大草蛉的预蛹耐寒性和实验种群生命表研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1大草蛉滞育和非滞育预蛹耐寒性测定
     实验室内测定了大草蛉滞育和非滞育预蛹的耐寒性指标。结果表明,大草蛉为短光照滞育型昆虫,在短光照(L : D=9 : 15)条件下,发育成滞育预蛹的预蛹重比长光照(L : D=15 : 9)下非滞育预蛹的预蛹重量低4.43mg,过冷却点(SCP)和结冰点(FP)(?13.31℃,?6.63℃)显著低于非滞育预蛹(?9.61℃,?3.98℃)。同非滞育预蛹相比滞育预蛹体内的含水量比率降低,分别为61.33%和63.00%。滞育预蛹体内脂肪占干重比率显著高于非滞育预蛹体内脂肪比率,体内蛋白质和可溶性糖含量均低于非滞育预蛹。分别测定滞育、非滞育预蛹在不同聚集度下的呼吸速率(Rr)和能量代谢速率(Rm)。滞育和非滞育预蛹的Rr和Rm均随群体聚集度的增加而降低,聚集度为Ⅰ和Ⅴ的处理间差异均显著。在不同聚集度下非滞育预蛹的Rr (132.53×10-3μL·g-1·s-1)和Rm(32.47×10-4 W/g)均显著大于滞育预蛹的Rr(60.31×10-3μL·g-1·s-1)与Rm(14.77×10-4 W/g)。
     2大草蛉预蛹抗寒能力的季节性变化
     2009年9月至2010年7月连续测定大草蛉自然种群预蛹的蛹重、过冷却点(SCP)和结冰点(FP)、体内含水量、脂肪含量、蛋白质和可溶性糖含量。大草蛉预蛹的SCP和FP在越冬中期(2010年1月)达到最低值为?17.53℃和?7.14℃,在夏季(2010年7月)达到最高值为?8.21℃和?3.65℃,越冬前9、10月SCP和FP低于7月但是差异不显著,显著低于越冬后4、5月份,总体呈现先增后减的趋势,与环境温度变化一致。除体内脂肪含量外,其他各项耐寒性指标变化趋势与之相同。脂肪含量在越冬初期即达到最高为46.81%,越冬期间逐渐减少,但仍高于其他时期,夏季7月降到最低为31.07 %。大草蛉耐寒性各指标的变化趋势与该虫所处月平均气温变化一致,越冬预蛹的耐寒性显著高于夏季预蛹和越冬后预蛹,耐寒能力具有明显的季节性变化。
     3大草蛉预蛹的滞育与耐寒性关系研究
     分别测定滞育和非滞育种群经过10℃低温驯化和未经过低温驯化预蛹的耐寒性。实验种群的非滞育预蛹经过低温驯化之后SCP降为?12.18℃,经过短光照诱导的滞育种群其SCP为?13.09℃,虽然稍低于前者,但两者差异并不显著。经过10℃低温驯化的滞育预蛹的SCP降到?14.97℃,同未经过低温驯化的滞育预蛹相比,差异显著。22℃短光照下饲养的预蛹,其SCP明显低于非滞育未经过低温驯化预蛹的SCP(?9.61℃),与非滞育个体经过低温驯化后的SCP(?12.18℃)无明显差异。滞育和低温驯化也对预蛹重、体内水分、脂肪、蛋白质和可溶性糖含量产生影响,短光照滞育和低温诱导后,可降低虫体预蛹重、水份、蛋白质和可溶性糖含量,增加脂肪含量。
     4大草蛉实验种群年龄-龄期两性生命表
     在实验室内22℃、15L ? 9D、RH80%条件下,饲养观察大草蛉种群,记录各龄期发育时间、存活数、死亡数、繁殖力等生活史数据,采用年龄―龄期两性生命表进行分析(Chi and Liu,1985;Chi,1988)。大草蛉卵期为45 d,幼虫孵化率达100%,成虫羽化率90.70%,其中51.28%为雄虫,48.72%为雌虫。成虫之前存活率为75%。新产的卵存活到雄成虫的几率为0.38,雌成虫为0.35。雄虫平均寿命为33.7 d,雌虫为32.4 d。单雌产卵总量最高为1289粒,单日总产卵量最高为104粒,产卵高峰期出现在第42 d。大草蛉的内禀增长率(r)为0.1258,周限增长率(λ)为1.134d–1,净生殖率(R0)为241.42后代/个体,种群世代平均周期(T)为43.63 d。新产的卵的期望寿命为48.85 d,雌成虫最大的再生产价值出现在第37天,同总产卵前期(34.29 d)一致。当种群出生率为0.1396、存活率为0.9944和死亡率为0.0056时将达到稳定。
1. Cold hardiness of diapausing prepupa and non-diapausing prepupa of Chrysopa pallens (Rambur)
     In the laboratory, the cold hardiness ability of diapausing and non-diapausing prepupa of Ch. pallens was examined. The results showed that the diapausing prepupa of the lacewing was induced by the short-day photoperiods. In the condition of shorter photoperiod (L: D=9: 15), the supercooling point (SCP) (?13.31℃) and freezing point (FP) (?6.63℃) were lower than that in the condition of longer photoperiod (L: D=15: 9), (?9.61℃and ?3.98℃, respectively), and the differences were significant. Water content of diapausing pepupa was lower than non-diapausing prepupa (61.33% and 63.00%, respectively), the content of protein and soluble sugar in the body of diapausing prepupa were lower, too. But the fat content in the body of diapausing