医学层析图像重建和生物组织光传输的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
医学图像的三维重建近几年来一直是一个热点,将三维重建引入到放射治
    疗当中来,并结合蒙特卡罗方法进行剂量估计,是一种具有广阔发展前景的诊
    断手段。通过医学图像三维重建,可以方便的揭示出人体组织内的物理属性和
    空间关系,为临床医学的诊疗和医学科学研究提供清晰的人体结构三维图像和
    具有最佳效果的治疗计划。本文以医学图像三维重建为基础,通过对放射治疗
    计划的研究,模拟放射治疗过程,给医学工作者和研究者提供一个立体影像数
    据的平台和模拟手术的平台,并对放射治疗中剂量分布提供一种可行的分析工
    具和数学模型。
    三维医学图像重建的基础是所有医学图像的信息必须建立在一个公共的坐
    标框架内,这样才能使多幅图像在空间域中达到几何位置的完全对应,达到三
    维医学图像配准的要求。本文建立统一坐标系,使系统构建了准确的平台。
    本文利用表面拟合方法进行三维重建。因此组织轮廓提取成为三维重建的
    基本元素。半自动提取组织轮廓,将其良好地与图像信息相匹配是论文的出发
    点。本文利用插值和梯度匹配方法将轮廓曲线较好地和图像信息相吻合。拟合
    后曲线庞大的数据量对于系统的实时性提出了挑战。论文提出基于经验阈值和
    弧长理论的适应性轮廓采样方法,利用最少的点保留轮廓曲线最多的信息,适
    应性的对轮廓进行采样,并存储数据。
    本文讨论了图像重建的三个基本问题:轮廓对应、分叉问题和轮廓拼接问
    题。论文对于轮廓拼接问题进行了着重分析,并结合小波理论提出自己的见解
    和方法,构造出最佳相似函数,可以半自动的提取出对应点,较好地解决了轮
    廓拼接问题。对于另外两个问题,本文也提出了自己的见解,解决了轮廓的分
    叉问题,从而重建出高质量的三维图形。
    一般的医学图像只提供一个方向的切片图像,通常是层状面,亦称为水平
    面的图像信息。对于矢/冠状面的信息,初始数据是缺失的,不能完整的提供医
    学图像的所有二维信息。论文分析了现有的图像插值重建方法:灰度插值法和
    对象插值法,提出了局部保有边界算法来进行插值重建,得到图像的矢/冠状面,
    并利用得到的矢/冠状面来进行层状面图像的层间插值。
    等剂量线的获得是放射治疗计划的最终目的。本文分析了光与组织的相互
    关系,建立了蒙特卡罗模型,并利用该方法对等剂量线进行预测和评估,分析
    影响剂量分布的因素,对于含有多层介质的组织体,进行了光传输模拟,得到
    了等剂量的分布。对于系统中得到的离散等剂量点,提出了分象限八方向回溯
    算法,很好的解决了具有多条同种剂量的等剂量线的情况。
The reconstruction of 3-Dimensional medical images is becoming a hot topic in
    recent years. To introduce 3-dimensional reconstruction into radioactive treatment,
    combining isodose estimation by way of Monte Carlo, is a diagnose tool with wide
    applications. 3-D reconstruction and visualization of medical images can easily
    display the physical attribute and spatial position of body tissues. It is able to provide
    a vivid 3-D body structure image and help making a optimum treatment plan. The
    dissertation builds up a platform of the radioactive treatment and simulating operation,
    in which the related medical research projects can be performed.
     The basis of reconstruction of 3D medical images is that all the image
    information must be in an united coordinate, which has been established in this paper.
    In the united coordinate the image must be registered and match each other.
     The extraction of tissues’ contour is the fundamental element in surface
    reconstruction. To extract the tissue contour semi-automatically and to match the
    contour with the image grads information perfectly are studied. The huge contour
    data is a great challenge to the real time operation. A contour sampling algorithm with
    variable resolution, based on threshold and arc distance theory, is presented. More
    contour information is gained through fewer points. The contour was adaptively
    sampled and stored in matrix.
     The primary questions in image reconstruction, are discussed, which are the
    contour match, branch and contour connection. The contour connection is
    emphatically discussed. The Optimal Similarity Function, which combined with
    wavelet theory, is constructed to extract the contour matched point semi-
    automatically. The new approaches for both contour match and branch are presented.
