高性能砼在高寒强侵蚀地区的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
新世纪混凝土材料的的发展战略就是增强混凝土的耐久性。人们对混凝土耐久性问题的认识主要是出于经济因素和安全因素的考虑。所以对混凝土工程来说,混凝土耐久性应该放在与力学性能、工程造价一样重要的位置。
     混凝土耐久性与其所处环境是密切相关的,环境不同,混凝土耐久性的具体要求也不一样。新疆博斯腾湖东泵站工程属于塔里木河治理项目的首部枢纽工程,地处强侵蚀高寒高温差地区,东泵站环境镁离子Mg2+含量最大值1378.6mg/L,硫酸根离子SO42-含量最大值12728 mg/L,对混凝土结构具有强腐蚀性;博斯腾湖湖区最高气温39.2℃,最低气温-30.4℃,对混凝土抗冻有很高的要求,对高性能混凝土在高寒地区的施工工艺方面也提出更高的要求。
     本文主要从理论和实践两方面开展高性能混凝土的研究,主要研究内容和方法如下:
     ⑴合理选择试验所用原材料和试验方法。为了更好地服务于新疆东泵站工程,本文以因地制宜、就地取材为原则,结合周边地区建筑材料的基本条件开展抗侵蚀研究。并选择适宜的试验方法对材料性能进行测试和分析。
     ⑵针对环境特点,结合生产工艺(如搅拌、运输、浇筑与养护等),从原材料组份、配合比设计以及控制原材料品质等方面着手进行高性能混凝土的配制工作。
     ⑶施工工艺的研究采用文献分析法,并进行现场应用,验证,数据分析论证。
     文章得到如下结论:
     ⑴掺矿渣微粉的高性能混凝土具有优异的抗侵蚀性。水胶比愈小,高性能混凝土越密实,抗侵蚀性愈高;矿渣微粉掺量越多,侵蚀内因越少,高性能混凝土侵蚀性越好。
     ⑵东泵站抗侵蚀混凝土应采取矿渣微粉高性能混凝土,但其配合比的水胶比不得大于0.35,矿渣微粉掺量不得低于40%。
     ⑶掺矿渣微粉的高性能混凝土不仅抗侵蚀性高,而且同时具有高抗渗性、抗冻性、抑制混凝土骨料反应等耐久性。
     ⑷掺矿渣微粉的高性能混凝土不仅抗侵蚀性大大优于抗硫酸盐水泥混凝土,而且它的成本费用也低于抗硫酸盐水泥混凝土。
     ⑸现场应用证明,配制的高性能混凝土满足新疆高寒强侵蚀地区特点的施工需要。
     ⑹由于采用了高效减水剂,对于拌和用水量比较敏感,拌和用水必须精确称量,防止塌落度变化过大;浇筑后必须及时做好保温保湿养护,防止出收缩裂缝。
     ⑺高性能混凝土采用普通32.5水泥,可以得到高强、抗侵蚀混凝土,在新疆博斯腾湖东泵站高寒、强侵蚀地区得到很好应用,满足工程建设及运行环境的需要,获得了很好的经济效益和社会效益。高性能混凝土作为一项新技术,施工工艺的研究在国内尚处于研究、应用阶段,本文可以为同类工程所借鉴。
The development aim of concrete is that how to strengthen its endurance. People know the endurance of concrete mainly because of the consideration of economy and safety, so we think concrete endurance is as important as the mechanics capability and project cost for concrete project.
     Concrete endurance is correlative tightly with its located environment. The environment is different and the requirement for endurance of concrete also is different. East pumping station of Bositen Lake in Xinjiang Province is the headwork of Talimu river improvement project.The site is located in the zone of huge corroding, extreme cold and huge difference in temperature. The max content of Mg2+ and SO42- are 1378.6mg/Land 12728 mg/L and all these are extreme corrosive for the concrete structure. The highest temperature can arrive at 39.2℃and the lowest temperature is -30.4℃in Bositen Lake site and the requirement of frost-resiting for high Performance concrete is very high as the construction technics.
     In this article we’ll study high Performance concrete in the section of theory and practice and the major contents and method are as following.
     ⑴Rightly select raw materials and the method of testing. In order to build east pumping station of Bositen Lake better, we studied concrete corroding-resiting in consideration of the basic conditions of local construction materials and selected proper method to test and analyze the Performance of testing materials.