prepupa was higher than that in non-diapausing prepupa. The rates of respiration (Rr) and the rates of energy metabolism (Rm) of Ch. pallens with five different aggregation degrees were calculated. The five different aggregation degrees were represented by five different group sizes (1, 5, 10, 20 and 50 individuals). The results indicated that there were differences in the values of Rr and Rm among the five different aggregation levels. The values of Rr and Rm had negative correlation relationships with aggregation degrees. The Rr and Rm in the body of diapausing prepupa (132.53×10-3μL·g-1·s-1 and 32.47×10-4 W/g) were lower than that in non-diapausing prepupa (60.31×10-3μL·g-1·s-1 and 14.77×10-4 W/g).
     2. Seasonal changes in prepupa cold hardiness of Chrysopa pallens (Rambur)
     The weight, supercooling point (SCP), the content of water, fat, sugar and protein of prepupa of Ch. pallens natural population were detected from September 2009 to July 2010. The SCP and FP of Ch. pallens prepupa were lowest in January (?17.53℃and ?7.14℃, respectively) while hightest in July (?8.21℃and ?3.65℃, respectively). The pre-winter prepupa had lower SCP and FP than the summer and post-winter prepupa. Except for the content of fat, the variation tendency of all the other cold hardiness indexes first increased and then decreased. Changes of the fat content were contrary. The fat content of pre-winter prepupa (46.81%) was significantly higher than those in other seasons, in January to lowest (31.07%). The pre-winter prepupa had higher tolerance than the summer and post-winter prepupa. The cold tolerance of the prepupa varied obviously with seasons.
     3 The relationship between diapause and cold hardiness of prepupa of Chrysopa pallens (Rambur)
     The cold hardiness of diapausing / non-diapausing prepupa populations with a cold acclimation at 10℃and without cold acclimation ware determined. Under laboratory conditions, the SCP of non-diapausing prepupa with cold acclimation was ?12.18℃, while the SCP of diapausing population with short photoperiod induction was ?13.09℃. There was not significant difference between the two SCPs. The SCP of the diapausing prepupa with 10℃cold acclimation was ?14.97℃, showing a significant difference compared with that without acclimation. The SCP of prepupa under short photoperiod at 22℃was significantly lower than that of non-diapausing prepupa populations (?9.61℃). Short photoperiods and low temperatures maybe cause the prepupa weight, the water content, fat, protein and soluble sugar in the body to drop and the fat to increase.
