“水蚯蚓—微生物共生系统”泥水同步降解机理模型建立及校验
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于目前我国水污染治理和后续剩余污泥处置的现状,高效、节能、低碳的污水处理、污泥处置工艺已成为研究热点。“水蚯蚓-微生物共生系统”是指在污泥/污水生物处理工艺过程中引入水蚯蚓,延长和扩展系统食物链,丰富系统生物多样性,在实现污水净化的同时实现污泥减量。
     本文以水蚯蚓为主要研究对象,首次从水蚯蚓污泥减量的动力学角度出发,结合全耦合活性污泥模型FCASM3,建立“水蚯蚓-微生物共生系统”泥水同步降解机理模型,并顺利完成模型的现场校验工作。
     主要研究成果如下:
     1.以活性污泥为底物,水蚯蚓体重随培养时间的变化趋势较好地符合Gauss函数,最大比增长速率μmax=0.41d-1,最大产率系数Yw/s=0.32;底物浓度和溶解氧浓度由低到高变化时,水蚯蚓比增长速率与底物浓度、溶解氧浓度之间的关系满足Monod方程;底物浓度对水蚯蚓生长速率的影响要大于溶解氧浓度,水蚯蚓可以在溶解氧浓度较低的环境中生长。单从底物条件考虑,污泥浓度2000-6000mg/L左右的系统都适合水蚯蚓的生长,污泥浓度在4000-6000mg/L时,水蚯蚓可以获得较大的比生长速率。
     2.基于水蚯蚓在活性污泥、灭活污泥及蒸馏水系统中的批量培养试验,考察了水蚯蚓污泥减量过程中营养盐的释放规律。结果表明水蚯蚓活体代谢过程中主要释放的营养盐是NH4+-N和P043-P;水蚯蚓在活性污泥、灭活污泥中释放NH4+-N速率为0.060和0.051mg NH4+-N/g Worms·d-1;释放P043-P速率为0.029和0.023 mgPO43--P/g Worms·d-1。
     3.在充分分析“水蚯蚓-微生物共生系统”中水蚯蚓与微生物、微生物与微生物之间两两相互作用的基础上,从水蚯蚓动力学角度出发,结合全耦合活性污泥3号模型(FCASM3)建立了“水蚯蚓-微生物共生系统”泥水同步降解机理模型。
     4.以浙江省某污水处理厂作为“水蚯蚓-微生物共生系统”机理模型校验的现场试验基地,通过现场试验,完成了对“水蚯蚓-微生物共生系统”机理模型的校验工作。动态模拟结果表明:“水蚯蚓-微生物共生系统”机理模型实现了对污水处理厂生物去除有机物及脱氮过程进行精确模拟,而对生物除磷过程的模拟,由于该污水处理厂低磷进水的原因,与实测值存在一定的偏差。此外与黑箱模型的对比研究表明“水蚯蚓-微生物共生系统”机理模型的准确度要普遍高于“水蚯蚓-微生物共生系统”黑箱模型,并解决了黑箱模型对N03--N模拟较不准确的问题。
The treatment and disposal of excess sludge has become a rising challenge for wastewater treatment plants (WWTPs) in China. Being energy-saving and low-carbon, the potential of using aquatic worms on sludge ruduction has attached more and more attention. The symbiotic minitype ecological system formed by wastewater, microorganism (bacteria, fungus) and minitype animal (aquatic worms), which has sludge reduction and wastewater treatment effect, is called symbiotic system of aquatic worms and microorganism.
     Therefore, in this thesis, we chosed aquatic worms as a research object. The model for symbiotic system of aquatic worms with microorganism was developed based on the fully coupled activated sludge model (FCASM3) and the growth kinetics of aquatic worms feeding on activated sludge.
     The principal conclusions were obtained as follows.
     1. The growth kinetics of aquatic worms was investigated from juvenile to decline phase for 18 weeks by cultivating with activated sludge in batch test. Results showed that the growth of aquatic worms well fit the Gauss curve for cultivating 18 weeks. The maximum specific growth rate of aquatic wormsμmax=0.41d-1 and the maximum growth yield of aquatic worms Yw/s=0.32. The relationship between the specific growth rate of aquatic worms with dissolved oxygen and sludge concentration meet the Monod equation. The sludge concentration had greater effect on the growth kinetics of aquatic worms, aquatic worms can live in the environment with low dissolved oxygen. Aquatic worms can get a rapid growth rate when the sludge concentration was 4000-6000mg/L
     2.The nutrient released by aquatic worms was investigated in this research, feeding on activated sludge, sterilized sludge and distilled water respectively. Results showed that the nutrient released by aquatic worms were NH4+-N and PO43--P mainly. The NH4+-N released rates were 0.060 and 0.051mg NH4+-N/g Worms·d-1 respectively, feeding with activated sludge and sterilized sludge. The PO43--P released rates were 0.029 and 0.023 mgPO43--P/g Worms·d-1 respectively, feeding with activated sludge and sterilized sludge.