     ⑵According to this environment characteristic, we studied the mixture of high Performance concrete from its component, mix design and the quality of raw materials incorporated with the construction technics such as batching, transportation, pouring and curing.
     ⑶We adopted the method of literature-analyses to start the study of construction technics and test and applied in the site.
     We gained the following conclusion through this study.
     ⑴High Performance concrete mixed slag powder has excellent Performance of frost-resiting. Water content is lower and the concrete is closer after vibrating. Similarly, the content of slag powder is higher and high Performance concrete has more excellent corroding-resiting.
     ⑵In this study we found high Performance concrete placed in east pumping-station should add slag powder and its content cannot be lower 40% but the water content cannot be higher than 0.35.
     ⑶The concrete mixed slag powder not only contains high corroding-resiting but also contains high seepage-risiting, frost-rsiting and the endurance of resiting of concrete aggregate reaction.
     ⑷High Performance concrete mixed slag powder not only obtains more excellent corroding-resiting but also its cost is lower than the concrete contained sulphate-resiting cement.
     ⑸The testing and application of high Performance mixed slag powder at the site proved that it can meet the construction request of the zone of extreme cold and huge corroding in Xinjiang province.
     ⑹The metage of the water mixed in concrete should be accurate after water-reducing agent added in the concrete and the change of concrete slump can not be too big. Effective measures of heat insulating and moisture retention for the concrete should be taken also to prevent contraction cracks appear.
     ⑺We usually use common cement of portland 32.5 in high Performance concrete production and this kind of concrete can effectively apply in the zone of extreme cold and huge corroding in east pumping station of Xinjiang Bositen lake area and we obtained huge economic benefit and social benefit through this testing and application. This article can be used for reference for similar project because construction technics of high Performance concrete is just on the phases of study and testing as a new technology in China.
引文
[1] 廉慧珍、吴中伟,混凝土材料的可持续发展与高性能胶凝材料, 混凝土,1998 年, 第 6 期.
    [2] 王复生,低水泥用量生态混凝土材料,混凝土,1997 年,第 4 期。
    [3] 廉慧珍、阎培渝,21 世纪的混凝土及其面临的几个问题,建筑技术,1999 年 l 期。
    [4] 陈肇元.建筑物的耐久性、使用寿命与评估方法.建筑物的耐久性、使用年限与安全 评估课题组综述报告,2000.12
    [5] 陈剑雄、吴建成、陈寒冰、杨长辉、吴建华、万朝均等,重庆地 区影响建筑物结 耐久性环境因素的调查,2000,6。
    [6] 廉慧珍,路新派,按耐久性设计高性能混凝土的原则和方法,建筑技术,2001,1
    [7] 陈肇元,阎培渝,高性能混凝土—定义、现状与发展方向,全国工程结构裂缝控制 讨论会,中国土木工程学会,2000,5
    [8] 覃维祖,混凝土耐久性若干问题的讨论,建筑技术,2000,1