     4 Age-stage, two-sex life table of Chrysopa pallens (Rambur)
     The life history of the green lacewing, Ch. pallens, was studied at 22°C, 15L ? 9D, RH 80% in the laboratory. The data of life history, such as development period, survival, mortality, fecundity and so on were recorded. The raw data were analyzed based on the age-stage, two-sex life table in order to take both sexes and the variable developmental rate among individuals and between sexes into consideration. All the eggs hatched successfully within 4-5 days, the preadult survival rate was 75%, 90.70% of adults emerged with 51.28% males and 48.72% females. The probability that a newborn egg survived to the adult stage was 0.38 for males and 0.35 for females. The mean longevity of male and female was 33.7 and 32.4 days, respectively. Maximum fecundity of each individual was 1289 eggs, maximum daily fecundity of each individual was 104 eggs, spawning peaked in the first 42 days.
     The intrinsic rate of increase (r), the finite rate of increase (λ), the net reproduction rate (R0) and the mean generation time (T) of Ch. pallens were 0.1258 d–1, 1.134 d–1, 241.42 offspring and 43.63 d, respectively. The life expectancy of a newborn egg was 48.85 days and the life expectancy of a newborn egg was 48.85 days. The maximum reproductive value of females was on the 37th day, which closed the total pre-oviposition period counted from birth (34.29 d). When the birth rate was 0.1396, survival rate was 0.9944 and death rate was 0.0056, the population of Ch. pallens was the most stable.
引文
丁岩钦.昆虫数学生态学.北京:科学出版社,1994.
    冯宏祖,王兰,董红强.十一星瓢虫在不同温度下的实验种群生命表.昆虫学报,2007,50(3):259-263.
    郭海波,许永玉,鞠珍,李明贵.中华通草蛉成虫抗寒能力季节性变化.生态学报,2006,10(26):3238-3244.
    黄寿山,戴志一,吴达璋.赤眼蜂实验种群生命表的编制与应用.植物保护学报,1996,23(3):209-212.
    蒋明星,张孝羲.棉铃虫滞育蛹的抗寒力.南京农业大学学报,1997,20(2):39-41.
    蒋智林,文礼章,李有志,李正跃.甘薯天蛾过冷却点变化与生化成分的关系.昆虫知识,2009,46(2):294-297.
    林美珍,陈红印,王树英,仝赞华.大草蛉幼虫人工饲料的研究.中国生物防治,2007,23(4):316-321.
    马延龙,候凤,马纪.荒漠昆虫光滑鳖甲的耐寒性季节变化及其生理机制.昆虫学报,2009,52(4):372-379.
    牟吉元,王念慈,范永贵.四种草蛉生活史和习性的研究.植物保护学报,1980, 7(1):1-8.
    庞雄飞,梁广文,尤民生.昆虫种群生命系统研究方法概述.昆虫天敌,1986,8(3):176-186.
    庞雄飞,卢一嶙.王野岸畅种群矩阵模型在昆虫生态学研究上的应用问题.华南农学院学报,1980,1(3):27-37.
    强承魁,杜予州,于玲雅,崔亚东,陆明星,郑福山.水稻二化螟越冬幼虫耐寒性物质的动态变化.应用生态学报,2008,19(3):599-605.
    时爱菊,徐洪富,刘忠德,赵静,张帆,许永玉.光周期对大草蛉滞育及发育的影响.生态学报,2008,28(8):3854-3859.
    孙儒泳.动物生态学原理(第三版).北京师范大学出版社,2001.
    孙绪艮,郭慧玲,李恕廷.桑尺蠖越冬幼虫耐寒性研究.蚕业科学,2000,26(3):129-132.
    王方海,龚和,钦俊德.滞育和非滞育棉铃虫血淋巴中蛋白质含量及图谱的比较.昆虫学报,1998,41(4):426-430.
    王良衍.大草蛉生物学及其种群消长的研究.浙江林业科技,1984,2:24-28.
    王小平.大猿叶虫滞育诱导及滞育后生物学特性的研究.湖南农业大学博士学位论文,2004.
    王荫长,陈长琨,尤子平.小地老虎抗寒能力的研究.植物保护学报,1987,14 (1):9-13.
    王忠蝉,王芳海.昆虫蛹滞育的神经内分泌调控.生物学通报,2006,41(6):6-8.
    徐汝梅,刘来福,李兆华,李祖荫.用生命表及转移矩阵研究以雄蜂蛹饲养七星瓢虫的种群动态.北京师范大学学报(自然科学版),1979,4:40-49.
