基于基因芯片分析芜菁雌蕊退化突变体(tpa)与野生型的转录组差异
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,雌蕊发育是植物发育理论研究的一个热点,国内外学者做了大量与雌蕊发育相关的理论和实验的探讨,应用很多新的技术和方法,取得了明显的研究进展,极大地丰富了相关领域的研究基础。但是,雌蕊发育的遗传调控机制仍有许多问题需要深入研究。以本实验室2002年从多代自交的芜菁021-03株系中发现的雌蕊退化突变体tpa (turnip pistil abortion)为材料,采用晶芯(?)29K拟南芥基因组寡核苷酸芯片和拟南芥基因组ATH1芯片等技术对芜菁雌蕊发育的转录组差异进行了研究,取得以下研究结果:
     (1)通过田间调查以及显微观察发现tpa具有独特的突变表型。形态学观察结果表明,雌蕊退化突变体的萼片、花瓣、雄蕊正常发育,与可育植株比较无明显差异,但是突变体的部分雌蕊在发育早期开始萎缩,最后只能发育成细丝状的不育雌蕊,部分雌蕊甚至完全缺失。目前对tpa突变体及野生型的测交结果的统计分析结果显示,可育植株单株自交的分离比例有以下几种类型:0,1:4.3,1:5.3,1:11,1 : 15和1:28。不育植株交可育植株后代的分离比例有:0,1:1:1:1.3,1:1.4,1:1.5,1:2.3。不符合单基因隐性遗传规律,很有可能是双基因隐性遗传控制的。
     (2)通过晶芯(?)29 K拟南芥全基因组寡核苷酸芯片分析tpa及其野生型的花蕾转录组差异,发现了一些可能与雌蕊退化突变相关的候选基因。tpa及其野生型植株的花蕾转录组中表达有较大差异(fold change绝对值大于2)的基因有94个,其中在tpa花蕾转录组中上调表达的基因有63个,在野生型植株的花蕾转录组中上调表达的基因有31个,没有在tpa或野生型植株花蕾转录组中特异表达的基因。我们选取了其中26个差异基因进行RT-PCR验证,结果显示,这些基因在不同的组织中具有不同的表达特性,在tpa与野生型植株中上述基因的表达差异并不是十分显著。有14个基因是在花蕾中特异表达的,其它12个基因在花蕾、茎、叶片中都有表达。
     (3)利用tpa及其野生型植株的开放花制备的mRNA反转录成cDNA与拟南芥ATH1芯片进行杂交,筛选出在tpa及其野生型植株中表达有差异的基因,我们获得了152个在野生型(W1)和完全退化株(M3)转录组中差异表达的基因,61个在W1和部分退化株(I2)转录组中差异表达的基因,以及24个在I2和M3转录组中差异表达的基因,上述差异基因分别属于细胞壁合成与调控、防卫与胁迫反应、转录调控、蛋白质代谢以及普通新陈代谢等9个不同的功能类别。通过对41个基因的RT-PCR验证,获得了At2g42840、At1g57750、At5g20630、At2g03090、At3g08030、At5g08000、At2g28790、At5g63310和At2g24270等9个在tpa及野生型植株中具显著不同的时空表达特性的基因。目前,对芜菁雌蕊退化突变体的遗传特性分析,细胞学观察以及相关基因在芜菁中的表达分析正在继续之中。
Recently, research on gynoecium development has been one of the highlights in plant developmental biology for last decade, and there are a lot of progress made in the genetic pathways underlying the initiation and development of the gynoecium to date. However, more efforts are needed to unravel the puzzles of gynoecium development. Our laboratory obtained a tpa (turnip pistil abortion) mutant which was employed to explore the genetic mechanism of gynoecium development in Brassica crops. Some interesting results have been obtained as follow:
     (1) After morphological investigation and microscope observation, we found the phenotpye of tpa is unique in the turnip. In this tpa mutant, sepal, petal and stamen are not affected. However, most of the gynoecium in the tpa plant began to shrink during the early development, finally the shape of pistil turn into filiform, moreover, lots of flowers even lack of pistil completely. Using the pollen of tpa plant cross with wild type plant, the tpa mutant character can be inherited successfully. The segregation ratios of the self cross for wild type plant were the following forms:0,1:4.3,1:1.3,1:11,1:15,1:28. And the segregation ratios of the offspring for tpa plant crossed with wild type plan were the following forms:0,1:1,1:1.3,1:1.4,1:1.5, 1:2.3. Our data suggests the tpa mutant is not controlled by single recessive gene,but most likely controlled by two recessive genes.
