绿盲蝽越冬卵的滞育机制及其耐寒性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文系统研究了温度和光周期对绿盲蝽卵滞育解除和诱导的影响,并且研究了绿盲蝽卵在越冬过程中的耐寒力变化,分析了其耐寒性与体内生化物质间的关系,初步明确了绿盲蝽卵的滞育机制及其耐寒性与月份之间的关系。主要研究结果如下:
     为了探讨温度和光周期对绿盲蝽Apolygus lucorum Meyer-Dür越冬卵滞育解除和发育历期的影响,系统调查了绿盲蝽越冬卵在不同温度和不同光照组合下的孵化率和孵化时间,结果表明:绿盲蝽的越冬卵均为滞育卵,低温和光周期对绿盲蝽越冬卵的滞育解除均有影响。2℃的低温处理能够显著促进其滞育解除,在0~65 d范围内,随着低温处理时间增长,其滞育解除时间缩短,未经低温处理的越冬卵T50为68.5 d,低温处理65 d的T50为12.25 d,绿盲蝽越冬卵在2℃低温处理65 d后完全解除滞育;在0~40 d范围内,低温处理时间越长,绿盲蝽越冬卵的孵化率越高,在25℃、全光照的条件下不经低温处理的孵化率为68.65%,低温处理40 d后在25℃的条件下的孵化率达到99.46%。在20℃~ 26℃的范围内,绿盲蝽越冬卵的滞育后发育历期随着温度的上升而缩短,随着光周期的延长而缩短。结果说明低温处理能够提高绿盲蝽越冬卵滞育解除率,但不是其滞育解除的必要条件,低温处理与自然变温对绿盲蝽滞育解除的作用相似;高温和长光照能够促进绿盲蝽的滞育解除,缩短发育历期。
     为了阐明环境因子对绿盲蝽Apolygus lucorum Meyer-Dür卵滞育诱导作用,系统调查了绿盲蝽在不同温度和不同光照组合下所产卵的孵化率和孵化时间,结果表明:绿盲蝽的敏感虫态为1龄若虫。在17℃、20℃和23℃3个不同温度下,光照时间小于14 h能够促进滞育诱导,光照时间大于14 h则有利于个体的发育而抑制滞育产生。短光照对滞育的诱导作用具有累积效应。光照时间在10~14 h范围内,滞育率随着温度的升高而降低;光照时间大于14 h,温度不再对滞育诱导起作用。在17℃、20℃和23℃条件下,绿盲蝽的临界光周期分别为L13h10min:D10h50min、L12h58min:D11h2min、L12h51min:D11h9min,随着温度的升高,临界光照长度缩短。
     研究了绿盲蝽卵在越冬过程中的耐寒力变化,分析了其耐寒性与体内生化物质间的关系,结果表明:绿盲蝽越冬卵低温存活力呈现出明显的月份变化,1月和2月的越冬卵耐寒性显著高于其他月份的越冬卵。-20℃处理1、2、3、4和5天的4月份保护卵死亡率明显低于相同处理下的4月份裸露卵的死亡率,保护卵死亡率分别为4.32%、5.36%、5.42%、6.79%和7.63%,裸露卵死亡率分别为46.06%、51.84%、54.59%、63.07%和74.41%。人工滞育卵的耐寒性强于正常发育卵的耐寒性,弱于越冬过程中卵的耐寒性。冷驯化可以显著提高绿盲蝽越冬卵的低温存活力。绿盲蝽越冬卵体内含水量随气温的降低而升高,升高而降低。绿盲蝽越冬卵体内总脂肪含量在整个越冬过程中逐渐降低,蛋白质和糖的含量先降低后升高。
The thesis studied the effects of temperature and photoperiod on diapause termination and diapause induction of the egg of Apolygus lucorum Meyer-Dür. The thesis also studied the cold tolerance of overwintering egg of A. lucorum and analysed the relation with biochemical substances in the body. Primary diapause mechanism of the egg of Apolygus lucorum and the relation with month was proved. The results are shows:
     To understand the effects of temperature and photoperiod on diapause termination and post-diapause development of the overwintering egg of A. lucorum , the hatch rate and hatch time of the overwintering egg of A. lucorum at different temperature and different photoperiod were systematically investigated. The results showed that the overwintering eggs of A. lucorum are all diapause eggs, and their diapause termination could be influenced by low temperature and photoperiod. Low temperature (2℃) affected the diapause termination. The time of diapause termination was shortened with the increment of treatment time of low temperature in the 0 to 65 d treatments, and the T50 values of that without low temperature treatment and the treatment for 65 d by low temperature was 68.5 d and 12.5 d, respectively. The diapause termination of overwintering eggs was completed after 65 d of low temperature treatment. The hatch rate of the overwintering eggs increased with the treatment time of low temperature in the 0 to 40 d treatment. The hatch rate of overwintering eggs without low temperature treatment was 68.65% at 25℃and full light, and 99.46% with low temperature treatment 40 d. The developmental duration of post-diapause reduced with the increasing of temperature and photoperiod in 20℃~26℃. The results suggest that low temperature could increase the diapause termination rate of overwintering eggs but is not the necessary condition for diapause termination. Effects of low temperature and nature temperature to the diapause termination were similar. High temperature and long photoperiod may promote the diapause termination of overwintering eggs and reduce their developmental duration.
