相变增压推进系统虚拟样机研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着临近空间平流层飞艇战略意义的日益凸显,对飞艇性能起决定性作用的推进系统正逐渐成为各航空航天大国关注和研究的热点。临近空间环境大气稀薄,一般的吸气式发动机无法正常运行,携带燃料的火箭式发动机又会限制飞艇的驻空时间,而目前广泛采用的螺旋桨推进装置,其推进效率随飞行高度的增加迅速衰减,这就需要根据临近空间环境特点及飞艇长期驻空、机动性强等工作要求,构建一种可应用与平流层飞艇的新型推进系统。
     本文根据平流层飞艇现有推进系统存在的关键问题进行分析,提出一种基于相变增压的新型吸气式推进系统。新型推进系统以临近空间稀薄空气作为推进工质,对来流进行预增压以避开液化过程中出现的氮气的三相点问题,以先液化再加压的方式实现工质的超高压比增压。通过原理分析及热力循环设计结果,得出新型推进系统的整体流程。
     在临近空间相变增压推进系统概念设计的基础上,采用虚拟样机技术进行其前期研究。针对相变增压推进系统的特点,分析了常用样机构建流程中操作繁琐且质量不高的模型初建、格式转换、动态添加等问题,提出一种可精确控制的,以MATLAB虚拟现实工具箱为基础,结合专业三维建模软件和Simulink接口等平台各自优点的复杂三维虚拟样机快速构建新方法。利用此方法建立了完整的相变增压推进系统虚拟样机仿真演示模型。
     通过相变增压推进系统虚拟样机的运转演示,观察到不同视角下整体模型及核心部件的运行情况,对推进系统的外观、构成、功能等有了直观的认识;通过相变增压推进系统虚拟样机在测试工况下的运行,由控制模型的运行数据得出动态仿真曲线,检测部件的运行状态,控制系统设计的合理性及运行中可能出现的问题,为相变增压新型推进系统三维模型及控制系统的进一步分析、优化提供了有力的依据。
With the growing importance of the stratosphere airship, the propulsion system that plays a decisive effect in the performance of airship is becoming a hot research topic in many countries. The rarefid atmosphere of near space resulted in the general air-breathing engine which does not work, rocket engines that need carry fuel will restrict the working hours of airship, and with the increase in altitude, the efficiency of widely used screw propeller will be reduced rapidly. It is required to construct a new type of stratosphere airship propulsion system, according to the characteristics of near space environment and airship work requirements.
     My thesis aims at the existing problems of stratosphere airship propulsion system, to propose a type of project based on phase-changing supercharging air-breathing manner, it take near space rarefied air as working fluid, pre-pressurization air to avoid the three-phase problem of nitrogen, realize ultra-high supercharging by phase transition, through the conclusion of principles analysis and thermodynamic cycle design, established a whole process of new propulsion system.
     Study the phase-changing supercharging propulsion system based on virtual prototyping technology, aim at characteristics of the propulsion system virtual prototype, analysis the trivial and roughness step in common operating process such as construct model, converting data format and adding elements dynamically, a new method was proposed based on MATLAB Virtual Reality Toolbox, combined the advantage of professional 3D modeling software and interface of Simulink. With this method, the complex 3D virtual model could be designed quickly and its motion could be controlled accurately. Use this method to established a complete phase-changing supercharging propulsion system virtual prototype.
     Though the simulation of phase-changing supercharging propulsion system virtual prototype, observed the operation performance of the overall model and core components under different perspectives, obtain a direct awareness of the appearance, composition and functions of the propulsion system. Through the operation of phase-changing supercharging propulsion system virtual prototype in the test conditions, get dynamic simulation curve by controlling operation data of model and tested the operational status of components, the reasonableness of Simulink control system design and possible problems of operation. These data provide a powerful basis for further analysis and optimization on 3D model and control system of phase-changing supercharging propulsion system.