     (2) Global analysis the genes expression difference during the gynoecium development in turnip. Through the Jinxin (?) 29K microarray (The Arabidopsis thaliana Genome Oligo Set Version3.0) analysis, we found some potential gene related to gynoecium development. According to the data came from microarray analysis, there were 94 differential genes,63 genes were up-regulated and 31 genes were down-regulated in the floral buds of tpa plants. We choosed 26 genes for RT-PCR analysis, the results show there were a few difference of these genes expression between the floral buds of tpa and wild type plants. Fourteen genes expressed specifically in the floral buds, and the other 12 genes all expressed among the floral buds, stems and leaves with-no remarkable difference.
     (3) The Arabidopsis ATH1 genome array was employed to analyze the transcriptome differences between the tpa mutants and their wild type flowers. Data analysis results indicated there were differences in 152 genes between the wild type (W1) and the pistil aborted completely (M3), likewise,61 genes with transcriptional difference between the W1 and the pistil aborted partially (12), and 24 genes with transcriptional difference between the 12 and M3. All of the previous genes were classed in functional category as follow:cell wall biosynthesis and regulation, defence and stressing reaction, transcriptional regulation, protein metabolism and normal metabolism, respectively. Out of 41 genes,9 genes with significant temporal and spatial transcription difference:(At2g42840, At1g57750, At5g20630, At2g03090, At3g08030, At5g08000, At2g28790, At5g63310, At2g24270), have beeen obtained through the RT-PCR screening and confirmation.
     Research of genetic characteristics and genes which involve in the gynoecium development in tpa mutant are still in progress.
引文
白书农.植物发育生物学,北京:北京大学出版社,2003
    曹爱忠.利用大麦基因芯片筛选及克隆簇毛麦抗白粉病相关基因.南京:南京农业大学博士学位论文,2005
    曹家树.中国白菜起源,演化和分类研究进展.园艺学年评.科学出版社,1996,1-21
    陈令静,钱南芬,王伏雄.中国蓝果树的胚胎学研究.植物分类学报,1991,29(6):504-510
    陈绍荣,杨弘远.花粉—雌蕊的相互作用机制.植物生理学通讯,2000,36(4):35.6-361
    冯辉.大白菜核基因雄性不育性的研究.沈阳:沈阳农业大学博士学位论文,1996
    付三雄,戚存扣.不同海拔地区(南京和拉萨)种植的甘蓝型油菜的种子基因差异表达.植物学报,2009,44(2);178-184
    高荣村,姜程曦,魏晓星.水稻雌性不育突变体研究进展及应用展望.浙江农业科学,2009,5(2):853-855
    黄鹂.白菜三种雄性不育系与保持系花蕾转录组差异分析及三个花粉发育相关基因功能鉴定.杭州:浙江大学博士学位论文,2007
    胡建芳,贺海洋,冷平.巨峰葡萄心皮形态发育的研究.园艺学报,2004,31(2):155-159
    胡 青,高述民,李凤兰.植物雌性不育的研究进展.北京林业大学学报,2004,26(1):87-91.