    易传辉,陈晓鸣,史军义,周成理.美凤蝶滞育期间糖类物质与脂肪含量变化研究.安徽农业科学,2009,37(12):5516-5517,5558.
    尹汝湛.昆虫生命表的制作与分析.植物保护,1980,6(1):31-38;6(2):31-37.
    岳健,何嘉,张蓉,贺达汉.不同温度下多异瓢虫实验种群生命表.昆虫知识,46(6),2009:921-925.
    张帆,王素琴,罗晨,陈艳华,李凤.几种人工饲料及繁殖技术对大草蛉生长发育的影响.植物保护,2004,30(5):36-40.
    张海强,闫海霞,刘顺,张乃谨,魏国树.光强度对大草蛉成虫感光性和趋光性行为的影响.昆虫学报,2009,52(4):461-464.
    张海强,朱楠,范凡,魏国树.大草蛉成虫复眼的外部形态及其显微结构.昆虫学报,2007,50(5):454-460.
    赵敬钊.大草蛉生物学特性研究.植物保护学报,1988,15(2 ):123-127.
    赵章武,黄永平.昆虫滞育及其调控机制.山西大学学报(自然科学版),1995,18(1):105-118.
    Adamek G, Fischer J. The oxygen consumption of nondormant and dormant larvae of Chironomus plumosus (Diptera). Journal of Insect Physiology, 1985, 31:757-772.
    Adedokun T A, Denlinger D L. Cold-hardiness: a component of the diapause syndrome in pupae of the flesh flies Sarcophaga crassipalpis and S.bullata. Physiological Entomology, 1984, 9: 361-364.
    Ali Golizadeh, Karim Kamali, Yaghoub Fathipour, Habib Abbasipour. Effect of temperature on life table parameters of Plutella xylostella (Lepidoptera: Plutellidae) on two brassicaceous host plants. Journal of Asia-Pacific Entomology, 2009, 12: 207-212.
    Andorfer C A, Duman J G. Isolation and characterization of cDNA clones encoding antifreeze proteins of the pyrochroid beetle Dendroides canadensis. Journal of Insect Physiology, 2000, 46: 365-372.
    Bale J S. Classes of insect cold hardiness. Functional Ecology, 1993, 7: 751-753.
    Block W, Li H C, Worland R. Parameters of cold resistance in eggs of three species of grasshoppers from Inner Mongolia. Cryo-Letters, 1995, 16: 73-78.
    Block W, Zettel J. Activity and dormancy in relation to body water and cold tolerance in a winter-active springtail. European Journal of Entomology, 2003, 100: 305-312.
    Chen C P, Denlinger D L, Lee R E J. Cold-shock injury and rapid cold hardening in the flesh fly Sarcophaga crassipalpis. Physiological Zoology, 1987a, 60: 297-304.
    Chen C-P., Denlinger D L, Lee R E J. Responses of nondiapausing flesh flies (Diptera: Sarcophagidae) to low rearing temperatures: developmental rate, cold tolerance, and glycerol concentrations. Annals Entomological Society of America, 1987b, 80: 790-796.
    Chi Hsin. Life-table analysis incorporating both sexes and variable development rates among individuals. Environmental Entomology, 1988, 17: 26-34.
    Chi H, Liu H. Two new methods for the study of insect population ecology. Bulletin of the Institute of Zoology Academia Sinica, 1985, 24: 225-240.
    Chi H, Su H. Age-stage, two-sex life tables of Aphidius gifuensis (Ashmead) (Hymenoptera: Braconidae) and its host Myzus persicae (Sulzer) (Homoptera: Aphididae) with mathematical proof of the relationship between female fecundity and the net reproductive rate. Environmental Entomology, 2006, 35: 10-21.
    Chi H, Yang T C. Two-sex life table and predation rate of Propylaea japonica Thunberg (Coleoptera: Coccinellidae) fed on Myzus persicae (Sulzer) (Homoptera: Aphididae). Environmental Entomology, 2003, 32 (2): 327-333.
    Chi H. Timing of Control Based on the Stage Structure of Pest Populations: A Simulation Approach. Journal of Economic Entomology, 1990. 83(4): 1143-1150.
    Chippendale G M. Larval and pupal diapause. Endocrinology of Insects, 1983, 343-356.