     3. According to the interaction mechanism between aquatic worms and microorganism in the symbiotic system. The model of symbiotic system of aquatic worms with microorganism was developed based on the fully coupled activated sludge model (FCASM3) and the growth kinetics of aquatic worms feeding on activated sludge.
     4. The model of symbiotic system of aquatic worms with microorganism was established for the novel oxidation ditch in WWTP. The validation of this new model was completed based on the results of influent component measurement and respirometric experiments. The dynamic simulation results indicated that it could simulate biological carbon and nitrogen removal processes accurately, but the description of phosphorus removal deviated from measurement due to the low phosphorus level in the influent. Compare with the black-box model, the accuracy of the model of symbiotic system microorganism was higher. Moreover, the model of symbiotic system sloved the problem of NO3-N which has not been sloved by the black-box model.
引文
[1]Wei Y S, Van Houten R T, BorgerA R, et al. Minimization of excess sludge production for biological wastewater treatment[J]. Water Research,2003,37 (18):4453-4467.
    [2]袁留根,污泥处理产业市场化势在必行[J].环境保护与循环经济,2009,29(11):24-25.
    [3]浙江省建设厅.2009-2010年浙江省城镇污水处理厂污泥处理处置设施建设计划表[EB/OL]. http://jst.zj.gov.cn/Data/HTMLFile/2009-10/6f65fdacb78e.html.2009.
    [4]Liu J Y, Tay. Strategy for minimization of excess sludge production from the activated sludge process [J]. Biotechnology Advances,2001,19 (2):97-107.
    [5]Perez-Elvira S, Nieto DiezF P, Fdz-Polanco. Sludge minimisation technologies [J]. Reviews in Environmental Science and Biotechnology,2006,5 (4):375-398.
    [6]Odegaard H. Sludge minimization technologies--an overview [J]. Water science and technology:a journal of the International Association on Water Pollution Research,2004,49 (10):31.
    [7]Hendrickx T L G, Temmink H, Elissen H J H, et al. Design parameters for sludge reduction in an aquatic worm reactor [J]. Water Research,2010,44 (3):1017-1023.
    [8]郝晓地.蠕虫LVARIEGATUS在污泥减量中的作用与应用前景分析[J].环境工程学报,2009,3(005):769-776.
    [9]诸晖,魏源送,王亚炜,刘俊新.寡毛类蠕虫污泥减量工艺及其生长规律的研究进展[J].过程工程学报,2008,8(5):1030-1039.
    [10]梁鹏,黄霞,钱易.食物污泥对红斑顠体虫生长的影响[J].中国环境科学,2004,24(3):159-162.
    [11]Tian Y, Lu Y, Chen L, et al. Optimization of process conditions with attention to the sludge reduction and stable immobilization in a novel Tubificidae-reactor [J]. Bioresource Technology,2010,101 (15):6069-6076.
    [12]Hendrickx T L G, Temmink H, Elissen H J H, et al. Aquatic worms eat sludge:Mass balances and processing of worm faeces [J]. Journal of Hazardous Materials,2010,177 (1-3):633-638.
    [13]Elissen H J H, Mulder W J, Hendrickx T L G. et al. Aquatic worms grown on biosolids:Biomass composition and potential applications[J]. Bioresource Technology,2010,101 (2):804-811.
    [14]Tian Y, Lu Y. Simultaneous nitrification and denitrification process in a new Tubificidae-reactor for minimizing nutrient release during sludge reduction [J]. Water Research,2010, In Press, Corrected Proof.
    [15]Elissen H, Peeters E, Buys B, et al. Population dynamics of free-swimming Annelida in four Dutch wastewater treatment plants in relation to process characteristics [J]. Hydrobiologia,2008,605 (1):131-142.
    [16]梁鹏,黄霞,钱易,丁国际.环境因子对红斑顠体虫生长的影响[J].中国环境科学,2004,24(5):610-613.
    [17]梁鹏,黄霞,钱易,杨乃鹏.3种生物处理方式对污泥减量效果的比较及优化[J].环境科学,2006,27(O11):2339-2343.