    卢海宇,曹家树,余小林.控制雌蕊发育的分子遗传调控机制.细胞生物学杂志,2009,31(1):63-68
    刘乐承,向 殉,曹家树.白菜雄性不育相关基因BcMF4基因功能的RNAi验证.遗传,2006b,28(11):1428-1434
    刘仁虎,赵建伟,肖勇,孟金陵.拟南芥cDNA芯片和油菜-拟南芥比较作图相结合筛选甘蓝型油菜抗菌核病先验基因.中国科学C辑,2005,35(1):13-21
    李荣平,周广胜,张慧玲.植物物候研究进展.应用生态学报,2006,17(3):541-544
    李云武,林纲,赵德明,张杰,廖宗永,杨从金.水稻多雌蕊突变体K940的发现与初步利用.杂交水稻,2008,23(2):5-6
    沈俊儒,吴建勇,张剑,刘平武,杨光圣.甘蓝型油菜华油杂6号及其亲本的基因差异表达研究.中国农业科学,2006,39(1):23-28
    轩淑欣,王彦华,李晓峰,赵建军,张成合,申书兴.芸薹属作物分子遗传连锁图谱应用研究进展.中国农业科学,2008,12(7):2 055-2 062
    徐崇志,郭春会.新疆扁桃雌蕊形态变异的研究.安徽农学通报,2008,(1):131-132
    徐州达.利用水稻基因芯片筛选小麦耐旱相关基因的研究.保定:河北农业大学硕士学位论文,2007
    史继孔.2006年全国各地蔬菜,西瓜,甜瓜,草莓,马铃薯播种面积和产量.中国蔬菜,2008,(1):65-66
    王建林,何 燕,栾运芳,大次卓嘎,张永青.中国芸薹属植物的起源、演化与散布.中国农学通报,2006,(8):489-494
    王华新,王永勤,曹家树,向 珣,余小林,叶纨芝.白菜雄性不育相关新基因BcMF1的分离及特征分析.中国农业科学,2008,41(4):1 119-1 127
    王栩鸣.利用基因芯片分析水稻磷饥饿响应机制及调控因子OsPHR2对磷饥饿响应的影响.杭州:浙江大学博士学位论文,2008
    余小林,曹家树.反义CY86MF基因植物表达载体的构建及其对白菜的转化.浙江大学学报:农业与生命科学版,2004,30(2):179-184
    殷艳,王汉中,廖 星2009年我国油菜产业发展形势分析及对策建议.中国油料作物学报,2009,.31(2):259-262
    赵凤梧,李慧敏.冬小麦温敏型雄性不育系LT-1-3A选育及育性转换与遗传研究.核农学报,2001,15(2):65-69
    张君诚,宋育红,陈夜江,张新文,张杭颖MADS-box基因在植物胚珠发育中的作用.种子,2008,(5):14-17
    周锦,董彩华,刘学群,覃瑞,石磊,刘胜毅Gapc和αt2g36580在油菜不同组织器官中的表达差异及其与雄性不育的关系.中国油料作物学报,2008,30(2):157-161
    周瑞阳.苎麻雌性不育株的发现.中国农业科学,1996,29(6):96
    Abe M, Takahashi T, Komeda Y. Cloning and characterization of an LI layer-specific gene in Arabidopsis thaliana. Plant Cell & Physiology,1999,40 (6):571-580
    Abe M, Takahashi T, Komeda Y. Identication of a cis-regulatory element for LI layer-specific gene expression, which is targeted by anLl-specific homeodomain protein. Plant Journal,2001,26 (5):487-494
    Allen A M, Lexer C, Hiscock S J. Characterisation of sunflower-21 (SF21)genes expressed in pollen and pistil of Senecio squalidus (Asteraceae) and their relationship with other members of the SF21 gene family. Sex Plant Reprod,2010,23 (3):173-86
    Alexandra M A, Lexer C, Hiscock S J. Comparative analysis of pistil transcriptomes reveals conserved and novel genes expressed in dry, wet, and semidry stigmas. Plant Physiology,2010,154:1347-1360
    Alix K, Heslop-Harrison J. The diversity of retroelements in diploid and allotetraploid Brassica species. Plant molecular biology,2004,54 (6):895-909
    Alonso-Cantabrana H, Ripoll J J, Ochando I, Vera A, Ferrandiz C, Martinez-Laborda A. Common regulatory networks in leaf and fruit patterning revealed by mutations in the Arabidopsis ASYMMETRIC LEAVES1 gene. Devlopment,2007,134 (14):2663-2671
    Alvarez J, Goldshmidt A, Efroni I, Bowman J, Eshed Y. The NGATHA distal organ development genes are essential for style specification in Arabidopsis. Plant Cell,2009,21 (5):1 373-1393
    Ana Maria G, Lopez M. Development and morphology of the gynoecium and nutlet in two South-American Bulbostylis (Cyperaceae) species. Flora-Morphology, Distribution, Functional Ecology of Plants,2010, 205 (3):211-220
    Andeme Ondzighi C, Christopher D A, Cho E J, Chang S, Staehelin L A. Arabidopsis protein disulfide isomerase-5 inhibits cysteine proteases during trafficking to vacuoles before programmed cell death of the endothelium in developing seeds. Plant Cell,2008,20 (8):2205-2220
    Balanza V, Navarrete M, Trigueros M, Ferrandiz C. Patterning the female side of Arabidopsis:the importance of hormones. Journal of Experimental Botany,2006,57 (13):3457-3469
    Belmonte M F, Tahir M, Schroeder D, Stasolla C. Overexpression of HBK3, a class I KNOX homeobox gene, improves the development of Norway spruce (Picea abies) somatic embryos. Journal of Experimental Botany,2007,58 (11):2851-61