    [9] 蒲心诚,应用比强度指标研究活性矿物掺和料在水泥与混凝土中的火山灰效应,混凝土与水泥制品,1997 年第 3 期
    [10] 张丽,混凝土硫酸盐侵蚀的机理及影响因素,东北公路,1998 年,第 21 卷,第 4期
    [11] 龚洛书,柳春圃,混凝土的耐久性及其防护修补,北京,中国建筑工业出版社,1990
    [12] 亢景富,混凝土硫酸盐侵蚀研究的几个基本问题,华北水利水电学院
    [13] 朱永斌等,双掺普通水泥混凝土抗硫酸盐、镁盐侵蚀破坏微观结构的研究,新疆农业大学学报,1999,22(2)
    [14] 吴中伟.混凝土耐久性综合症及其防治.混凝土与水泥制品,1991
    [15] 乔红霞,高性能混凝土抗硫酸盐侵蚀试验研究,学位论文,2003
    [16] 盛 梨,矿物掺合料对高性能混凝土力学性能和耐久性的影响,学位论文,2003
    [17] 吴建成,低水泥用量配制高性能混凝土的研究,学位论文,2001
    [18] 朱长华,青藏高原多年冻土区高性能混凝土的试验研究,2004
    [19] 新疆农业大学水利水电设计研究所建材室,关于博湖东泵站混凝土抗侵蚀的有关解释与说明(内部资料),2003.6:1~5
    [20] 孙兆雄,朱永斌,葛毅雄.“双掺”普通水泥混凝土抗硫酸盐、镁盐侵蚀研究[J].新疆农业大学学报,1999(3:45~47)
    [21] 吴中伟,廉慧珍.高性能混凝土(High performancete)[M].中国铁道出版社,1999,92~93
    [22] 新疆农业大学水利水电设计研究所建材室.635 水利枢纽发电洞竖井结构防腐蚀材 料及结构高性能砼(内部资料),2000.10:2~5)
    [23] 马保国. 矿物外加剂对混凝土抗硫酸盐侵蚀的研究和评价[J].混凝土,2003(4):8~11
    [24] wild and W.A.Tasong,Influence of Ground Granulated Blastfurnace Slag on the Sulphate Resistance of Lime-Stablilized[J].Magazine of Concrete Research,1997,51(4):247 ~ 254
    [25] 朱永斌.“双掺”普通水泥砼抗硫酸盐、镁盐侵蚀性能的研究:[新疆农业大学硕士学位论文].乌鲁木齐:新疆农业大学,1997,45~46
    [26] 国家技术监督局.GB50287-99.水利水电工程地质勘察规范[S].北京:中国计划出版社,1999,99-12-26
    [27] 国家技术监督局.GB748-1996.抗硫酸盐硅酸盐水泥[S],北京:中国计划出版社,1996,1996-12-01
    [28] 亢景富,砼硫酸盐侵蚀研究中的几个基本问题[J].混凝土,1995,(3):9~17
    [29] 国家质量技术监督局.GB/T18046-2000.用于水泥和混凝土中的粒化高炉矿渣微粉[S],北京:中国计划出版社,2001,2001-12-01
    [30] 袁润章.胶凝材料学[M].武汉:武汉工业大学出版社,1989,69~73
    [31] 张大康.水泥中的概念与定量方法[J].混凝土,2004,(8):P2~3
    [32] 陈树东,余红发.高强和高性能混凝土在青海盐湖卤水中的抗腐蚀性[J].混凝土,2003,(3):38~40
    [33] 肖海英,葛勇.浸泡方式对混凝土腐蚀性的研究.见:邢锋 明海燕.全国第六界混凝土耐久性学术交流会论文集[M]. 北京:人民交通出版社,2004,147~151
    [34] 刘振清,肖旺新.用双掺技术提高砼抗硫酸盐侵蚀性的研究[J].粉煤灰综合利用,2001,(5):28~30
    [35] 乔宏霞,何忠茂,刘翠兰等.高性能混凝土抗硫酸盐侵蚀的研究[J].兰州理工大学学报,2004,(1):101~105
    [36] 亢景富. 超量取代法外掺粉煤灰对改善水泥抗硫酸盐侵蚀性能的试验研究[J].混凝土与水泥制品,1997,(4):12~13
    [37] 王娴明.SEM 在混凝土结构耐久性评定中的应用[J].混凝土,1996,(1):5~12
    [38] 冯铭芬. 硅酸盐岩相学[M].上海:同济大学出版社,1986,183~209
    [39] 邵国有. 硅酸盐相学[M]. 武汉:武汉工业大学出版社,1991,156~199
    [40] RSGollop,HFW Taylor.Microstructcral and Microanalytical studies of Sulfate Attack Sulfate-Resisting Portland Cement:Reactions with Sodium andMagnesium Sulfate Solutions[J].Cement and Concrete Research,1995,25(7):12 ~ 17
    [41] 项平 浅析高性能混凝土施工技术 彭城大学学报 96 年第 3 期
    [42] 水利技术标准汇编水利水电卷(2002 年 7 月版) 水工混凝土施工规范(SDJ207-82)
    [43] B.J. Magee, M.G. Alexander, Concrete containing densified silica fume: Fresh properties, stren 纳 development, mix design, (in press).
    [44] 李继雄.高强高性能混凝土的试验研究.甘肃工业大学硕士学位论文,2002
    [45] 陈建奎.混凝土外加剂的原理与应用.北京计划出版社,1996
    [46] 陈文豹,田培,李功洲等混凝土外加剂及其在工程中的应用.煤炭工业出版社,1998
    [47] J.Y.Li.P.Tia.n, Effect of Slag and silica fume on mechanical properties of high strength concrete, Cem. Concr. Res. 27(1997)$33-937.
    [48] M. Lachemi, G. Li, A. Tagnit-Hamou, P.-C. Aitcin, Long-term per-formance of silica fume concretes, Concr Int 20(1) (1998) 59.