     To understand the effects of temperature and photoperiod on egg diapause induction of Apolygus lucorum Meyer-Dür, the hatch rate and hatch time of A. lucorum egg laid by those rearing at different temperature and different photoperiod were systematically investigated. The first instar larvae of A. lucorum is the sensitive stage. Daylength less than 14 h were benefit to diapause induction, and daylength more than 14 h were benefit to growth and diapause inhabitation at three different temperature (17℃,20℃,23℃). Short daylength had a cumulative effect on diapause induction. The diapause rate decreased with the increment of temperature in the daylength from 10h to 14 h, and temperature had no effect on diapause induction in the daylength more than 14 h. The critical photoperiod of A. lucorum was L13h10min:D10h50min、L12h58min:D11h2min and L12h51min:D11h9min at 17℃、20℃and 23℃,respectively. The critical daylength shortened with the increment of temperature. The results showed that A. lucorum was a typical long-day insect. Photoperiod was the main factor of diapause induction. Temperature was the cofactor of diapause induction, and low temperature at autumn was benefit to the diapause induction.
     In this study, cold tolerance of overwintering egg were investigated and the relation with biochemical substances in the body were analysed. The results indicated that cold survival ability of the overwintering eggs was significantly different among the months.The overwintering eggs in January or February had higher tolerance to low temperature than the other months. The mortality of protected eggs in the April (4.32%、5.36%、5.42%、6.79% and 7.63%) was significantly low than non-protected eggs in the April (46.06%、51.84%、54.59%、63.07% and 74.41%) when they were treated 1、2、3、4 and 5 days at the temperature of -20℃. The aitificial diapause eggs had higher tolerance to low temperature than the normal eggs,and had lower tolerance to low temperature than the overwintering eggs . Overwintering eggs undergo a process of cold acclimation that can increase their cold tolerance before the occurrence of low temperatures. The water content of overwintering eggs increased or reduced with temperature reducing or increasing. The fat content of overwintering eggs decreased with the time in winter. The protein content and glycogen content reduced at first, then increased.
引文
陈培育,封洪强,李国平等.绿盲蝽滞育与非滞育卵的形态学观察[J].河南农业大学学报, 2010, 44(1): 83-85.
    范兰芬,林健荣,王叶元等.家蚕滞育人工解除及其机理研究进展[J].广东农业科学, 2007, 1: 66-68.
    郭海波,许永玉,鞠珍等.中华通草蛉成虫抗寒能力季节性变化[J].生态学报, 2006, 26 (10): 3238-3244.