    Boudart G, Jamet E, Rossignol M, Lafitte C, Borderies G, Jauneau A, Esquerre-Tugaye M T, Pont-Lezica R. Cell wall proteins in apoplastic fluids of Arabidopsis thaliana rosettes:identification by mass spectrometry and bioinformatics. Proteomics,2005,5 (1):212-221
    Bowman J, Baum S, Eshed Y, Putterill J, Alvarez J. Molecular genetics of gynoecium development in Arabidopsis. CurrentTopics in Developmental Biology,1999,45 (1):155-205
    Bowman J, Drews GN, Meyerowitz E M. Expression of the Arabidopsis floral homeotic gene AGAMOUS is restricted to specific cell types late in flower development. Plant Cell,1991,3 (8):749-758
    Bowman J, Smyth D R. CRABS CLAW, a gene that regulates carpel and nectary development in Arabidopsis, encodes a novel protein with zinc finger and helix-loop-helix domains. Devlopment,1999,126 (11):2 387-2396
    Brambilla V, Battaglia R, Colombo M, Masiero S, Bencivenga S, Kater M M, Colombo L. Genetic and molecular interactions between BELL1 and MADS-box factors support ovule development in Arabidopsis. Plant Cell,2007,19 (8):2 544-2 556
    Cseke L J, Cseke S B, Ravinder N. SEP class genes in Populus tremuloides and their likely role in reproductive survival of poplar trees. Gene,2005,358:1-16
    Chen W, Tang D, Suo J, Zhang Y, Xue Y. Expressional profiling of genes related to pollination and fertilization in rice. C R Acad Sci Ⅲ,2001,324 (12):1 111-1 116
    Cheng Y, Zhao Y. A role for auxin in flower development. Journal of Integrative Plant Biology,2007,49 (1): 99-104
    Chevre A, Eber F, Barret P, Dupuy P, Brace J. Identification of the different Brassica nigra chromosomes from both sets of B. oleracea-B. nigra and B. napus-B. nigra addition lines with a special emphasis on chromosome transmission and self-incompatibility.Theoretical and Applied Genetics,1997,94 (5): 603-611
    Chiurugwi T, Pouteau S, Nicholls D, Tooke F, Ordidge M, Battey N. Floral meristem indeterminacy depends on flower position and is facilitated by acarpellate gynoecium development in Impatiens balsamina. New Phytologist,2007,173 (1):79-90
    Coen E S, Meyerowitz E M. The war of the whorls:genetic interactions controlling flower development. Nature,1991,353 (6339):31-37
    Colombo M, Brambilla V, Marcheselli R, Caporali E, Kater M, Colombo L. A new role for the SHATTERPROOF genes during Arabidopsis gynoecium development. Developmental Biology,2009,3 (2):294-302
    Douglas S J, Chuck G, Dengler R E, Pelecanda L, Riggs C D. KNAT1 and ERECTA regulate inflorescence architecture in Arabidopsis. Plant Cell,2002,14 (3):547-558
    Dinneny J R, Weigel D, Yanofsky M F. A genetic framework for fruit patterning in Arabidopsis thaliana. Devlopment,2005,132 (21):4687-4696
    Dickinson H G, Elleman C J, Doughty J. Pollen coatings-chimaeric genetics and new functions. Sex Plant Rep, 2000,12:302-309
    Dreni L, Jacchia S, Fornara F. The D-lineage MADS-box gene OsMADS13 controls ovule identity in rice. Plant Journal,2007,52 (4):690-699
    Greer S, Wen M, Bird D, Wu X, Samuels L, Kunst L, Jetter R. The cytochrome P450 enzyme CYP96A15 is the midchain alkane hydroxylase responsible for formation of secondary alcohols and ketones in stem cuticular wax of Arabidopsis. Plant Physiology,2007,145 (3):653-667
    Erickson L, Straus N, Beversdorf W. Restriction patterns reveal origins of chloroplast genomes in Brassica amphiploids. Theoretical and Applied Genetics,1983,65 (3):201-206
    Ferrandiz C, Pelaz S, Yanofsky M. Control of carpel and fruit development in Arabidopsis. Annual Review of Biochemistry,1999,68 (1):321-354
    Ferrandiz C, Liljegren S J, Yanofsky M F. Negative regulation of the SHATTERPROOF genes by FRUITFULL during Arabidopsis fruit development. Science,2000,289 (5 478):436-438