    A high-quality, vivid 3-D model is reconstructed.
     Ordinary medical image is often provide the horizontal slice image. The coronal
    and sagittal information are missed in the primal medical image. Therefore the primal
    medical image cannot provide all the 2-dimensional information. The existing image
    interpolation methods, the intensity interpolation and object interpolation, are
    analyzed. A new algorithm, which maintains boundary partly, is applied to get the
    coronal and sagittal medical images. The layer interpolation of horizontal image is
    resolved by same algorithm.
     The gain of isodose curve is the final aim of radioactive treatment. The
    relationship between ray and tissue is discussed. The Monte Carlo mathematic model
    is established to conclude and evaluate the isodose curve. The factors may affect dose
    distribution are analyzed. Multi-layered model of skin is presented to study the light
    propagation and distribution in skin tissue by using Monte Carlo technique. The
    relationship between absorption energy and thickness is simulated. A new
     II
    
    
    天津大学博士学位论文
    Chain-Code algorithm based on eight-direction tracing is presented. Through this
    tracing principle, all contours’ information in the chain-code are obtained finally. The
    problem of Isodose curves with same dose appearing several times in medical image
    process is solved by this tracing principle.
引文
[1] McComick B H et al. Visualization in scientific computing. Computer Graphics,
    Vol.21, No.6, 1987
    [2] Rosenblum L et al. Scientific visualization advances and challenges. London:
    Harcournt Brace & Company, 1994
    [3] 石教英,蔡文立. 科学计算可视化算法与系统,北京:科学出版社,1996
    [4] Choi Y K, Park K H. A heuristic triangulation algorithm for multiple planar
    contours using an extended double branching procedure. Visual Computer.
    Vol.10,1994
    [5] Keppel E. Approximating complex surface by triangulation of contours lines.
    IBM J Research Develop Vol.19,1975
    [6] Fuchs H, Kedem Z M, Uselton S P. Optimal surface reconstruction from planar
    contour comm.. CAM, Vol.20,1977
    [7] Boissonnat J D. Shape reconstruction from planar cross-section. Comp Vis Graph
    and Image Processing, Vol.44,No.1,1988
    [8] Lin W C. A new surface interpolation technique for reconstruction 3D objects
    from serial cross-section, Computer Vision & Graph Image Process Vol.48,No.1,1989
    [9] William E. Lorensen and Harvey E. Cline ,Marching Cubes: A High Resolution
    3D Surface Construction Algorithm,Computer Graphics (Proceedings of SIGGRAPH
    '87),Vol. 21,No. 4
    [10] Gregory M. Nielson, Bernd Hamann, The Asymptotic Decider: Resolving the
    Ambiguity in Marching Cubes. Visualization '91, Proceedings., IEEE Conference on
    1991
    [11] Y.Kenmochi and K.Kotani et.al Marching Cubes Method with Connectivity.
    Image Processing, 1999. ICIP 99. Proceedings. 1999 International Conference
    on , Vol. 4 , 1999
    [12] 何晖光,田捷等 基于分割的三维医学图像表面重建算法 软件学报, Vol.13,
    No.2, 2002
    [13] Doi A, Koide A. An efficient method of Triangulating equi-valued surface by
    using tetrahedral cells. IEICE Transactions. Vol.74,No.1,1991
    [14] Cline H E, Lorensen W E et al, Two algorithms for the three-dimensional
    reconstruction of tomograms. Medical Physics, Vol.15,No.3,1988
     103
    
    
    天津大学博士学位论文
    [15] Herman G.T et al, Three-Dimensional display of human organs form computed
    tomography. Computer Graphics & Image Processing, Vol.9,No.1,1979
    [16]Westover L. Floor Print Evaluation for Volume Rendering. Computer Graphics,
    Vol.24,No.4,1990
    [17]Gideon Frieder et al. Back-to-Front Display of Voxel-based Objects. IEEE Trans
    on Computer Graphics & Vol.5,No.1,1985
    [18]Jaaski J Yla, et al, A fast direct display of volume data for medical Diagnosis.
    GVGIP, Graphical Models and Image Processing, Vol.53,No.1,1991
    [19]Andrezej Niemierko, et al. Random sampling for evaluating treatment plans.