    [49] P.S. Mangat, B.T. Molloy, Chloride binding in concrete containing PFA, GBS or silica fume under sea water exposure, Mag Concr Res
    [50] V.M. Malhotra, Fly ash, slag, silica fume and rice-husk ash in con-Crete. A review, Concr Int 15 (1993 ) 4.
    [51] 黄月文,刘伟区,罗广建有机硅建筑材料‘广州化学..2001 } 26 (1)} 57^'64
    [52] 亢景富.混凝土硫酸盐侵蚀研究中的几个基本问题.混凝土.1995 , ( 3 ) : 9-V 17
    [53] 周亮臣.西北地区黄土状盐渍土对建筑物的损害.石油规划设计.1992, 3 (4),16-18
    [54] M.D.A. Thomas, M.H. Shehata, S.G. Shashiprakash, The use of fly ash in concrete: classification by composition, Cement, Concrete, and Aggregates, 21 (2) (1999).
    [55] P. K. Mehta and R. W. Burrows. Building Durable Structures in The 21S` C'.entury, ConcreteInternational. 2001(3)。
    [56] 黄士元.近代混凝土技术.西安:陕西科学技术出版社,1998
    [57] P. k. Mehta. Durability--Critical Issues for the Future. Concrete International, 1997, 7,覃维祖译
    [58] P. k. Mehta. Bringing the Concrete Industry into A New Era of Sustainable Development. Mario Collepardi Symposium on Advances in Concrete Science and Technology,覃维祖译
    [59] 陈肇元.高强混凝土结构设计与施工指南.北京:中国建筑工业出版社,2001
    [60] 陈蔚凡.混凝土结构工程的安全性与耐久性问题.土建结构工程的安全性与耐久性,2002. 4
    [61] 张弥.我国铁路隧道结构安全性和耐久性分析.土建结构工程的安全性与耐久性,2002. 4
    [62] 吴中伟,廉慧珍.高性能混凝土.北京:中国铁道出版社,1999f117 谢永江等.青藏公路既有桥梁混凝土强度及耐久性的调查.内部资料. Zooz
    [63] 谢永江等.低温早强耐腐蚀高性能混凝土应用试验研究报告.内部资料,2001
    [64] 黄蕴元。混凝土力学行为研究中的一些基本问题.混凝土及建筑构件,1979
    [65] Harald Justnes.The Mechanism of CN Accelerator for Cements. SINTER Structures and Concrete,1995
    [66] Harald Justnes.Calcium Nitrate as Corrosion Inhibitor for Steel Embedded in Concrete. SINTER Structures and Concrete,1994
    [67] 朱长华,谢永江等.环境气压对混凝土含气量的影响.混凝土,2004, 4
    [68] M. Pigeon and R. Pleau. Durability of Concrete in Cold Climates. Published by E&FN SPON, 1996:158^-184
    [69] 刘豫,李小雷,等.超细粉掺和料对高性能混凝土强度提高的影响.焦作工学院学报,2002,(11):431434.
    [70] Jose Mora, Ravindra Gettu, Study of plastic shrinkage cracking in concrete due to high rates of evaporation, Proceeding Third International Conference on Concrete Under Severe Conditions, Vancouver, Canada, 2001,6
    [71] 王智,郑洪伟,钱觉时,等.硫酸盐对粉煤灰活性激发的比较.粉煤灰综合利用,1999(3):1518.
    [72] 冷发光.冯乃谦.高性能混凝土渗透性和耐久性及评价方法研究.低温建筑技 术,2000,(4):1416.
    [73] 李翠玲,路新赢,张海霞.确定氯离子在水泥基材料中扩散系数的快速试验方法.工业建筑.1998,(6):4143.
    [74] D.W.S.Ho and R.K.Lewis. Carbonation of Concrete and Its Prediction. Cementand Concrete Resarch, 1987,(3):489504.
    [75] 孟志良,大掺量粉煤灰混凝土改性的初步研究,重庆建筑大学硕士学位论文,1999年 1 月
    [76] T.C.Powers. Structure and Physical Properties of Hardened Portland Cement Paste. American Ceramic Society,1958,(1).
    [77] 胡曙光,张厚记,马保国,丁庆军.抗钢筋锈蚀混凝土服务年限预测.武汉工业大学学报,1997,(4):912.