    Flannery M, Mitchell F, Coyne S, Kavanagh T, Burke J, Salamin N, Dowding P, Hodkinson T. Plastid genome characterisation in Brassica and Brassicaceae using a new set of nine SSRs. Theoretical and Applied Genetics,2006,113 (7):1221-1231
    Frank W, Jose L, Marcio A, Elliot M. Genome-Wide Analysis of Spatial Gene Expression in Arabidopsis Flowers. Plant Cell,2004,16:1314-1326
    Gasser C S, Robinson-Beers K. Pistil development. Plant Cell,1993,5 (10):1231-1239
    Guo M, Thomas J, Collins G, Timmermans MC. Direct repression of KNOX loci by the ASYMMETRIC LEAVES1 complex of Arabidopsis. Plant Cell,2008,20 (1):48-58
    Gu Q, Ferrandiz C, Yanofsky M F, Martienssen R. The FRUITFULL MADS-box gene mediates cell differentiation during Arabidopsis fruit development.Devlopment,1998,125 (8):1 509-1 517
    Gui Q, Wang J, Xu Y. Expression changes of duplicated genes in allotetraploids of Brassica detected by SRAP-cDNA technique. Molecular Biology,2009,43 (1):1-7
    Gro-Hardt R, Lenhard M, Laux T. WUSCHEL signaling functions in interregional communication during Arabidopsis ovule development. Genes & development,2002,16(9):1 129-1 138
    Groszmann M, Bylstra Y, Lampugnani E R, Smyth D R. Regulation of tissue-specific expression of SPATULA, a bHLH gene involved in carpel development, seedling germination, and lateral organ growth in Arabidopsis. Journal of Experimental Botany,2010,61 (5):1495-1508
    Helleboid S, Hendriks T, Bauw G, Lnze D, Vasseur J, Hilbert J L. Three major somatic embryogenesis related proteins in Cichorium indentified as PR proteins. Journal of Experimental Botany,2000,51:1 189-1 200
    Honys D, Twell D. Comparative analysis of the Arabidopsis pollen transcriptome. Plant Physiology,2003, 132 (2):640-652
    Huang L, Cao J, Ye W, Liu T, Jiang L, Ye Y. Transcriptional differences between the male-sterile mutant bcms and wild-type Brassica campestris ssp. chinensis reveal genes related to pollen development. Plant Biology (Stuttg),2008,10 (3):342-355
    Huang L, Cao J, Zhang A, Ye Y, Zhang Y, Liu T. The polygalacturonase gene BcMF2 from Brassica campestris is associated with intine development. Journal of Experimental Botany,2009,60 (1): 301-313
    Jeong Y M, Mun JH, Lee I, Woo J C, Hong C B, Kim S G. Distinct roles on the expression of Arabidopsis profilin gene family members. Plant Physiology,2006,140 (1):196-209
    Kang J, Zhang G, Bonnema G, Fang Z, Wang X. Global analysis of gene expression in flower buds of Ms-cdl Brassica oleracea conferring male sterility by using an Arabidopsis microarray. Plant Molecular Biology,2008,66(1):177-192
    Kandasamy M K, McKinney E C, Meagher R B. Plant profilin isovariants are distinctly regulated in vegetative and reproductive tissues. Cell Motil Cytoskeleton,2002,52 (1):22-32
    Kim J, Shiu S H, Thoma S, Li W H, Patterson S E. Patterns of expansion and expression divergence in the plant polygalacturonase gene family. Genome Biology,2006,7 (9):87-92
    Koizumi A, Amanai Y, Ishii K, Nishihara K, Kazama Y, Uchida W, Kawano S. Floral development of an asexual female-like mutant carrying two deletions in gynoecium-suppressing and stamen-promoting functional regions on the Y chromosome of the dioecious plant Silene latifolia. Plant Cell Physiology, 2007,48 (10):1450-1461
    Kwun M, Choi Y, Yoon H, Park B, Kang B, Chung Y. Expression analysis of the pistil genes in controlling self-incompatibility of Brassica campestris by CO2 gas using microarray. Molecular Cells,2004,18(1): 94-99
    Krizek BA, Prost V, Macias A. AINTEGUMENTA promotes petal identity and acts as a negative regulator of AGAMOUS. Plant Cell,2000,12 (8):1357-1366
