 37, no. 5, pp. 720-741, May 1989.
    [148] Schmidt R. O., "Multiple emitter location and signal parameter estimation," IEEE Trans. Antennas Propagat, vol. AP-34, pp. 276-280, Mar. 1986.
    [149] Paulraj A. and Kailath T., A subspace rotation approach to signal parameter estimation, Proceedings of the IEEE, pp. 1044-1045, July 1986.
    [150] Roy R. and Kailath T., ESPRIT-estimation of signal parameters via rotational invariance techniques, IEEE Trans. ASSP, ASSP-37(7), pp. 948-955, July 1989.
    [151] Rao B. D. and Hari K. V. S., Performance analysis of ESPRIT and TAM in determining the direction of arrival of plane waves in noise, IEEE Trans. ASSP, ASSP-37(12), pp. 1990-1995, December 1989.
    [152] Viberg M., Otterstem B., Sensor array processing based on subspace fitting, IEEE Trans. Signal Processing, vol. 39, no. 5, pp. 1110-1121, May 1991.
    
    [153] Otterstem B., Viberg M., Kailath T., Analysis of subspace fitting and ML techniques for parameter estimation from sensor array data, IEEE Trans. Signal Processing, vol. 40, no. 3, pp. 590-600, April 1992.
    [154] Jansson M., Lee Swindlehurst A. and Ottersten B., Weighted subspace fitting for genenal array error models, IEEE Trans. Signal Processing, vol. 46, no. 9, pp. 2484-2498, September 1998.
    [155] Viberg M., Otterstem B. and Kailath T., Detection and estimation in sensor array using weighted subspace fitting, 1EEE Trans. Signal Processing, vol. 39, pp. 2436-2449, November 1991.
    [156] Cheung K. W. and Cheung S. W., Analysis of ML and WSF in wireless channels, Electronics Letters, vol. 34, no. 7, pp. 624-625, April 1998.
    [157] Xu G. and Kailath T., Fast subspace decomposition, IEEE Trans. Signal Processing, vol. 42, no. 3, pp. 539-551, March 1994.
    [158] Xu G. and Kailath T., Fast estimation of principal eigenspaee using Lanczos algoritm, SlAM Journal of Matrix Analysis and Applications, vol. 15, no. 3, pp. 974-994, July 1994.
    [159] Xu G. and Kailath T., A fast algorithm for signal subspace decomposition and its performance analysis, in Proceedings of ICASSP-91, vol. 5, pp. 3069-3072, Apr. 1991.
    [160] Wax M. and Kailath T., Detection of signals by information theoretic criteria, IEEE Transcations on Acoust., Speech, Signal Processing, vol. 33, no. 2, pp. 387-392, April 1985.
    [161] Wax M. and Ziskind I., Detection of the number of coherent signals by the MDL principle, IEEE Transcations on Acoust., Speech, Signal Processing, vol. 37, no. 8, pp. 1190-1196, August 1989.
    [162] Lanczos C., An iteration method for the solution of the eigenvalue problem of linear differential and integral operators, J. Res. Nat. Bureau Stan, vol. 45, pp. 255-282, 1950.
    [163] Golub G. and Loan C. V., Matrix Computations, Johns Hopkins University Press, 1996.
    [164] 张贤达:矩阵分析及应用,清华大学出版社,2004年。
    [165] 孙继广:矩阵扰动分析,pp.193,科学出版社,1987年。
    [166] Anderson T. W., Asymptotic theory for principal component analysis, Ann. Math. Statist., 34(1963), pp. 122-148.
    [167] Bienvenu G. and Kopp L., Optimality of high resolution array processing, IEEE Trans. on ASSP, ASSP-31 (1983), pp. 953-964.
    [1
    