    韩瑞东,孙绪艮,许永玉等.赤松毛虫越冬幼虫生化物质变化与抗寒性的关系[J].生态学报, 2005, 25 (6): 1352-1356.
    韩召军,王荫长,尤子平.陆生昆虫的抗寒机制[J].昆虫知识, 1989, 26(1): 39-42
    华爱,薛芳森,朱杏芬.环境因素对昆虫滞育诱导的影响[J].江西农业大学学报, 2002, 24(4): 431-435.
    黄国洋,王荫长,尤子平.黄地老虎抗寒机理初探[J].浙江林学院学, 1990, 7(2): 140-146.
    贾沁贤,陈立靖,左中原.不同品系卤虫耐寒力的比较[J].动物学报, 1999, 45(1): 2-39.
    景晓红,康乐.昆虫耐寒性的测定与评价方法[J].昆虫知识, 2004, 41(1): 7-10.
    景晓红,康乐.昆虫耐寒性研究[J].生态学报, 2002, 22(12): 2202-2207.
    赖锡婷,肖海军,薛芳森.昆虫滞育持续时间的影响因子及其对滞育后生物学的影响[J]. 昆虫知识, 2008, 45(2): 182-188.
    李耀发,党志红,高占林等.河北省沧州棉区绿盲蝽在不同寄主上的动态分布[J].植物保护, 2009, 35(5): 118-121.
    林炜,刘玉娣,侯茂林等.不同地理种群二化螟滞育和解除滞育幼虫的抗逆性酶活性比较[J].植物保护, 2007, 33(5): 84-87.
    刘新,华跃进,徐步进等.昆虫脑神经肽的研究进展:抑前胸腺肽PTSP[J].浙江大学学报(农业与生命科学版), 2001, 27(5): 479-482.
    刘柱东,吴坤君,龚佩瑜.昆虫的夏滞育[J].昆虫知识, 2002, 39(3): 234-237.
    鲁加龙,张恩英,王仁赉.淡色库蚊生殖滞育的神经内分泌调节[J].昆虫学报, 1993.
    马晓牧,张青文,蔡青年等.冀南棉区绿盲蝽爆发危害[J].植物保护学报, 2004, 30(3): 90.
    门兴元,于毅,张安盛等.不同温度下绿盲蝽实验种群生命表研究[J].昆虫学报, 2008, 51(11): 1216-1219.
    强承魁,杜予州,于玲雅等.水稻二化螟越冬幼虫耐寒性物质的动态变化[J].应用生态学报, 2008, 19(3): 599-605.
    强承魁,杜予州,于玲雅等.水稻二化螟耐寒性研究进展[J].植物保护, 2008, 34(2): 6-10.
    时爱菊,徐洪富,赵静等.光周期对大草蛉(Chrysopa pallens)滞育及发育的影响[J].生态学报, 2008, 28(8): 3854-3859.
    孙守慧,赵利伟,祁金玉.白蛾周氏啮小蜂滞育诱导及滞育后发育[J].昆虫学报, 2009, 52(12): 1307–1311.
    孙绪艮,郭慧玲.桑尺蠖越冬幼虫的抗寒性研究[J].蚕业科学, 2000, 26(1): 129-133.
    王洪亮,王丙丽,任素云等.昆虫滞育激素研究进展[J].河南科技学院学报, 2008, 36(3): 44-47.
    王满囷,庞辉,李周直.鞭角华扁叶蜂预蛹呼吸代谢的特点[J].林业科学研究, 2001, 14(6): 616-620.
    王满囷.鞭角华扁叶蜂滞育机理的研究[D].南京:南京林业大学, 2000.
    王启虞,金孟肖.白菜乌壳虫之夏眠与冬眠[J].昆虫与植病, 1936, 4, 574-577.
    王音,雷仲仁,问锦曾等.美洲斑潜蝇的越冬与抗寒性研究[J].植物保护学报, 2000, 27(3): 33-36.