    Lau S, Jurgens G, De Smet I. The evolving complexity of the auxin pathway. The Plant Cell,2008,20 (7):1 738-1746
    Laux T, Mayer K, Berger J, Jurgens G. The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis. Devlopment,1996,122 (1):87-96
    Lee J Y,Baum S F, Alvarez J, Patel A, Chitwood D H, Bowman J L. Activation of CRABS CLAW in the nectaries and carpels of Arabidopsis. Plant Cell,2005,17 (1):25-36
    Li L, Li C, Howe G. Genetic analysis of wound signaling in tomato Evidence for a dual role of jasmonic acid in defense and female fertility. Plant Physiology,2001,127 (4):1414-1417
    Lin Z, Hong Y, Yin M, Li C, Zhang K, Grierson D. A tomato HD-Zip homeobox protein, LeHB-1, plays an important role in floral organogenesis and ripening. Plant Journal,2008,55 (2):301-310
    Liu Z, Zhou C, Wu K. Creation and analysis of a novel chimeric promoter for the complete containment of pollen-and seed-mediated gene flow. Plant Cell Reports,2008,27 (6):995-1004
    Lopez-Dee Z P, Wittich P, Enrico P M. OsMADS13, a novel rice MADS-box gene expressed during ovule development. DevGenet,1999,25:237-244
    Louvet R, Cavel E, Gutierrez L, Guenin S, Roger D, Gillet F, Guerineau F, Pelloux J. Comprehensive expression profiling of the pectin methylesterase gene family during silique development in Arabidopsis thaliana. Planta,2006,224 (4):782-791
    Ma H. The unfolding drama of flower development:recent results from genetic and molecular analyses. Genes Development,1994,8 (7):745-756
    Maluszynska J, Hasterok R. Identification of individual chromosomes and parental genomes in Brassica juncea using GISH and FISH. Cytogenet Genome Research,2005,109 (1-3):310-314
    Marc M, Kirsten J, Hubert S, Franck P. CYP703 is an ancient cytochrome P450 in land plants catalyzing in-chain hydroxylation of lauric acid to provide building blocks for sporopollenin synthesis in pollen. Plant Cell,2007,19:1473-1487
    Marcio A, Frank W, Aline B, Vijaya K. Global expression profiling applied to the analysis of Arabidopsis stamen development. Plant Physiology,2007,145:747-762
    Mariani C, Beuckeleer M, Truettner J, Leemans J, Goldberg R. Induction of male sterility in plants by a chimaeric ribonuclease gene. Nature,1990,347 (6 295):737-741
    Malik M R, Wang F, Dirpaul M. Isolation of an embryogenic line from non-embryogenic Brassica napus cv westar through microspore embryogenesis. Journal of Experimental Botany,2008,59(10):2857-2873
    Minic Z, Jamet E, Negroni L, Arsene der Garabedian P, Zivy M, Jouanin L. A sub-proteome of Arabidopsis thaliana mature stems trapped on Concanavalin A is enriched in cell wall glycoside hydrolases. Journal of Experimental Botany,2007,58 (10):2503-2512
    Mullet J E, Klein R R. Transcription and RNA stability are important determinants of higher plant chloroplast RNA levels. The EMBO Journal,1987,6 (6):1571-1579
    Nemhauser J, Feldman L, Zambryski P. Auxin and ETTIN in Arabidopsis gynoecium morphogenesis. Development,2000,127 (18):3 877-3 888
    Ogawa M, Kay P, Wilson S, Swain S M. ARABIDOPSIS DEHISCENCE ZONE POLYGALACTURONASE1 (ADPG1), ADPG2,; and QUARTET2 are polygalacturonases required for cell separation during reproductive development in Arabidopsis. Plant Cell,2009, (21):216-233
    Ostergaard L. Don't leaf now, The making of a fruit. Current Opinion in Plant Biology,2009,12 (1):36-41
    Palmer J, Shields C, Cohen D, Orton T. Chloroplast DNA evolution and the origin of amphidiploid Brassica species. Theoretical and Applied Genetics,1983,65 (3):181-189
    Pautot V, Dockx J, Hamant O, Kronenberger J, Grandjean O, Jublot D, Traas J. KNAT2:evidence for a link between knotted-like genes and carpel development. Plant Cell,2001,13 (8):1719-1734