    Chippendale G M, Yin G M. Endocrine interactions controlling the larval diapause of the SCB, D. grandiosella. Journal of Insect Physiology, 1976, 22: 989-995.
    Costa J P, Grenot C, Lee R E. Supercooling, ice nucleation and freeze tolerance in the European common lizard, Lacerta vivipara. Journal of Insect Physiology, 1995, 165: 218-224.
    de Freina J J, Witt T J. Die Bombyces und Sphinges der Westpalaearktis. Edition Forschung and Wissenschaft, Munchen, 1987.
    Denlinger D L. Relationship between cold hardiness and diapause. In Insects at Low Temperature (Eds: Lee R E & Denlinger D L), 1991, 174-198.
    Denlinger D L, Lee R E Jr, Yocum G D, Kukal O. Role of chilling in the acquisition of cold tolerance and the capacitation to express stress proteins in diapausing pharate larvae of the gypsy moth, Lymantria dispar. Archives of Insect Biochemistry Physiology, 1992, 21: 271-280.
    Dixon A F G. Parthenogenetic reproduction and the rate of increase in aphids. In: Minks, A K,Harrewijn, P (Eds), Aphids their biology, natural enemies and control. Vol A. Elsevier, Amsterdam, Netherlands, 1987a, 269-287.
    Elsey K D. Cold tolerance of the southern green stink bug (Heteroptera: Pentatomidae). Environmental Entomology, 1993, 22: 567-570.
    Gabre R M, Adham F K, Chi H. Life table of Chrysomya megacephala (Fabricius) (Diptera: Calliphoridae). Acta Oecologica, 2005, 27: 179-183.
    Gehrken U, Str?mme A, Lundheim R, Zachariassen K E. Inoculative freezing in overwintering tenebrionid beetle, bolitophagus reticulatus panz. Journal of Insect Physiology, 1991, 37: 683-687.
    Goto M, Fuji M, Suzuki K. Factors affecting carbohydrate and free amino acid content in overwintering larvae of Enosima leucotaeniella. Journal of Insect Physiology, 1998, 44: 87-94.
    Goto M, Sekine Y, Outa H. Relationships between cold hardiness and diapause, and between glycerol and free acid contents in overwintering larvae of the oriental corn borer, Ostrinia furnacalis. Journal of Insect Physiology, 2001, 47: 157-165.
    Goto S G, Yoshida T, Beppu K. Evolution of overwintering strategies in Eurasian species of the Drosophila obscura species group. Biological Journal of Linnean Society, 1999, 68: 429-441.
    Graham L A, Liou Y C, Walker V K, Davies P L. Hyperactive anti-freeze protein from beetles. Nature, 1997, 388: 727-728.
    Hanson S M, Craig G B Jr. Cold acclimation, diapause, and geographic origin affect cold hardiness in eggs of Aedes albopictus (Diptera: Culicidae). Journal of Medical Entomology, 1994, 31: 192-201.
    Hodkova M., Hodek I. Temperature regulation of supercooling and gut nucleation in relation to diapause of Parkers apterus (L.) (Heteroptera). Cryobiology, 1997, 34: 70-79.
    Holmstrup M, Costanzo J P, Lee R E. Cryoprotective and osmotic responses to coldacclimation and freezing in freeze-tolerant and freeze-intolerant earthworms. Journal of Comparative Physiology, 1999, B169: 207-214.
    Irwin J T, Bennett V A, Lee R E Jr. Diapause development in frozen larvae of the goldenrod gall fly, Eurosta solidaginis Fitch (Diptera: Tephritidae). Journal of Comparative Physiology (B), 2001, 171: 181-188.
    Jo H M, Kim Y, 2001. Relationship between cold hardiness and diapause in the smaller fruit tortrix, Adoxophyes orana (Fischer von Roslerstamm). Journal of Asia-Pacific Entomology, 4: 1-9.
    Jones J A, Guthrie W S, Brindley T A. Postembryonic development of the silkworm, Bombyx mori. Proc Hpn Acad, 1984, 67: 98-101.
    Kavousi A, Chi H, Talebi K, Bandani A, Ashouri A, Naveh V H. Demographic traits of Tetranychus urticae (Acari: Tetranychidae) on leaf discs and whole leaves. Ecology and Behavior, 2009, 102: 595-601.