    魏珂,杨红卫,崔晓萌等.绿盲蝽的发生与防治[J].现代农业科技, 2010, 9:198.
    吴孔明,郭予元.新疆棉铃虫的抗寒性研究[J].昆虫学报, 1997, 40(增): 20-24.
    徐卫华.昆虫滞育研究进展[J].昆虫知识, 2008, 45(4): 100-107.
    薛芳森,李爱青,朱杏芬.温度在昆虫滞育期间的作用[J].江西农业大学学报, 2001, 23(1): 62–67.
    薛芳森,李爱青,朱杏芬等.大猿叶虫生活史的研究[J].昆虫学报, 2002, 45, 494-498.
    薛芳森,李保同,朱杏芬.黑纹粉蝶蛹体内超氧歧化酶活力的初步研究[J].江西植保, 1997, 19(1): 34-35.
    薛芳森,魏洪义,朱杏芬.黑纹粉蝶蛹体内过氧化氢酶活力的研究[J].植物保护学报, 1997, 24(3): 204-208.
    易传辉,陈晓鸣,史军义等.光周期和温度对美凤蝶滞育诱导的影响[J].林业科学研究,2007, 20(2): 188-192.
    于毅,严毓骅.光周期和温度对东亚小花蝽滞育形成和解除的影响[J].华东昆虫学报, 1998, 7(1): 65–70.
    张秋实,李玉明,张游等.温血动物组织的过冷特性及其相关因素分析[J].中国医学物理学杂志, 1997, 14: 140-145.
    张秀梅,刘小京,杨艳敏等.绿盲蝽在Bt转基因棉及枣树上的发生规律[J].华东昆虫学报, 2005, 14(1): 28-32.
    张月亮,慕卫,陈召亮等.桃小食心虫幼虫越冬前后对几种杀虫剂敏感性的差异[J].应用生态学报, 2007, 18(8): 1913-1916.
    章士美,赵永祥.中国农林昆虫地理分布[D].北京:中国农业出版社, 1996, 168-169.
    赵静,于令媛,李敏等.异色瓢虫成虫耐寒能力的季节性变化研究.昆虫学报, 2008, 51(12): 1271-1278.
    
    赵章武,黄永平.昆虫滞育及其调控机制[J].山西农业大学学报(自然科学版), 1995, 18(1): 105-118.
    赵章武,黄永平.昆虫滞育关联蛋白的研究进展[J].昆虫知识, 1996, 33(2): 187-196.
    周霞.滨州市冬枣绿盲蝽发生趋势重原因及综合防治措施[J].现代农业科技, 2010, 6: 173-174.
    朱芬,李红,王永等.大斑芫菁滞育幼虫在滞育不同阶段体内糖类和醇类含量的变化[J]. 昆虫学报, 2008, 51(1): 9-13.
    卓德干,李照会,门兴元等.低温和光周期对绿盲蝽越冬卵滞育解除和发育历期的影响[J].昆虫学报, 2011, 54(2): 136–142.
    Adedokun T A, Denlinger D L. Cold-hardiness:a component of the diapause syndrome in pupae of the flesh flies,Sarcophaga crassipalpis and S.bullata[J]. Physilogical Entomology, 1984, 9: 361-364.
    Agui N, Shimada T, Izumi S, et al. Hormonal control of vitellogen in m-RNA levels in the male and female housefly, Musca domestica[J]. Journal of Insect Physiology, 1991, 37: 383-391.
    Bale J S. Insect cold hardiness: a matter of life and death[J]. European Journal of Entomology, 1996, 93: 369-382.
    Baust J G., Miller L K. Seasonal variations in glycerol content and its influence on coldhardiness in the Alaskan carabid beetle, Pterostichus brevicornis[J]. Journal of Insect Physiology, 1970, 16: 979-990.
    Chen C P, Denlinger D L, Lee R E. Cold-shock injury and rapid cold hardening in the flesh fly Sarcophaga crassipalpis[J]. Physiological Zoology, 1987, 60: 297-304.