    Payasi A, Mishra N, Chaves A, Singh R. Biochemistry of fruit softening:an overview. Physiology and Molecular Biology of Plants,2009,15 (2):103-113
    Pinyopich A, Ditta G S, Savidge B, Liljegren S J, Baumann E, Wisman E, Yanofsky M F. Assessing the redundancy of MADS-box genes during carpel and ovule development. Nature,2003,424 (6 944): 85-88
    Ramachandran S, Christensen H E, Ishimaru Y, Dong C H, Chao-Ming W, Cleary A L, Chua N H. Profilin plays a role in cell elongation, cell shape maintenance and flowering in Arabidopsis. Plant Physiology, 2000,124 (4):1637-1647
    Reinhardt D, Mandel T, Kuhlemeier C. Auxin regulates the initiation and radial position of plant lateral organs:Plant Cell,2000,12 (4):507-518
    Rius S P, Casati P, Iglesias A A, Gomez-Casati D F. Characterization of an Arabidopsis thaliana mutant lacking a cytosolic non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase. Plant Molecular Biology,2006,61(6):945-957
    Roberts J, Gonzalez-Carranza Z. Pectinase functions in abscission. Stewart Postharvest Review,2009,5 (1): 1-4
    Roeder A H, Ferrandiz C, Yanofsky M F. The role of the REPLUMLESS homeodomain protein in patterning the Arabidopsis fruit. Current Biology,2003,13 (18):1630-1635
    Roe J, Nemhauser J, Zambryski P. TOUSLED participates in apical tissue formation during gynoecium development in Arabidopsis. Plant Cell,1997,9 (3):335-353
    Saraike T, Shitsukawa N, Yamamoto Y, Hagita H, Iwasaki Y, Takumi S, Murai K. Identification of a protein kinase gene associated with pistillody, homeotic transformation of stamens into pistil-like structures in alloplasmic wheat.Planta.2007,227 (1):211-216
    Sarkar AK, Luijten M, Miyashima S, Lenhard M, Hashimoto T, Nakajima K, Scheres B, Heidstra R, Laux T Conserved factors regulate signalling in Arabidopsis thaliana shoot and root stem cell organizers. Nature,2007,446(7 137):811-814
    SimpsohC, Thomas C, Findlay K, Bayer E, Maule AJ. An Arabidopsis GPI-anchor plasmodesmal neck protein with callose binding activity and potential to regulate cell-to-cell trafficking. Plant Cell,2009, 21 (2):581-594
    Skinner D J, Hill T A, Gasser C S. Regulation of ovule development. Plant Cell,2004,16:32-45
    Snowdon R, Khler W, Friedt W, Khler A. Genomic in situ hybridization in Brassica amphidiploids and interspecific hybrids. Theoretical and Applied Genetics,1997,95 (8):1320-1324
    Scofield S, Dewitte W, Murray J A. The KNOX gene SHOOT MERISTEMLESS is required for the development of reproductive meristematic tissues in Arabidopsis. Plant Journal,2007,50 (5):767-781
    Scofield S, Murray JA. KNOX gene function in plant stem cell niches. Plant Molecular Biology,2006,60 (6): 929-946
    Sohlberg J, Myrenas M, Kuusk S, Lagercrantz U, Kowalczyk M, Sandberg G, Sundberg E. STY1 regulates auxin homeostasis and affects apical-basal patterning of the Arabidopsis gynoecium. Plant Journal, 2006,47(1):112-123
    Seo H, Song J, Cheong J, Lee Y, Lee Y, Hwang I, Lee J, Choi Y Jasmonic acid carboxyl methyltransferase:a key enzyme for jasmonate-regulated plant responses. Proceedings of the National Academy of Sciences. U S A,2001,98 (8):4788-4793
    Sokoloff D, Remizowa M, Linder H, Rudall P. Morphology and development of the gynoecium in Centrolepidaceae:The most remarkable range of variation in Poales. American Journal of Botany,2009, 96 (11):1-16
    Tang L, Kim M D, Yang K S, Kwon S Y, Kim S H, Kim J S, Yun D J, Kwak S S, Lee H S. Enhanced tolerance of transgenic potato plants overexpressing nucleoside diphosphate kinase 2 against multiple environmental stresses. Transgenic Research,2008,17 (4):705-715