    [168] Cifuentes P., Myrick W. L., Sud S. and Zoltowski M. D., Reduced rank matrix multistage wiener filter with applications in MMSE joint multiuser detection for DS-CDMA, 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing, pp. 2605-2608, may 2002.
    [169] Himed B. and Michels J., Performance analysis of the multi-stage wiener filter, IEEE 2000 International Radar Conference, pp. 729-734, may 2000.
    [170] Witzgall H. E., William C. Ogle and Goldstein J. S., Mitigating the effect of channel noise in source compression with reduced rank processing, pp. 295-299, 2003.
    [171] Myrick W. L., Sud S., Goldstein J. S. and Zoltowski M. D., MMSE correlator based on rake receiver for DS-CDMA, pp. 1418-1422, 2001.
    [172] Sud S., Myrick W. L. and Goldstein J. S., Joint space-time adaptive filtering for DS-CDMA system with antenna arrays based on the multi-stage wiener filter, pp. 2335-2339, 2003.
    [173] John D. Hiemstra, Matthew E. Weippert, Hien N. Nguyen and Goldstein J. S., Intertion of diagonal loading into the multistage wiener filter, proceedings of Sensor Array and Multichannel Signal Processing Workshop, pp. 379-382, Aug. 2002.
    [174] Sud S., Reduced Rank Adaptive Filtering Applied to Interference Mitigation in Wideband CDMA Systems, Virginia Polytechnic Institute and State University Falls Church, VA USA March 14, 2002.
    [175] Dietl G., Zoltowski M. D. and M. Joham, Reduced-rank equalization for EDGE via conjugate implementation of multi-stage nested wiener filter, proceedings of IEEE VTS 54th Vehicular Technology Conference, 2001, VTC 2001 Fall, pp. 1912_1916, vol. 3, Oct. 2001
    [176] 黄磊,吴顺君,张林让,冯大政,“快速子空间分解方法及其维数的快速估计”电子学报(已录用,待发表)。
    [177] Shan T. J., Wax M, and Kailath T. On spatial smoothing for directions of arrival estimation of coherent signals. IEEE Trans. on Acoustics Speech and Signal Processing, 1985, 33(4): 806-811.
    [178] Williams R. T., Prasal S., Mahalanabis A. K., and Sibul L. H., An improved spatial smoothing technique for bearing estimation in a multipath environment, IEEE Trans. ASSP, vol. 36, no. 4 pp. 425-432, Apr. 1988.
    [179] Pillai S. U. and Kwon B. H., Forwar/backward spatial smoothing technique for coherent signal identification, IEEE Trans. ASSP, vol. 37, no. 1 pp. 8-15, Apr. 1989.
    
    [180] Wang H. and Kaven M., Coherent signal subspace processing for the detection and estimation of angle of arrival of multiple wide-band sources, IEEE Trans. ASSP, vol. 33, no. 4, pp. 823-931, August 1985.
    [181] Barabell A. J., Improving the resolution performance of eigenstructure-based direction-finding algorithms, in Proc. ICASSP, Boston, MA, 1983.
    [182] Rao B. D. and Had K. V. S., Performance analysis of root-MUSIC, IEEE Trans. on ASSP, ASSP-37(1989), no. 12, pp. 1933-1949, Dec. 1989.
    [183] Kay S. M., Modern Spectral Estimation, Prentice-Hall, Englewood Cliff, NJ, 1988.
    [184] Krim H. and Viberg M., Two decades of array signal processing research, IEEE Signal Processing Magazine, pp. 67-94, Jul. 1996.
    [185] Stoica E and Moses R., Introduction to Spectral Analysis, Prentice-Hall, Upper Saddle Revier, N J, 1997.
    [186] 孙超,李斌:加权子空间拟合算法理论与应用,西北工业大学出版社,1994年。
    [187] 张贤达,保铮:通信信号处理,国防工业出版社,2000年。
    [188] Witzgall H. E., Tarr A., Goldstein J. S., Zoltowski M. D. and Reed I. S., ROCKET: A reduced order correlation kernel estimation technique, proceedings of the Thirty-Fourth Asilomar Conference on Signals, Systems and Computers, 2000, pp. 406-410, vol. 1, Nov. 2000.
    [189] Jeffries D. J. and Farrier D. R., Asymptotical results for eigenveetor methods, Proc. Inst. Elec. Eng., F, vol. 132, no. 7, pp. 589-594, June 1985.
    [190] Kaveh M. and Barabell A. J., The statistical performance for the MUSIC and the minimum-norm algorithms in resolving plane waves in noise, IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-34, pp. 331-341, Apr. 1986.
    [191] Parlett B. N., The Symmetric Eigenvalue Problem. Englewood Cliffs. NJ: Prentice-Hall, 1980.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700