    [18]LeeT N, Welander. Reducing sludge production in aerobic wastewater treatment through manipulation of the ecosystem [J]. Water research,1996,30(8):1781-1790.
    [19]楼菊青,郭茂新,孙培德,吴革,宋英琦.水蚯蚓微生物共生系统处理城镇污水工程规模试验研究[J].环境科学,2009,30(012):3602-3608.
    [20]孙培德,吴革,郭茂新,王如意,宋英琦,楼菊青.“水蚯蚓-微生物共生系统”细观机理模型T-FCASM建立及校验[J].环境科学学报,2009,29(012):2492-2503.
    [21]诸晖.利用颤蚓对污水处理厂剩余污泥的减量效果评价[D].北京:中科院生态中心,2007:30-102.
    [22]Ratsak C, KooiH B, Van Verseveld. Biomass reduction and mineralization increase due to the ciliate Tetrahymena pyriformis grazing on the bacterium Pseudomonas fluorescens[J]. Water Science & Technology 1994, 29 (7):119-128.
    [23]Rensink W J, Rulkens. Using metazoa to reduce sludge production[J]. Water Science and Technology,1997, 36(11):171-180.
    [24]Kosiorek D. Development Cycle of Tubifex tubifex Muller in Experimental Culture [J]. pol.Arch.Hydrobiologia,1974, (21):411-422.
    [25]李仁熙.正颤蚓的生长发育及繁殖生物学的研究[J].水生生物学报,2001,25(001):14-20.
    [26]Bonacinal C, BonomiC G, Monti. Progress in cohort cultures of aquatic Oligochaeta [J]. Hydrobiologia,1987, 155(1):163-169.
    [27]诸晖,魏源送,刘俊新.颤蚓在活性污泥中的生长研究[J].环境科学,2008,29(5):1042-1047.
    [28]Lochhead G. The effect of temperature on asexual population growth of three species of Naididae (Oligochaeta) [J]. Hydrobiologia,1983,98 (2):107-112.
    [29]Ratsak C, Verkuijlen, J.Sludge Reduction by Predatory Activity of Aquatic Oligochaetes in Wastewater Treatment Plants:Science or Fiction? A Review [J]. Hydrobiologia,2006,564 (1):197-211.
    [30]Christensen B. Density dependence of sexual reproduction in Enchytraeus bigeminus (Enchytraeidae) [J]. Oikos,1973,287-294.
    [31]Loden M. Reproductive ecology of Naididae (Oligochaeta) [J]. Hydrobiologia,1981,83 (1):115-123.
    [32]Timm T. Potential age of aquatic Oligochaeta [J]. Hydrobiologia,1984,115(1):101-104.
    [33]Elliseen H. Sludge reduction by aquatic worms in wastewater[D]. Randwijk;Univ. of Wageningen.2007.
    [34]Finogenova N, Lobasheva T. Growth of Tubifex tubifex Muller (Oligochaeta, Tubificidae) under Various Trophic Conditions [J]. Internationale Revue der gesamten Hydrobiologie und Hydrographie,1987,72 (6): 709-726.
    [35]Aston R, Sadler K, Milner A. The effects of temperature on the culture of Branchiura sowerbyi (Oligochaeta, Tubificidae) on activated sludge [J]. Aquaculture,1982,29 (1-2):137-145.
    [36]Rodriguez P, Martinez-Madrid M, Arrate J, et al. Selective feeding by the aquatic oligochaete Tubifex tubifex (Tubificidae, Clitellata) [J]. Hydrobiologia,2001,463 (1):133-140.
    [37]Bowker D, WarehamM M, Learner. A choice chamber experiment on the selection of algae as food and substrata by Nais elinguis(Oligochaeta:Naididae) [J]. Freshwater biology. Oxford,1985,15 (5):547-557.
    [38]Aston R.Field and experimental studies on the effects of a power station effluent on Tubificidae (Oligochaeta, Annelida) [J]. Hydrobiologia,1973,42 (2):225-242.
    [39]ColerH R, Gunner. Selective feeding of tubificids on bacteria [J]. Nature,1967,2161143-1144.
    [40]Brinkhurst R, ChuaN K, Kaushik. Interspecific interactions and selective feeding by tubificid oligochaetes [J]. Limnology and Oceanography,1972,122-133.
    [41]Milbrink G. Mutualistic relationships between cohabiting tubificid species [J]. Hydrobiologia,1987,155 (1): 193-193.
    [42]Reynoldson T. The role of environmental factors in the ecology of tubificid oligochaetes-an experimental study [J]. Ecography,1987,10(4):241-248.