    Kim Y, Kim N. Cold hardiness in Spodoptera exigua (Lepidoptera: Noctuidae). Environmental Entomology, 1997, 26: 1117-1123.
    KosTál V, ?imek P. Dynamics of cold hardiness, supercooling and cryoprotectants in diapausing and non-diapausing pupae of the cabbage root fly, Delia radicum L. Journal of Insect Physiology, 1995, 41: 627-634.
    KosTál V, ?imek P. Overwintering strategy in Pyrrhocoris apterus (Heteroptera): the relations between life-cycle, chill tolerance and physiological adjustments. Journal of Insect Physiology, 2000, 46: 1321-1329.
    KosTál V, Sula J, ?imek P. Physiology of drought tolerance and cold hardiness of the Mediterranean tiger moth Cymbalophora pudica during summer diapause. Journal of Insect Physiology, 1998, 44: 165-173.
    Kukal O, Duman J G. Swith in the overwintering strategy of two insect species and latitudinal difference in cold hardiness. Canadian Journal of Zoology, 1989, 67: 825-827.
    Langer A, Hance T. Overwintering strategies and cold hardiness of tow aphid parasitoid species (Hymenoptera: Braconidae: Aphidiinae). Journal of Insect Physiology, 2000, 46: 671-676.
    Lee R E Jr, Costanzo J P, Mugnano J A. Regulation of supercooling and ice nucleation in insects. European Journal of Entomology, 1996, 93: 405-418.
    Lee R E. Principles of insect cold hardiness. Insects at Low Temperature, 1991, 17-46. Lee R E Jr, Chen C P, Denlinger D L. A rapid cold-hardening process in insects. Science, 1987, 238: 1415-1417.
    Masahiko W. Photoperiodic and thermal regulation of development and cold hardiness in larvae of the cloverleaf weevil, Hypera punctata. Cryobiology, 2000, 40: 294-301.
    Matsubara K, Tojo S, Suzuki N. Age-related changes in flight muscle mass, lipid reserves and flight capacity during adult maturation in males of the territorial damselfly calopteryx atrata (odonata: Calopterygidae). Zoological science, 2005, 22: 587-592.
    Miller K. Cold-hardiness strategies of some adult and ammature insects overwintering in interior Alaska. Comparative Biochemistry and Physiology, 1982, 595-604.
    Muhammad N, Tanaka K, Tsumuki H. Relationship of cold tolerance to developmental determination in the Indian meal moth, Plodia interpunctella (Lepidoptera: Phycitidae). Applied Entomology and Zoology, 1999, 34: 267-276.
    Nordin J H, Cui Z, Yin C M. Cold-induced glycerol accumulation by Ostrinia nubilalis larvae is developmentally regulated. Journal of Insect Physiology, 1984, 30: 563-566.
    Ohlsson L, Verhoef H A. Effect of diet composition on cold adaptation in temperate collembola. Comparative Biochemistry and Physiology (B), 1988, 91: 475-479.
    Plant R E, Wilson L T. Models for age structured populations with distributed maturation rates. Journal of Mathematical Biology, 1986, 23; 247-262.
    Pullin A S, Bale J S. Effects of low temperature on diapausing Aglais urticae and Inachis io (Lepidoptera: Nymphalidae): overwintering physiology. Journal of Insect Physiology,1989, 35: 283-290.
    Pullin A S, Bale J S. Influence of diapause and temperature on cryoprotectant synthesis and cold hardiness in pupae of Pieris brassicae. Comparative Biochemistry and Physiology (A), 1989, 94: 499-503.
    Pullin A S. Diapause metabolism and changes in carbohydrates related to cryoprotection in Pieris brassicae. Journal of Insect Physiology, 1992, 38: 319-327.
    Pullin A S. Physiological relationship between insect diapause and cold tolerance: coevolution or coincidence. European Journal of Entomology, 1996, 93: 121-129.
    Qin W S, Walker V K. Tenebrio molitor antifreeze protein gene identification and regulation. Gene, 2006, 367: 142-149.