    Chen C P, Denlinger D L, Lee R E. Responses of nondiapausing flesh flies (Diptera: Sarcophagidae) to low rearing temperatures:developmental rate, cold tolerance, and glycerol concentrations[J]. Annals of the Entomological Society of America, 1987, 80: 790-796.
    Chippendale G M. Hormonal regulation of larval diapause[J]. Annual Review of Entomology, 1977, 22: 121-138.
    Chippendale G M, Reddy A S, Catt C L. Photoperiodic and thermoperiodic interaction in the regulation of the larval diapause of Diatraea grandiosella[J]. Journal of Insect Physiology, 1976, 22: 823–828.
    Chippendale G M, Reddy A S. Temperature and photoperiodic regulation of diapause of the southwestern corn borer Diatraea grandiosell[J]. Journal of Insect Physiology, 1973, 19: 1397–1408.
    Danks H V. Insect dormancy: an ecological perspective[M]. Biological Survey of Canada, Ottawa, 1987.
    Denlinger D L. Regulation of diapause[J]. Annual Review of Entomology, 2002, 47: 93–122. Denlinger D L. Dormancy in tropical insects[J]. Annual Review of Entomology, 1986, 31: 239-264.
    Denlinger D L. Relationship between cold hardiness and diapause. In: Lee R E Jr and Denlinger D L (Eds), Insects at Low Temperature[M]. Chapman and Hall, New York, 1991, 131-148.
    Denlinger D L, Lee R E Jr, Yocum G. D, et al. Role of chilling in the acquisition of cold tolerance and the capacitation to express stress proteins in diapausing pharate larvae of the gypsy moth, Lymantria dispar[J]. Archives of Insect Biochemistry and Physiology, 1992, 21: 271-280.
    Elsey K D. Cold tolerance of adult spotted and banded cucumber beetles (Coleoptera: Chrysomelidae) [J]. Environmental Entomology, 1989, 18: 1112-1116.
    Elsey K D. Cold tolerance of the southern green stink bug (Heteroptera: Pentatomidae) [J]. Environmental Entomology, 1993, 22: 567-570.
    Elsey K D. Cucumber beetle seasonality in coastal South Carolina[J]. Environmental Entomology, 1988, 17: 496-502.
    FantinouA A, Karandinos M G, Tsitsipis J A. Diapause induction in the Sesamia nonagrioides (Lepidoptera: Noctuidae) effect of photoperiod and temperature[J]. Environmental Entomology, 1995, 24(6): 1458-1466.
    Fields P G., Fleurat-Lessard F, Lavenseau L. The effect of cold-acclimation and desiccation on cold tolerance, trehalose and free amino acid levels in Sitophilus granaryus and Cryptolestes ferrugineus (Coleoptera)[J]. Journal of Insect Physiology, 1998, 44: 955-965.
    Frankos V H, Platt A P. Glycerol accumulation and water content in larvae of Limenitis archippus: their importance to winter survival[J]. Journal of Insect Physiology, 1976,22: 632-638.
    Goto M, Sekine Y, Outa H. Relationships between cold hardiness and diapause, and between glycerol and free acid contents in overwintering larvae of the oriental corn borer, Ostrinia furnacali[J]. Journal of Insect Physiology, 2001, 47: 157–165.
    Goto M, Fuji M, Suzuki K, et al.. Factors affecting carbohydrate and free amino acid content in overwintering larvae of Enosima leucotaeniella[J]. Journal of Insect Physiology, 1998, 44: 87-94.
    Goto M, Li Y P, Honma T. Changes of diapause and cold hardiness in the Shonai ecotype larvae of the rice stem borer, Chilo suppressalis Walker (Lepidoptera: Pyralidae) during overwintering[J]. App. Entomology and Zoology, 2001, 36: 323-328.
    Goto M, Li Y P, Kayaba S, et al.. Cold hardiness in summer and winter diapause and post-diapause pupae of the cabbage armyworm, Mamestra brassicae under temperature acclimation[J]. Journal of Insect Physiology, 2001, 47: 709-714.