    [43]Famme J, Knudsen P. Anoxic survival growth and reproduction by the freshwater annelid, Tubifex sp., demonstrated using a new simple anoxic chemostat [J]. Comparative Biochemistry and Physiology Part A: Physiology,1985,81 (2):251-253.
    [44]魏源送,刘俊新.利用寡毛类蠕虫反应器处理剩余污泥的研究[J].环境科学学报,2005,25(6):803-808.
    [45]Liang P, Huang X, Qian Y. Excess sludge reduction in activated sludge process through predation of Aeolosoma hemprichi [J]. Biochemical Engineering Journal,2006,28 (2):117-122.
    [46]Wei Y, Liu J. The discharged excess sludge treated by Oligochaeta [J]. Water Science and Technology,2005, 52 (10-11):265-272.
    [47]Elissen H J H, Hendrickx T L G, Temmink H, et al. A new reactor concept for sludge reduction using aquatic worms [J]. Water Research,2006,40 (20):3713-3718.
    [48]Hendrickx T L G, Temmink H, Elissen H J H, et al. Aquatic worms eating waste sludge in a continuous system [J]. Bioresource Technology,2009,100 (20):4642-4648.
    [49]BonomiA G, Pasteris. From Demographic Strategies to Mathematical Models:Trends in Population Dynamics Studies of Aquatic Oligochaeta[J]. Hydrobiologia,2006,564 (1):61-71.
    [50]张绍园.膜分离与生物降解组合工艺处理受污染水研究[D].北京:中国科学院生态环境研究中心,2000:19-52.
    [51]Huang X, Liang P, Qian Y. Excess sludge reduction induced by Tubifex tubifex in a recycled sludge reactor[J]. Journal of Biotechnology,2007,127 (3):443-451.
    [52]Wei Y, Wang Y, Guo X, et al. Sludge reduction potential of the activated sludge process by integrating an oligochaete reactor[J]. Journal of Hazardous Materials,2009,163 (1):87-91.
    [53]魏源送,樊耀波,雷开宇.蠕虫在膜生物反应器和活性污泥法中的污泥减量研究[J].环境科学学报,2004,24(3):405-412.
    [54]王亚炜,魏源送,刘俊新.颤蚓反应器结构和曝气方式对剩余污泥处理的影响[J].中国给水排水,2006,22(1):
    [55]孙培德,王如意.全耦合活性污泥模型(FCASM3) I建模机理及数学表征[J].环境科学学报,2008,28(012):2404-2419.
    [56]孙培德,王如意.活性污泥系统生物场-水力场-温度场耦合模型(FCASM3-Hydro-Temp) I模型建立[J].环境科学学报,2008,28(012):2438-2441.
    [57]Wei Y, Zhu H, Wang Y, et al. Nutrients release and phosphorus distribution during oligochaetes predation on activated sludge[J]. Biochemical Engineering Journal,2009,43(3):239-245.
    [58]Ghyoot W, Verstraete W. Reduced sludge production in a two-stage membrane-assisted bioreactorfJ]. Water Research,2000,34 (1):205-215.
    [59]楼菊青,孙培德,王如意.全耦合活性污泥模型(FCASM3) Ⅲ:AAO工艺最佳运行工况数值模拟[J].环境科学学报,2008,28(012):2430-2437.
    [60]诸晖,魏源送,杨宇,王亚炜,刘俊新.颤蚓污泥减容效果及其影响因素分析[J].环境科学学报,2008,28(6):1141-1148.
    [61]诸晖,魏源送,王亚炜,刘俊新.颤蚓对活性污泥沉降性能的影响[J].环境科学学报,2008,28(5):910-915.
    [62]Hendrickx T L G, Temmink H, Elissen H J H, et al. The effect of operating conditions on aquatic worms eating waste sludge[J].Water Research,2009,43(4):943-950.
    [63]Jerez A, Partal P, Martnez I, et al. Egg white-based bioplastics developed by thermomechanical processing[J]. Journal of Food Engineering,2007,82 (4):608-617.
    [64]LimM T. Bioaccumulation of sediment-associated polycyclic aromatic hydrocarbons in the freshwater oligochaete Lumbriculus variegatus [J]. Phd thesis,1999, University of Joensuu.
    [65]Kooijman S, HanstveitN A. Van der Hoeven. Research on the physiological basis of population dynamics in relation to ecotoxicology[J]. Water Science and Technology WSTED,1987,19 (11):345-356.
    [66]Ratsak C H, Koouman S A L M, Kooi B W. Modelling the growth of an oligochaete on activated sludge [J]. Water Research,1993,27(5):739-747.