    Rickards J, Kelleher M J, Storey K B. Strategies of freeze avoidance in larvae of the golden rod gall moth, Epiblema scudderiana: winter profiles of a natural population. Journal of Insect Physiology, 1987, 33: 443-450.
    Ring R. A. Adaptations to cold in Canadian Arctic Insects. Cryobiology, 1981, 18: 199-211. Ring R A. Freezing tolerant insects with low supercooling points. Comparative Biochemistry and Physiology, 1982, 73: 605-612.
    Saunders D S, Hayward S A L. Geographical and diapause-related cold tolerance in the blow fly, Calliphora vicina. Journal of Insect Physiology., 1998, 44: 541-551.
    Schneider M I, Sanchez N, Pineda S, Chi H, Ronco A. Impact of glyphosate on the development, fertility and demography of Chrysoperla externa (Neuroptera: Chrysopidae). Chemosphere, 2009, 76, 1451-1455.
    Schowalter T D. Insect ecology: An ecosystem approach. Academic, San Diego, 2000.
    Sinclair B J. Water relations of the freeze-tolerant New Zealand alpine cockroach Celatoblatta quinquemaculata (Dictyoptera: Blattidae). Journal of Insect Physiology, 2000, 46: 869-876.
    Sjursen H, Somme L. Seasonal changes in tolerance to cold and desiccation in Phauloppia sp.(Aeari, Oribati-da) from Finse, Norway. Journal of Insect Physiology, 2000, 46 (10): 1387-1396.
    ?lachta M, BerkováP, Vambera J. Physiology of the cold-acclimation in non-diapausing adults of Pyrrhocoris apterus (Heteroptera). European Journal of Entomology, 2002. 99: 181-187.
    Slosser J E, Montandon R, Rummel D R. Survival of diapausing and nondiapausing boll weevils (Coleoptera: Curculionidae) subjected to freezing temperatures. Environmental Entomology, 1996, 25: 407-415.
    Sokal R R, Rohlf F J. Biometry: the principles and practice of statistics in biological research. 3rd edition. New York: W. H. Freeman and Co., 1995, 887.
    S?mme L. The history of cold hardiness research in terrestrial arthropods. CryoLetters, 2000, 21: 289-296.
    Storey K B, Storey J M. Mechanism of insect cold hardiness. Biochemistry of cryoprotectants. In: Lee, R.E. & Denlinger, D.L. (Eds.), Insects at Low Temperature. Chapman & Hall, New York, 1991, 64-93.
    Summers C G, Coviello R L, Gutierrez A P. In?uence of constant temperatures on the development and reproduction of Acyrthosiphum kondoi (Homoptera: Aphididae). Environmental Entomology, 1984, 13: 236-242.
    Tauber M J, Tauber C A, Masaki S. Seasonal Adaptations of Insects. Oxford University Press. New York, 1986.
    Wolfe J, Bryant G, Koster K L. What is‘unfreezable water’, how unfreezable is it and how much is there? CryoLetters, 2002, 23: 157-166.
    Worland M R. The relationship between water content and cold tolerance in the arctic collembolan onychiurus arcticus (Collembola: Onychiuridae). European Journal of Entomology, 1996, 93: 341-348.
    Yang T C, Chi H, 2006. Life tables and development of Bemisia argentifolii (Homoptera:Aleyrodidae) at different temperatures. Ecology and Behavior, 99, 691-698.
    Yu J Z, Chi H, Chen B H. Life table and predation of Lemnia biplagiata (Coleoptera: Coccinellidae) fed on Aphis gossypii (Homoptera: Aphididae) with a proof on relationship among gross reproduction rate, net reproduction rate, and preadult survivorship. Annals of Entomological Society of America, 2005, 98, 475-482.
    Zachariassen K E. Physiology of cold tolerance in insects. Physiological Reviews, 1985, 64: 799-832. Zachariassen K E. Is the strategy for cold hardiness in insects determined by their water balance? A study on two closely related families of beetles. Cerambycidae and Chrysomelidae. Journal of Comparative Physiology, 2008, 178 (8): 977-984. Zhao Z W, Liu R L, Cao M C. Some physiological characteristics in diapause larvae of Asian corn borer, Ostrinia furnacalis. Entomologia Sinica, 1994, 1: 56-63.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700