    Medical Physics,Vol.17,1990
    [20]谢树森, 李晖, 生物组织光学性质的测量原理与技术, 中国生物医学工程学
    报, Vol.16, No.4, 1997
    [21]Lin S,Wang L. Measurement of tissue optical properties by the use of
    oblique-incidence optical fiber reflectometry. Application Optical, Vol.36,No.1,1997
    [22]T.J Farrell, M S Patterson, B C Wilson. A diffusion theory model of spatially
    resolved steady-state diffuse reflectance for non-invasive determination of tissue
    optical properties in vivo. Medical Physics, Vol.19,1992
    [23] S. A. Prahl et al. A Monte Carlo Model of Light Propagation in Tissue. SPIE
    Institute Series Vol.IS 5,1989
    [24]B C Wilson, G Adam. A Monte Carlo Model for the Absorption and Flux
    Distribution of Light in Tissue. Medical Physics, Vol.10,No.6,1983
    [25] S.T.Flock, et al, Monte Carlo modeling of light propagation in highly scattering
    tissues. I. Model predictions and comparison with diffusion theory . IEEE Trans. On
    Biomedical Engineering. Vol.36, No12, 1989
    [26] S.T.Flock, et al, Monte Carlo modeling of light propagation in highly scattering
    tissues. II. Comparison with measurements in phantoms. IEEE Trans. On Biomedical
    Engineering. Vol.36, No12, 1989
    [27]Tuchin V V, et al, Tissue optics, light distribution and spectroscopy. Optical
    Engineering, Vol.33, No.10, 1994
    [28]S.Shanthi. et al. Monte Carlo Simulation of Laser Light Distribution in internal
    organs, Proceedings RC IEEE-EMBS & 14th BMESI, 1995
    [29]Cheol. Hea.Koo et al. Monte Carlo simulation to measure light dosimetry within
    the biological tissue. Proceedings of 20nd Annual International Conference of the
    IEEE engineering in Medical and Biology Society, Vol.20,No.6,1998
    [30]J.M.Schmitt et al. Multilayer model of photon diffusion in skin. Optical Society
     104
    
    
    参考文献
    Am.A, Vol.7,1990
    [31]Slobodam Devic et al. Dual Energy CT Tissue Quantitation for Monte Carlo
    Based Treatment Planning for Brachytherapy. Proceedings of the 22nd Annual EMBS
    International Conference. 2000
    [32]李振华等,复杂生物组织中光传输规律的 Monte Carlo 方法及应用,南京理
    工大学学报,Vol.24, No.6,2000
    [33]陆燧丽,毛慈波,光在组织中传输的光强分布的蒙特卡罗模拟,华中理工大
    学学报,Vol.23,No.7,1995
    [34] 来建成等,面光源照射下生物组织中光传输规律的计算机模拟, 光电子.激
    光, Vol.12, No.3, 2001
    [35] C-M Ma et al. A Monte Carlo dose calculation tool for radiotherapy treatment
    planning. Physics in Medical and Biology, Vol.47,2002
    [36] Todd Pawlicki et al. Including Setup Uncertainty in Monte Carlo Dose
    Calculation for IMRT. Proceedings of 22nd Annual EMBS International Conference,
    2000
    [37] Andreas H Hielscher, et al. Time-resolved photo emission from layered turbid
    media. Applied Optics, Vol.35,No.4,1996
    [38] Feng Liu, et al. Ultrafast laser-pulse transmission and imaging through biological
    tissues. Applied Optics, Vol.35,No4,1993
    [39]许棠等,时间分辨反射确定生物组织光学参数的研究,光电子.激光,
    Vol.15,No.1,2004
    [40] L.H.Wang et al. Monte Carlo modeling of photon transport in multi-layered
    tissues. Computer Methods and Programs in Biomedicine, Vol.47,1995
    [41] L.H.Wang et al. Convolution for responses to a finite diameter photon beam