    Tae Song J, Soo Seo H, Ik Song S, Seob Lee J, Do Choi Y. NTR1 encodes a floral nectary-specific gene in Brassica campestris L. ssp.pekinensis. Plant molecular biology,2000 42 (4):647-655
    Thorsness M, Kandasamy M, Nasrallah M, Nasrallah J. Genetic ablation of floral cells in Arabidopsis. Plant Cell,1993,5 (3):253-261
    Theissen G. Development of floral organ identity:stories from the MADS house. Current Opinion Plant Biology,2001,4(1):75-85
    Tian A, Cao J, Huang L, Yu X, Ye W. Characterization of a male sterile related gene BcMF15 from Brassica 'campestris ssp. chinensis. Molecular Biology Rep,2009,36 (2):307-314
    Tian GW, Chen MH, Zaltsman A, Citovsky V. Pollen-specific pectin methylesterase involved in pollen tube growth. Development Biology,2006,294 (1):83-91
    Trigueros M, Navarrete-Gomez M, Sato S, Christensen S, Pelaz S, Weigel D, Yanofsky M, Ferrandiz C. The NGATHA genes direct style development in the Arabidopsis gynoecium. Plant Cell,2009,21 (5):1 394-1409
    Warwick S, Black L. Molecular systematics of Brassica and allied genera (subtribe Brassicinae, Brassiceae)-chloroplast genome and cytodeme congruence. Theoretical and Applied Genetics,1991, 82 (1):81-92
    Wieczorek K, Golecki B, Gerdes L, Heinen P, Szakasits D, Durachko D M, Cosgrove D J, Kreil D P, Puzio P S, Bohlmann H, Grundler F M. Expansins are involved in the formation of nematode-induced syncytia in roots of Arabidopsis thaliana. Plant Journal,2006,48 (1):98-112
    William D A, Su Y, Smith M R, Lu M, Baldwin D A, Wagner D. Genomic identification of direct target genes of LEAFY. Proceedings of the National Academy of Sciences.U S A,2004,101 (6):1775-1780
    Xue R, Zhang B. Increased endogenous methyl jasmonate altered leaf and root development in transgenic soybean plants. Journal of Genetics and Genomics,2007 34 (4):339-346
    Xu H Y, L i X G, L i Q Z. Characterization of HoMADSI and its inductionby plant hormones during in vitro ovuled evelopment in Hyacin thus orien talis. Plant Molecular Biology,2004,55 (2):209-220
    Yamada K, Saraike T, Shitsukawa N, Hirabayashi C, Takumi S, Murai K. Class D and B (sister) MADS-box genes are associated with ectopic ovule formation in the pistil-like stamens of alloplasmic wheat. Plant Molecular Biology,2009,71(1-2):1-14
    Yang Y, Sulpice R, Himmelbach A, Meinhard M, Christmann A, Grill E. Fibrillin expression is regulated by abscisic acid response regulators and is involved in abscisic acid-mediated photoprotection. Proceedings of the National Academy of Sciences. U S A,2006,103 (15):6061-6066
    Yokoi S, Higashi S, Kishitani S, Murata N, Toriyama K. Introduction of the cDNA for shape Arabidopsis glycerol-3-phosphate acyltransferase (GPAT) confers unsaturation of fatty acids and chilling tolerance of photosynthesis on rice Molecular Breeding,1998,4 (3):269-275
    Zhang Q, Huang L, Liu T, Yu X, Cao J. Functional analysis of a pollen-expressed polygalacturonase gene BcMF6 in Chinese cabbage (Brassica campestris L. ssp. chinensis Makino). Plant Cell Rep,2008,27 (7):1207-1215
    Zheng Z, Xia Q, Dauk M, Shen W, Selvaraj G, Zou J. Arabidopsis AtGPAT1, a member of the membrane-bound glycerol-3-phosphate acyltransferase gene family, is essential for tapetum differentiation and male fertility. Plant Cell,2003,15 (8):1872-1887
    Zhu Y, Saraike T, Yamamoto Y, Takumi S, Murai K.Orf260cra, a novel mitochondrial gene is associated with the homeotic transformation of stamens into pistil-like structures (pistillody) in alloplasmic wheat. Plant Cell Physiology,2008,49 (11):1723-1733

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700