    Hanson S M, Craig G B. Relationship between cold hardiness and supercooling point in Aedes Albopictus eggs[J]. Journal of the American Mosquito Control Association, 1995, 11: 35-38.
    Hillmer P G. Microclimate and the environmental physiology of insects[J]. Advances in InsectPhysiology, 1982, 16: 1-57.
    Hiroya H, Akihiko T. Seasonal changes in egg diapause induction and effects of photoperiod and temperature on egg Diapause in the rice leaf bug, Trigonotylus caelestialium (Kirkaldy) (Heteroptera: Miridae) [J]. Japanese Journal of Applied Entomology and Zoology, 2005, 49(3); 113–118.
    Hodek I, Hodkova M. Multiple role of temperature during insect diapause: a review[J]. Entomologia Experimentalis et Applicata, 1988, 49: 153–165.
    Irwin J T, Bennett V A, Lee R E Jr. Diapause development in frozen larvae of the goldenrod gall fly, Eurosta solidaginis Fitch (Diptera: Tephritidae) [J]. Journal of Comparative Physiology (B), 2001, 171: 181-188.
    Jing X H, Kang L. Seasonal Variation in the Cold Tolerance of eggs of the migratory locust, Locusta migratoria (Ortheoptera: Acrididae ) [J]. Environmental-Entomology, 2004, 33: 113–118.
    Ko?tál V. Eco-physiological phases of insect diapause[J]. Journal of Insect Physiology, 2006, 52(2): 113–127.
    Leather S R, Walters K F A, Bale J S. Ecology of Insect Overwintering[M]. Cambridge University Press, Cambridge, 1993.
    Lee R E Jr, Chen C P, Denlinger D L. A rapid cold hardening process in insects[J]. Science, 1987, 238: 1415–1417.
    Lee R E Jr Principles of insect cold hardiness. In: Lee R E Jr and Denlinger D L (Eds), Insects at Low Temperature[M]. Chapman and Hall, New York, 1991, 17-46.
    Lee R E Jr Insect cold-hardiness: to freeze or not to freeze[J]. Bioscience, 1989, 39: 308-313.
    Lee R E Jr, Chen C P, Meacham M H. Ontogenetic patterns of cold hardiness and glycerol production in Sarcophaga crassipalpis[J]. Journal of Insect Physiology, 1987, 33: 587-592.
    Li Y P, Goto M., Ito S. Physiology of diapause and cold hardiness in the overwinering pupae of the fall webworm Hyphantria cunea (Lepidoptera: Arctiidai) in Japan[J]. Journal of Insect Physiology, 2001, 47: 1181-1187.
    Lu Y H, Wu K M, Jiang Y Y, et al..Mirid bug outbreaks in multiple crops correlated with wide-scale adoption of Bt cotton in China[J]. Science, 2010, 328: 1151–1154.
    Masaki S. Summer diapause[J]. Annual Review of Entomology, 1980, 25: 1-25.
    McDonald J R, Bale J S, Walters K F A. Temperature development and establishment potential of Thrips palmi (Thysanoptera: Thripidae) in the United Kingdom[J]. European Journal of Entomology, 1999, 34: 105-108.
    McDonald J R, Head J, Bale J S, et al..Cold tolerance, overwintering and establishment potential of Thrips palmi[J]. Physilogical Entomology ,2000, 25: 159-166.
    Men X Y, Ge F, Edwards CA, et al..The influence of pesticide applications on Helicoverpa armigera Hübner and sucking pests in transgenic Bt cotton and non-transgenic cotton in China[J]. Crop Protection, 2005, 24 (4): 319–324.
    Milonas P G., Sauopulou-Soultani M. Cold hardiness in diapause and non-diapause larvae of the summer fruit tortix, Adoxophyes orana (Lepidoprera:Tortricidae) [J]. European Journal of Entomology, 1996, 96: 183-187.