引文
1 Mechael J. Marcel, John Baker. Interdisciplinary design of a near space vehicle. 2007 IEEE:421~426
    2黄伟,陈逖,罗世彬.临近空间飞行器研究现状分析.飞航导弹, 2007, (10)
    3原野.近太空领域发展的背景与动因.国际太空. 2006, (7):24~28
    4 J.Thornton, D.Grace, C.Spillard. Broadband communications from a high-altitude platform: the europan helinet. ELECTRONICS & CIMMUNICATION ENGINEERING JOURNAL. June 2001:138-144
    5 S. Karapantazis, F.-N. Pavlidou. Broadband from heaven-high altitude platforms. IEE Communications Engineer April/May 2004:18~23
    6 Alfred Elkins. The airship in navy experimentation, AIAA 2002-5819
    7 Ingolf Schafer, Lahnau. Airship as unmanned platforms-challenge and chance. AIAA 2002~5882
    8王彦广,李健全,李勇等.近空间飞行器的特点及其应用前景.航天器工程,2007,16(1):50~57
    9李利良,郭伟民,何家芳.国外近空间飞艇的现状和发展.武器装备自动化. 2008,27(2):32~34
    10 Yung-Gyo Lee, Dong-Min Kim, Chan-Hong Yeom. Development of korean high altitude platform system. International Journal of Wireless Information Networks, Vol.13, No.1,January 2006:31~42
    11侯东兴,刘东红.浮空器在军事斗争中的应用及其发展趋势.航空兵器. 2006,6(3):60~64
    12 Masahiko Onda. Beam driven stratospheric. AIP Conf. Proc. 664, 523(2003)
    13 Douglas Griffin, Bruce Swinyard, Sunil Sidher, Patrick Irwin. Feasibility study of a stratospheric-airship obserbvatory. Proceeding of SPIE Vol. 4857 (2003):227~238
    14 G.F.O. Von Appen-Schnur, R. Kube, I. Schaefer, K.-H. Stenvers. Aerostatic platforms, past, present and future: a prototype for astronomy. Proceedings of SPIE Vol. 4014(2000):226~236
    15刘大海.平流层飞艇的能源技术和平衡分析.航天返回与遥感. 2006,(6):6~13
    16 Werner Knaupp, Eva Mundschau. Solar electric energy supply at high altitude. Aerospace Science and Technology 8 (2004):245~254
    17 Sang H. Choi, James R. Elliott, Glen C. King. Power budget analysis for high altitude airships. Proc. of SPIE Vol.6219:62190C-1-62190C-12
    18 Werner Knaupp. Solar powerd airship-challenge and chance. 1993 IEEE:1314~1319
    19郭建国,周军.基于螺旋桨系统的平流层飞艇复合控制系统.宇航学报. 2009,30(1):225~228
    20 D.C.Ferguson, G..B.Hillard. Paschen consideration for high altitude airships. AIAA 2004-1260
    21王明建,黄新生.平流层飞艇平台的发展及关键技术分析.自动测量与控制. 2007,26(8):58~60
    22杨秉,杨健,李小将等.临近空间飞艇运行环境及其影响.航天器环境工程. 2008,25(6):555~557
    23王侃,杨秀梅.虚拟样机技术综述.新技术新工艺. 2008(3):66~71
    24郑晓曦,孙国正.虚拟样机系统.计算机工程与应用. 2005(1):37~43
    25郑俊庆,朱真才,赵继云.基于虚拟现实的继续系统分析.煤矿机械. 2004(9):54~55
    26黄心渊.虚拟现实技术与应用.北京科学出版社. 1997
    27 Zorriassatine F,Wykes C. A survey of virtual prototyping techniques for mechanical product development. Engineering Manufacture. 2003,217(B):513-53
    28熊光楞,李伯虎,柴旭东.虚拟样机技术.系统仿真学报. 2001,13(1)
    29 Valasek M., Software Tools for Mechatronic Vehicles; Design Through Modelling and Simulation, Vehicle System Dynamics Supplement, 1999, 33:214-230
    30沈维道,蒋志敏,童钧耕.工程热力学.高等教育出版社. 2002
    31 James.H. Boschma,Modern aviation applications for cycloidal propulsion:AIAA 2001-5267
    32刘火星,刘宝杰,陈懋章.国外新概念吸气式发动机的发展.航空制造技术,2005(3):32~38
    33刘大响,程荣辉.世界航空动力技术现状及发展动向.北京航空航天大学学报. 2002,28(5):490~496
    34李连生.涡旋压缩机.机械工业出版社. 1998
    35 L.林德.螺杆压缩机.机械工业出版社. 1996
    36 Gary Wang G Definition and review of Virtual Prototyping. Journal of Computing and Information Science in Engineering. 2002,2(3):232~236
    37 Shyamsundarar N, Gadhb R. Collaborative Virtual prototyping of product assemblies over the Internet. Computer-Aided Design. 2002, 3(4):755~768
    38 Nayler A. Airship activity and development world-wide. 2003. AIAA 2003-6727, 200
    39曹秀云.国外加紧研究临近空间飞行器.国防. 2007(5):69~73
    40 D.C.Ferguson, G..B.Hillard. Paschen consideration for high altitude airships. AIAA 2004-1260