    [67]Pasteris A, VecchiG M, Bonomi. A comparison among different population models for Limnodrilus hoffmeisteri Claparede (Oligochaeta, Tubificidae)[J]. Hydrobiologia,1999(406):183-189.
    [68]Wei Y, Liu J. Sludge Reduction with a Novel Combined Worm-reactor[J]. Hydrobiologia,2006,564 (1): 213-222.
    [69]王洪铸.中国小蚓类研究[M].高等教育出版社.北京:高等教育出版,2002.
    [70]Buys B R, Klapwijk A, Elissen H, et al. Development of a test method to assess the sludge reduction potential of aquatic organisms in activated sludge[J]. Bioresource Technology,2008,99(17):8360-8366.
    [71]Wei Y, Houten R V, Borger A, et al. Comparison performances of membrane bioreactor and conventional activated sludge processes on sludge reduction induced by Oligochaete [J]. Environmental science & technology,2003,37(14):3171-3180.
    [72]LeeT N, Welander. Influence of predators on nitrification in aerobic biofilm processes [J]. Water Science & Technology,1994,29(7):355-363.
    [73]Liang P, Huang X, Qian Y, et al. Determination and comparison of sludge reduction rates caused by microfaunas predation[J]. Bioresource Technology,2006,97 (6):854-861.
    [74]DegnB H, Kristensen. Low sensitivity of Tubifex sp. respiration to hydrogen sulfide and other inhibitors[J]. Comparative Biochemistry and Physiology Part B:Comparative Biochemistry,1981,69(4):809-817.
    [75]Dold P, Ekama G, Marais G. A general model for the activated sludge process[J]. Progress in Water Technology,1980,12 (6):812-820.
    [76]孙培德.废水生物处理理论及新技术[M].北京:中国农业科学技术出版社,2008.
    [77]孙培德.活性污泥动力学模型及数值模拟导论[M].北京:化学工业出版社,2009.
    [78]王如意,孙培德,宋英琦.全耦合活性污泥模型(FCASM3) Ⅱ:模型校验[J].环境科学学报,2008,2(012):2420-2429.
    [79]孙培德,吴革.A/O工艺污水处理厂FCASM3-Hydro耦合模型及现场校验[J].环境科学学报, 2008,28(0 1 2):2456-2464.
    [80]Gernaey K, Van M, Loosdrecht, Henze M, et al. Activated sludge wastewater treatment plant modelling and simulation:state of the art[J]. Environmental Modelling & Software,2004,19(9):763-783.
    [81]Brdjanovic D, Van M. Loosdrecht, Versteeg P, et al. Modeling COD, N and P removal in a full-scale wwtp Haarlem Waarderpolder [J]. Water research,2000,34(3):846-858.
    [82]Meijer S, Van M, J Loosdrecht Heijnen. Modelling the start-up of a full-scale biological phosphorous and nitrogen removing WWTP [J]. Water Research,2002,36 (19):4667-4682.
    [83]Rieger L, Koch G, Kuhni M, et al. The EAWAG Bio-P module for activated sludge model No.3 [J]. Water Research,2001,35(16):3887-3903.
    [84]Manga J, Ferrer J, Garcia-Usach F, et al. A modification to the Activated Sludge Model No.2 based on the competition between phosphorus-accumulating organisms and glycogen-accumulating organisms [J]. Water science and technology:a journal of the International Association on Water Pollution Research,2001,43(11):161.
    [85]Manga J, Ferrer J, Seco A, et al. Design of nutrient removal activated sludge systems [J]. Water Science and Technology,2003,115-122.
    [86]Iacopozzi I, Innocenti V, Marsili-Libelli S, et al. A modified Activated Sludge Model No.3 (ASM3) with two-step nitrification-denitrification[J]. Environmental Modelling & Software,2007,22(6):847-861.
    [87]Sun P, Wang R, Fang Z. Fully coupled activated sludge model (FCASM):Model development[J]. Bioresource technology,2009,100 (20):4632-4641.
    [88]宋英琦,孙培德,王如意.活性污泥系统生物场-水力场-温度场耦合模型(FCASM3-Hydro-Temp)Ⅱ:模型校验[J].环境科学学报,2008,28(012):2442-2448.
    [89]Henze M. Activated sludge models ASM1, ASM2, ASM2d and ASM3[M].2000.
    [90]吴革.污水厂“水蚯蚓-微生物共生系统”细观机理模型及大规模工艺优化研究[D].杭州:浙江工商大学,2009:56-110.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700