    Nedved O, Lavy D, Verhoef HA. Modelling the time-temperature relationship in cold injury and effect of high temperature interruptions on survival in a chill-sensitive collembolan[J]. Functional Ecology, 1998, 12: 816–824.
    Nedved O, Hodkova M, Brunnhofer V. Simultaneous measurement of low temperature survival and supercooling in a sample of insects[J]. CryoLett., 1995, 16: 108-113.
    Nillssen A, Tenow O. Diapause embryo growth and supercooling capacity of Epirrita autumnata eggs from northern Fennoscandia[J]. Entomologia Experimentaliset Applicata, 1990, 57: 39-55.
    Pullin A S, Bale J S. Effects of low temperature on diapausing Aglais urticae and Inachis io (Lepidoptera: Nymphalidae): overwintering physiology[J]. Journal of Insect Physiology, 1989, 35: 283-290.
    Pullin A S, Bale J S. Influence of diapause and temperature on cryoprotectant synthesis and cold hardiness in pupae of Pieris brassicae[J]. Comparative Biochemistry and Physiology (A): Physiology, 1989, 94: 499-503.
    Pullin A S. Diapause metabolism and changes in carbohydrates related to cryoprotection in Pieris brassicae[J]. Journal of Insect Physiology, 1992, 38: 319-327.
    Pullin A S. Physiological relationship between insect diapause and cold tolerance: coevolution or coincidence[J]. European Journal of Entomology, 1996, 93: 121-129.
    Pullin A S, Bale J S, Fontaine X L R. Physiological aspects of diapause and cold tolerance during overwintering in Pieris brassicae[J]. Physilogical Entomology, 1991, 16: 447-456.
    Renault D, Salin C, Vannier G, et al.. Survival at low temperatures in insects: what is the ecological significance of the supercooling point? [J]. Cryo Letters, 2002, 23: 217–228. Ring R A, Danks H V. Desiccation and cryoprotection: overlapping adaptations[J]. Cryo Letters, 1994, 15: 181-190.
    Ring R A. Relationship between diapause and supercooling in the blowfly, Lucilia sericata (Diptera: Calliphoridae) [J]. Canadian Journal of Zoology, 1972, 50: 1601-1605.
    Sabrosky C W, Larson I, Nabours R K. Experiments with light upon reproduction, growth and diapause in grouse locusts (Acrididae, Tetriginae) [J]. Transactions of the Kansas Academy of Science, 1933, 36: 298–300.
    Salt R W. Effect of cooling rate on the freezing temperatures of supercooled insects[J]. Canadian Journal of Zoology, 1966, 44: 655-659.
    Salt R W. Principles of insect cold-hardiness[J]. Annual Review of Entomology, 1961, 6: 55-74.
    S?mme L, Block W. Cold hardiness of collembola at Signy Island, Maritime Antarctic[J]. Oikos, 1982, 38: 168-176.
    Somme L, Block W. Cold tolerance and supercooling points on overwintering eggs of the European red mite Panonychus ulim (Koch) [J]. Canadian Journal of Zoology, 1982, 43: 881-884.
    S?mme L. Supercooling and winter survival in terrestrial arthropods[J]. Comparative Biochemistry and Physiology (A): Physiology, 1982, 73: 519-543.
    Spurgeon D W. Observaitons of diapause characters in the western tarnished plant bug Lygus Hesperus[C]. Beltwide Cotton Conferences, San Antonio, Texas, 2009: 807–812.
    Storey K B, Storey J M. Mechanism of insect cold hardiness. Biochemistry of cryoprotectants, In: Lee R E Jr and Denlinger D L (Eds), Insects at Low Temperature[M]. Chapman and Hall, New York, 1991, 64-93.
    Tanaka S. Seasonal control of nymphal diapause in the spring ground cricket, Pteronemobius nitidus (Orthoptera: Gryllidae). In: Brown V K and Hodek I E (eds), Diapause and LifeCycle Strategies in Insects[M]. The Junk, Hague, 1983, 35–53.