    incident on multi-layered tissues. Computer Methods and Programs in Biomedicine,
    Vol.54,1997
    [42] L.H.Wang et al. Optical beam size for light delivery to absorption-enhanced
    tumors buried in biologhical tissues and effect of multiple-beam delivery: a Monte
    Carlo study. Applied Optics, Vol.36.No.31,1997
    [43] L.H.Wang, Rapid modeling of diffuse reflectance of light in turbid slabs. Journal
    of Optical Society America A, Vol.15,No.4,1998
    [44] L.H.Wang, Absorption distribution of an optical beam focused into a turbid
    medium. Applied Optics, No.38,1999
    [45] Figure B.H. McCormick, T.A. et al.,. Visualization in scientific computing,
    Computer Graphics, Vol. 21, No. 6,1987
     105
    
    
    天津大学博士学位论文
    [46] 张绍祥,中国数字化可视人体研究进展,中国科学基金,No.1,2003
    [47] 唐伏良、张向明等,科学计算可视化的研究现状和发展趋势,计算机应用,
    Vol.17, No.3, 1997
    [48] 罗立民 李松毅,计算机三维放射治疗计划系统的开发,中国肿瘤,Vol.8,
    No.10, 1999
    [49] 田捷、诸葛婴等,三维医学图象处理与分析系统,CT理论与应用研究,Vol.8,
    No.2, 1999
    [50] 林锐、石教英,基于 OpenGL 的场景管理,三维交互与用户界面设计,计算
    机应用研究,Vol.17,No.3,2000
    [51] 唐泽圣、孙延奎等,科学计算可视化理论与应用研究进展,清华大学学报:
    自然科学版,Vol.41,No.4,2001
    [52] 徐晓峰,张大力等,三维医学可视化系统,计算机工程,Vol.27,No.2,2001
    [53] 刘文耀、陈晓晴等,三维医学可视化放射治疗计划软件系统,天津大学学
    报:自然科学与工程技术版,Vol.34,No.3,2001
    [54] 耿国华、周明全,三维医学可视化分析平台的研究,微机发展,
    Vol.9,No.1,1999
    [55] 郑国焱、江贵平,一种计算机辅助手术方案仿真系统,中国生物医学工程
    学报,Vol.17,No.2, 1998
    [56] 欧宗瑛、秦绪佳等,多叶光栅适形放射治疗系统图像图形处理软件研究与
    开发,大连理工大学学报,Vol.41,No.6,2001
    [57] 包尚联,医学影像物理学的现状和发展,中国医学物理学杂志,Vol.20, No.3,
    2003
    [58] 张众、虞启琏,医学图像三维可视化技术与应用,医疗卫生装备,Vol.24,
    No.12, 2003
    [59] 贾春光、段会龙,Visible Human 计划的发展与应用,国外医学:生物医学
    工程分册,Vol.20, No.5, 1997
    [60] 实用 CT 诊断学 李欣 韩春富 北京 人民卫生出版社 1993.7
    [61] 朱广迎主编 放射肿瘤学 北京 科学技术文献出版社,2001.5
    [62] 林天毅,段会龙,吕维雪. 医学数字图像通讯(DICOM)标准及在我国的实验
    策略. 国外医学生物医学工程分册,Vol.21,No.2,1998
    [63] 田娅、饶妮妮等,国内医学图像处理技术的最新动态,电子科技大学学报,
    Vol.31,No.5,2002
    [64] Coffey R J,Lunsford L D.Stereotactic surgery for mass lesions of the midbrain
    and pons. Neurosurgery,Vol.17,No.1,1985
     106
    
    
    参考文献
    [65] Leksell L,Leksell D, Schwebel J. Stereotactic and nuclear magnetic resonance .
    Neurol. Neurosurg Psychiatry, Vol.48,1985
    [66] 陈炳桓.立体定向放射神经外科学.北京人民出版社,1994
    [67] Barisb RJ.A new stereotactic x-ray knife. Radiation on Colony Biol phys.
    Vol.14, 1988
    [68] 周凌宏、陈超敏、吕庆文、王琦,立体定向适形放射治疗技术,中国医疗器械
    杂志 Vol.24 No.4 2000
    [69] 於文雪、李松毅 基于扫描图像标尺的序列图像归一化方法 电子学报
    Vol.31 No.1 2003
    [70] 李智慧 基于可视化的三维放射治疗计算机模拟系统的研究 四川大学博士
    论文
    [71] 刘文耀 光电图像处理 北京 电子工业出版社 2002.11
    [72] 章毓晋 图像分割 北京 科学出版社 2001.2
    [73] 邓小英、周振平、康春涛 吉林大学学报(信息科学版) 一种用于片层间轮廓
    线插值的算法 Vol.20 No.3 2002
    [74] Dubios and clans. An autoregressive model approach to two-dimensional shape
    classification.IEEE Trans.Pattern Anal.Mach.Intelligence PAMI.Vol.18,No.1,1986
    [75] Long-Wen Chang,et a1. Reconstruction of 3D medical images: a nonlinear
    interpolation techniques for reconstruction of 3D medical images. Computer
    Graphics,Vision.Image Processing CVGIP Vol.53,No.4,l991
    [76] 朱心雄. 自由曲线曲面造型技术 北京:科学出版社 2000.