    [78] K.Tutti. Corrosion of Steel in Concrete. Swedish Cement and Concrete Research Institute,1982,(4):469 一 478.
    [79] 叶义群,王嘉琪,蒋林华.浅谈混凝土的可持续发展.建筑技术开发,2001,(7>:60}62.
    [80] Aitcin P..C and Neville A. High Performance Concrete Demysitified [J]. Concrete International,1993,V 1 S,n 1,21-26.
    [81] Malhotra G G, Carrette A, Sivasundaram. Durability of concrete. ACI SP126,1991.
    [82] Tanaka K. Development and utilization of highperformance concrete for the construction of the Akashi Kaikyo Bridge .In:High Performance concrete in Serve Environment,ACI SP 140-2,1993 :2551.
    [83] P.Poitevin, Limestone aggregates concrete, usefulness and durability. Cement and Concrete Composites 21(1999) 89 一 97
    [84] H.索默编,冯乃谦,等译.高性能混凝土的耐久性.北京:中国科学出版社,1998.
    [85] 陈剑雄、吴建成、陈寒冰、杨长辉、吴建华、万朝均等.重庆地区影响建筑物结构耐久性环境因素的调查.混凝土,2000,(6).
    [86] 翁友法.自密实混凝土的研究现状及其发展方向.中国港湾建设 2002, 2:1618.
    [87] 李清和.高强与免振捣自密实混凝土.建筑技术开发,1997,(6):3438.
    [88] 邢锋,冯乃谦.超塑化剂掺量对混凝土力学性能及耐久性的影响,低温建筑技术,
    [89] 陈剑雄.高效减水剂的改良与发展.化学建材,1995,(6): 261264
    [90] 吴兴祖,邓学勤.高性能混凝土与超塑化剂.施工技术,1999,( 5):1920.
    [91] 李永德,陈荣军,李祟智.高性能减水剂的研究现状与发展方向.混凝土,2002,(9):1013.
    [92] 蒋家奋.矿渣微粉在水泥混凝土中应用的概述.混凝土与水泥制品,2002,(3):36.
    [93] H. F. W. Taylor. Cement Chemistry. London: Thomas Telford Publishing, 1997, 113 一 156.
    [94] Shunsuke Hanehara,ect.,Interaction between cement and chemical admixture from the point of cement hydration,absorption behaviour of admixture,and paste rheology. Cement and Concrete Research,1999,29.
    [95] Hiroshi UCHIKAWA ,ect.Influence of kind and added tining of organic admixture on the composition,structure and property of fresh cement paste. Cement and Concrete Research ,1995,25.
    [96] Kazuo Yamada, ect.. Effects of the chemical sturcture on the properties of polycarboxylate-type superplasticizer. Cement and Concrete Research,2000,(30)
    [97] M.Collepardi .Admixtures used to enhance placing characteristics of concrete. Cement and Concrete Composites, 1998,(20).
    [98] 王川,杨长辉,等.矿渣和粉煤灰对混凝土塑性收缩裂缝的影响.混凝土,2002,(11):4548.
    [99] Taylor H F W, Mohan K, Moir G K. Analytical study of pure and extended portland cement paste: II , fly ash-and slag-cement paste [J] J Am Ceram Soc, 1985,68(2): 685 一 690.
    [100] Luke K, Glasser F P. Selective dissolution of hydrated blast furnace slag cement [J]. Cem Concr Res, 1987, 17(2): 273-282.
    [101] 蔡跃波.掺活性掺合料混凝土研究与应用中的几个疑难问题.硅酸盐学报,2000,51:5256.
    [102] Fraay A L A, Bijen J M, De Haan Y M. The reaction of fly ash in concrete: a critical examination [J]. Cem Concr Res, 1989, 19(3): 235-246
    [103] 吴科如,等.掺加混合材的水泥石自收缩特性研究.建筑材料学报,2001,(1):711.
    [104] Tazawa E, Miyazawa S, Kasai T. Chemical shrinkage and autogenous shrinkage of cement paste[J]. CCR,1995,25(2);288-292.
    [105] Tazawa E, Miyazawa S, Kasai T. Influence of cement and admixture on autogenous shrinkage of cement paste[J]. CCR,1995,25(2);281-287.
    [106] Z.Sawicz and S.S.Heng, Durability of concrete with addition of limestone. Magazine of Concrete Research, 1996,48,N0.175, June, 131 一 137.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700