    Tauber M J, Tauber C A, Masaki S. Seasonal Adaptations of Insects[M]. Oxford University Press, New York and Oxford, 1986.
    Tauber M J, Tauber C A. Photoperiodic induction and termination of diapause in an insect: response to changing day lengths[J]. Science, 1970, 167: 170.
    Verma K K. Polyphenism in insect and the juvenile hormone[J]. Science, 2007, 32(2): 415-420.
    Villavaso E J, Snodgrass G L. Diapause in tarnished plant bug (Heteroptera: Miridae) reared in dynamic photoperiod environmental cabinets[J]. Journal of agricultural and urban entomology, 2004, 21(2): 87–97.
    Wallace M H. Diapause in the aestivating egg of Halotydeus destructor (Acari: Eupodidae) [J]. Australian Journal of Zoology, 1970, 18: 195-313.
    Wheeler A G. Biology of the Plant Bugs (Hemiptera: Miridae ) [M]. Ithaca: Cornell University Press, New York, 2001.
    Woude H A, Verhoef,H.A. Reproductive diapause and cold hardiness in temperate collembola Orchesella cincta and Tomocerus minor[J]. Journal of Insect Physiology, 1988, 34: 387-392.
    WU D W, Duman J G, Xu L. Enhancement of insect antifreeze protein activity by antibodies[J]. Biochemicaet Biophysica Acta, 1991, 1076: 416-420.
    WU D W, Duman J G.. Activation of antifreeze proteins from larvae of the bettle Dendroides Canadensis[J]. Journal of Comparative Physiology (B), 1991, 161: 279-283.
    Wu K, Li W, Feng H. Seasonal abundance of the mireds, Lygus lucorum and Adelphocoris spp. (Hemiptera: Miridae) on Bt cotton in northern China[J]. Crop Protection, 2002, 21: 997–1002.
    Wyatt G R. The biochemistry of sugars and polysaccharides in insects[J]. Journal of Insect Physiology, 1967, 4: 287-360.
    Xu W H, Sato Y, Ikeda M, et al. Molecular characterization of the gene encoding the precursor protein of DH-PBAN of the silkworm, Bombyx mori and its distribution in some insects [J]. Biochemicaet Biophysica Acta, 1995, 1261: 83-89.
    Xue F S, Kallenborn H G. Control of summer and winter diapause in Pidorus euchrominoides(Lepidoptera: Zygaenidae) on Chinese sweet-leaf Sysmplocos chinesis [J]. Bulletin of Entomological Research, 1998, 88: 207-211.
    Xue F S, Spieth H R, Li A Q, et al. The role of photoperiod and temperature in determination of summer and winter diapause in the cabbage beetle, Colaphellus bowringi (Coleoptera: Chrysomelidae)[J]. Journal of Insect Physiology, 2002, 48, 279-286.
    Yagi S. Physiological aspects of diapause in rice stem borers and the effect of juvenile hormone[J]. Entomology Genealogy, 1981, 7: 213-221.
    Yin C M, Wang Z S, Chaw W D, et al. Brain neurosecretory cell and ecdysiotropin activity of the non-diapausing and diapausing D.Gradiosella[J]. Journal of Insect Physiology, 1985, 31: 659-667.
    Yoder J A, Denlinger D L. Water balance in flesh fly pupae and water vapor absorption associated with diapause[J]. Experimental. Biology, 1991, 157: 273-286.
    Young S R and Block W. Experemental studies on the cold tolerance of Alaskozetes antarcticus[J]. Journal of Insect Physiology, 1980, 26: 189-200.
    Zachariassen K E. Physiology of cold tolerance in insects[J]. American Physiological Society. 1985, 64(4): 799-832.
    Zachariassen K E. The water relations of overwintering insects. In: Lee R E and Denlinger D L (eds) Insects at low temperature[M]. Chapman and Hall, New York, 1991, 47-63.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700