    [77] 郑国焱 保持形状特征的变分辨率轮廓点采样算法 北京生物医学工程
    Vol.14 No.4 1995
    [78] Muller H, Klingert A. Surface interpolation from cross section, in focus on
    scientific visualization. Springer-Verlag,1993
    [79] Shinagawa Y, Kunii T L. Constructing a reeb graph automatically from cross
    section. IEEE Computer Graphics and Application. Vol.11,No.6,1991
    [80] Ekoule A B, et al. A triangulation algorithm from arbitrary shaped multiple
    planar contours. ACM Transaction on Graphics, Vol.10,No.2,1991
    [81] Marsan A L, Dutta D. Computational techniques for automatically tilling and
    skinning branched objects. Computers & Graphics. Vol.23,No.1,1999
    [82] Meyers D. Reconstruction of surfaces from planar contours. Ph.D Dissertation.
    University of Washington, 1991
    [83] Bresler Y, et al. A Bayesian approach to reconstruction from incomplete
     107
    
    
    天津大学博士学位论文
    projections of multiple objects 3D domain. IEEE Transsction on Pattern Analysis and
    Machine intelligent. Vol.11,No.8,1989
    [84] Christiansen H N, Sederberg T W. Conversion of complex contour line
    definitions into polygonal element mosaics. Computer Graphics, Vol.12,No.3,1978
    [85] Shantz M. Surface definition for branching contour from planar contours.
    Computer graphics, Vol.15,No.2,1981
    [86] Keppel E. Approximating complex surface by triangulation of contours lines.
    IBM J Res Develop Vol.19,1975
    [87] Cook L T et al. A three-dimensional display system for diagnostic imaging
    applications. IEEE Computer Graphics and Application. No.3,1983.
    [88] Bajcsy R, Kovacic S. Multi-resolution elastic matching. Computer Vision
    Graphics Image Pricessing. Vol.46,No.1,1989
    [89] Moshfeghi M. Matching of multimodality medical images. Graphical Models
    and Image Processing. Vol.53,No.3,1991
    [90] 管 伟 光 、 马 颂 德 . 具 有 形 变 的 平 面 轮 廓 匹 配 问 题 . 自 动 化 学
    报,Vol.22,No.6,1994
    [91] 纪凤欣 基于断层图象的几何重建理论与技术研究, 大连理工大学博士论
    文,
    [92] Goshtasby et al. Matching of tomographic slices for interpolation. IEEE
    Transactions on Medical Imaging. Vol.11,No.4,1992
    [93] Ajay Kumar et al Defect detection in textured materials using Gabor filters IEEE
    Trans on Industry Application Vol.38,No.2 2002
    [94] Kin-Man Lam, A fast approach for detecting human faces in a complex
    background ISCAS '98. Proceedings of the 1998 IEEE International Symposium
    on , Vol.4 ,1998
    [95] 黄惠芳、胡广书 虹膜识别算法的研究及实现 红外与激光工程 Vol.31,No.5
    2002
    [96] 李弼程、罗建书 小波分析及其应用 电子工业出版社 北京 2003
    [97] Gabor D, Theory of Communication IEEE Comcon Vol.93,1946
    [98] Laurenz Wiskott et, al Face Recognition by Elastic Bunch Graph Matching IEEE
    Trans on Pattern Analysis and Machine Intelligence Vol.19,No.7 1997
    [99] D. Field, Relations between the statistics of natural images and the response
    properties of cortical cells, J. Opt. Soc. Amer. A, Vol. 4,No.12, 1987
    [100] J. G. Daugman, Complete discrete 2-d Gabor transforms by neural networks for
     108
    
    
    参考文献
    image analysis and compression, IEEE Trans. PAMI, Vol. 36,No.7, 1988
    [101] Z. Zhang, M. Lyons, M. Schuster, and S. Akamatsu, Comparison between
    Geometry-Based and Gabor-Wavelets-Based Facial Expression Recognition Using
    Multi-Layer Perceptron, Proc. Third IEEE Conf. Face and Gesture Recognition, 1998
    [102] 罗斌 断层图象插值的二维形变法 中国图象图形学报 Vol.3,No.8
    Aug.1998
    [103] 丁炯 人体解剖学 南京 东南大学出版社 1999.2 第 1 版
    [104] Thomas M. Lehmann, Claudia G¨onner, and Klaus Spitzer Survey :
    Interpolation Methods in Medical Image Processing IEEE Trans on Medical
    Imaging, Vol. 18, No. 11, 1999
    [105] George J. Grevera and Jayaram K. Udupa Shape-Based Interpolation of
    Multidimensional Grey-Level Images IEEE Trans on Medical Imaging, Vol.15, No.6,
    1996
    [106] R. G. Keys, Cubic convolution interpolation for digital image processing, IEEE
    Trans. Acoust., Speech, Signal Processing, Vol. ASSP-29, No. 6, 1981.