    41 G.F.O. Schnur, K.-H.Stenvers. ISLA-the international stratospheric laboratory for astrophysics, the optimum astronomical observatory for the 21st century. SPIE Vol. 2209: 291~306
    42 Chang-Hee Won. Regional navigation system using geosynchronous satellites and stratospheric airships. IEEE Transactions on aerospace and electronic system Vol. 38, NO. 1 2002,1:271-278
    43 Myoung Joo Shin. A system design of stratospheric airships for the navigation in korea. AIAA 2001-4171
    44 Sang H. Choi, James R. Elliott, Glen C. King, Yeonjoon Park, Jae-Woo Kim, Sang-Hyon Chu, Kyo D. Power technology for application-specific scenarios of high altitude airships. AIAA 2005-5529
    45 Kyo D. Song, Thomas B. Stout, SangYeol Yang, Jaewhan Kim, Sang H. Choi. Energy harvesting of dipole rectenna for airship application. Proc. of SPIE Vol.6528:65280K-1-65280K-10
    46 Gerry D. Miller, Tina R. Stoia. Operational capability of high altitude solar powered airships. AIAA 2005-7487
    47 Werner Knaupp, Eva Mundschau. Photovoltaic-hydrogen energy system for stratospheric platforms. 3rd World Conference on Photovoltaic Energy Conversion. 2003,5:2143-2147
    48周新红,陈雅东.航天推进新技术开拓太空探索新时代.飞航导弹. 2006(12):44~46
    49李志斌,张芸香,倪茂林.平流层飞艇控制与推进技术.航天控制. 2007,25(1):21~25
    50 James. H. Boschma. Morden aviation applications for cycloidal propulsion. AIAA 2001-5267
    51 James H. Boschma. Unmanned airship development and remote sensing applications. Proceedings of SPIE Vol. 4571(2001):45~49
    52 Robert E. Blackington. Near Space Maneuvering Vehicle. AIAA-LA 2003-0000, 2003
    53 Takashi Yabe. Prospect of solar-energy-pumped-laser-driven vehicles powered by water. Proceedings of 3th International Symposium on Beamed Energy Propulsion. 2004,10
    54 Leik N. Myrabo. Horizon mission: 2005 space command’s ultra-energetic lightcraft with super-pressure airship structure. AIP Conf. Proc. 766,86(2005)
    55赵攀峰,刘传超.平流层飞艇总体参数估算.航空科学技术.2006(5):37~39
    56欧阳晋,屈卫东,席裕庚.平流层验证飞艇的建模与分析.上海交通大学学报. 2003,(6):956~960
    57王勇军,屈卫东.平流层飞艇的建模与辨识.装备指挥与技术学院学报. 2007,(2):99~103
    58蔡自立.平流层自治飞艇动力学建模与非线性控制研究.上海交通大学博士学位论文. 2006,12
    59李国民,叶正寅.高空飞艇增浮减阻技术研究.科学技术与工程. 2008,(3):1505~1509
    60王海峰,宋笔锋,刘斌等.高空飞艇总体设计方法研究.西北工业大学学报. 2007,(2):56~60
    61王润平.平流层飞艇的数学建模及增稳控制系统设计.西北工业大学硕士学位论文. 2006,3
    62夏中贤.平流层飞艇总体性能与技术研究.南京航空航天大学硕士学位论文. 2006,12
    63 Mitchell M. Tseng, Jianxin Jiao C S. Virtual Prototyping for CustomizedProduct Development.Integrated Manufacturing Systems. 1998, 9(6): 1~23
    64赵志平,李新勇.虚拟样机技术及其应用和发展.机械研究与应用. 2006,19(1):6~7
    65 Zorriassatine F,Wykes C. A survey of virtual prototyping techniques for mechanical product development. Engineering Manufacture. 2003
    66闫晓东.重复使用跨大气层飞行器动力学虚拟样机设计.西北工业大学硕士学位论文. 2005,3
    67盛裴轩.大气物理学.北京大学出版社. 2003
    68边少雄.小型低温制冷机.机械工业出版社. 1992
    69从庄远.活塞泵及其它类型泵.中国工业出版社.1962
    70翟培祥.斜盘式轴向柱塞泵设计.煤炭工业出版社. 1978
    71 Amundarain A, Borro D. Virtual Reality for Aircraft Engines Maintainability. Mecanique & Industries (S1296-2139), 2004, 5(4): 121~127
    72吴小华,姜安德,周玲. VRML从入门到精通.国防工业出版社. 2002
    73阳化冰等.虚拟现实构造语言VRML.北京航空航天大学出版社. 2002
    74刘臣勇,冯允成等.基于VRML和VRMLScript的虚拟现实仿真技术研究.计算机工程与应用. 2002,(4):25~29
    75张家祥,方凌江,毛全胜.基于MATLAB6.x的系统分析与设计——虚拟现实.西安电子科技大学出版社. 2002
    76赵平,杨兆建.基于VRML的提升机调绳离合器运动仿真.机械管理开发. 2008,23(5):47~50
    77宋洋,钟登华.基于VR的水电站调度三维图形仿真研究.系统仿真学报. 2007,19(3):649~653
    78王晓霞.采用VRML的齿轮变速箱虚拟模型的实现.工程图学学报. 2008,(3):23~29
    79詹友刚. Pro/ENGINEER中文野火版教程.清华大学出版社. 2003,8

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700