    [107] Erik Meijering and Michael Unser A Note on Cubic Convolution
    Interpolation IEEE Tran on Image Processing, Vol. 12, No. 4, 2003
    [108] H.S.Hou and H.C.Andrews, Cubic splines for image interpolation and digital
    filtering. IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol.26,
    No.6, 1978
    [109] Einar Maeland On the Comparison of Interpolation Methods IEEE Trans on
    Medical Imaging, Vol.7, No.3, 1988
    [110] W.C.Lin et. al. Dynamic elastic interpolation for 3-D medical image reconstruction
    from Serial Cross-Sections , IEEE Trans on Medical Imaging,Vol.7, No.3,1988
    [111] S.Y.Chen et al., Improvement on dynamic elastic interpolation technique for
    reconstruction 3-D objects from Serial Cross-Sections, IEEE Trans on Medical
    Imaging, Vol.9, No.1 1990
    [112] S.P.Raya, and J.K.Udupa, Shape-based interpolation for multidimensional
    objects, IEEE Trans on Medical Imaging, Vol.9, No.1 1990
    [113] W.E.Higgins, et al, Shape-based interpolation of tree-like structures in 3-
    dimensional images IEEE Trans on Medical Imaging, Vol.12, No.3 1993
    [114] M.Moshfeghi, Elastic matching of multimodality medical images, CVGIP,
    Vol.53, No.3, 1991
    [115] 曲桂红、张大力等 序列断层间图像轮廓的分形插值方法 电子学报 Vol.29,
    No.5 2001
     109
    
    
    天津大学博士学位论文
    [116] 曲桂红、张大力等 矢/冠状图像重建的随机迭代函数系统算法 清华大学学
    报(自然科学版) Vol.41, No.3, 2001
    [117] 张勇、欧宗瑛等 基于物质分类的三维空间断层图像匹配插值 计算机辅助
    设计与图形学学报 Vol.14,No.7,2002
    [118] 黄海赟、戚飞虎等 基于小波的医学图像插值 自动化学报
    Vol.28,No.5,2002
    [119] 陶洪久、柳健等 基于小波变换和插值的超分辨率图像处理算法 武汉理工
    大学学报 Vol.24,No.8, 2002
    [120] 缪斌和 等 基于对应点匹配的断层图像三维插值方法 中国医学物理学杂
    志 Vol.17, No.1, 2000
    [121] 叶志强、吴建明 基于CT切片特征匹配的三维体重建 光子学报 Vol.32,
    No.1, 2003
    [122] Priya N. Werahera, et al, A 3-D Reconstruction Algorithm for Interpolation and
    Extrapolation of Planar Cross Sectional Data, IEEE Trans on Medical Imaging,
    Vol.14, No.4 1995
    [123] 陈晓燕、辜嘉 等 一种基于互信息和梯度信息的医学图像配准算法
    Journal of Southeast University(东南大学学报:英文版)Vol.19, No.1, 2003
    [124] 张俊华、陈建华 等基于边缘移动匹配法的图像插值 计算机工程与应用
    Vol.39, No.6, 2003
    [125] Yeong-Taeg Kim, Deinterlacing Algorithm Based on Sparse Wide Vector
    Correlation SPIE 1996 2727
    [126] George J. Grevera and Jayaram K. Udupa Shape-Based Interpolation of
    Multidimensional Grey-Level Images IEEE Trans on Medical Imaging, Vol.15, No.6,
    December 1996
    [127] 许海超等,实用放射肿瘤计量学,原子能出版社 1988
    [128] Markolf H.Niemz 著,张镇西等译,激光与生物组织的相互作用-原理及应
    用 西安交通大学出版社 1999
    [129] 赵友全等,生物组织光学特性参数及其描述,国外医学生物医学工程分册,
    Vol.23, No.2, 2000
    [130] 朱培豫译,经典电动力学(上),人民教育出版社,1978
    [131] E.Profio, Light transport intissue, Applied Optics, Vol.28,No.12,1989
    [132] 裴鹿成,张孝泽著,蒙特卡罗方法及其在粒子输运问题中的应用,科学出版
    社,1980
    [133] A Knuttel et al. Spatial localization of absorbing bodies by interfering diffusive
     110
    
    
    参考文献
    photon-density waves. Applied Optics, Vol.32,1993
    [134] (德)宾德(Binder,K.),(德)赫尔曼(Heermann,D.W.)著 秦克诚译,统计物理学
    中的蒙特卡罗模拟方法,北京大学出版社,1994
    [135] 天津大学概率统计教研室编,应用概率统计,天津大学出版社,1990
    [136] 徐钟济编,蒙特卡罗方法,上海科学技术出版社,1985
    [137] C.M.Gardner et al. Monte Carlo Simulation of light transport in tissue:
    Unscattered absorption events. Applied Optics. Vol.33,1994
    [138] M. Born et al. Principle of Optics: electromagnetic theory of Propagation,
    Interference and diffraction of light. Pergamon Press, 1986
    [139] Marina K, et al. Monte Carlo simulation of photon propagation in diffusive
    media. Proceedings of the 1996 IEEE Twenty-Second Annual Northeast , 1996
    [140] T.Joshua Pfefer, et al. A three-dimensional modular adaptable grid numerical
    model for light propagation during laser irradiation of skin tissue. IEEE Journal of
    selected topics in quantum electronics. Vol.2,No.4,1996
    [141] 薛玲玲,张春平等,多层生物组织中的光分布研究,南开大学学报(自然
    科学),Vol.34,No.1, 2001
    [142] L.G.Henyey, J.L.Greenstein. Diffuse radiation in the galaxy, Astrophys, Vol.93,
    1941
    [143] E.D.Cashwell and C.J.Eventt. Apractical Manual on the Monte Carlo Method
    for Random Walk Problems(Pergamon Press, New York,1959)
    [144] J.S.Hendricks and T.E.Booth, MCNP variance reduction overview, Lect. Notes
    Phys, Vol.240, 1985
    [145] M.R. Spiegel, Mathematical Handbook of Formulas and Tables, McGraw-Hill,
    1968
    [146] 孙宗扬著,近代物理学,科学出版社,2002
    [147] Judith F Briesmeister, MCNPTM-A General Monte Carlo N-Particle Transport
    Code. Version 4C. 2000
    [148] 范佳锦等,蒙特卡罗内照射剂量计算中不同物理模型的比较,核电子学与
    探测技术,Vol.23,No.6
    [149] 徐海荣等,M-C 方法模拟脑室肿瘤放疗的光输运过程,中国医学物理学杂
    志,Vol.19,No.3,2002
    [150] 孙家广等,计算机图形学,清华大学出版社,1986
    [151] Lu, C. C, Dunham, J.G,Highly efficient coding schemes for contour lines based
    on chain code representations. Communications, IEEE Transactions on, Vol.39, No.
     111
    
    
    天津大学博士学位论文
    10 , 1991
    [152] CHING Y.SUEN,et al,Computer Recognition of Unconstrained Handwritten
    Numerals. Proceedings of the IEEE. Vol.80, NO.7,1992
    [153] 王岩、田捷等,DICOM-医疗设备通讯的国际标准,中国医学影像技术,
    Vol.17,NO.10,2001
     112

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700