水稻PIN家族基因表达模式研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物生长素调控细胞的分裂与分化,同时在植物向性生长与维持植物的顶端优势中发挥重要作用。生长素极性运输是通过载体蛋白在质膜和内涵体的定位来调控的。植物生长素输出载体(efflux carrier)PIN-FORMED基因组织表达是证明植物生长发育所需生长素浓度梯度的最好工具。本文通过RT-PCR与转基因方法研究水稻PIN(OsPIN)家族基因的表达模式,及其受激素与养分环境的影响。得到以下结果:
     1.OsPIN家族目前共发现9个成员,OsPIN家族蛋白结构包含两个疏水区和中间一个亲水区,且每个疏水区有五次跨膜折叠,两个跨膜区具有高度保守性,在第二个疏水区有一NPXXY的保守结构,此结构对内吞作用中的膜蛋白与受体蛋白的互作非常重要。
     2.OsPIN家族基因的表达存在一定的特异性。在茎、叶与颖壳中OsPINs基因主要集中在维管组织表达。在根中,OsPIN1b主要在根冠与中柱中表达,OsPIN4与OsPIN9主要在侧根原基与中柱中表达,其余基因主要在根分生区表达。同时OsPIN1b、OsPIN4与OsPIN9在不定根原基也有表达。
     3.OsPIN家族基因在根中的表达受到一定浓度的生长素与乙烯的诱导。
     4.氮、磷等营养对OsPIN家族基因的表达没有普遍的影响,但在缺氮再施加铵态氮短期处理后OsPIN5b的表达明显受到诱导,而缺磷抑制OsPIN4的表达。且此结果不受pH值影响。依据该结果推断铵态氮与磷饥饿信号可能参与生长素信号调控途径。
Phytohormone auxin is implicated in regulating the pattern of cell division and differentiation,and also plays an important role in plant tropisms and apical dominance.Polar transport of the auxin is mediated by plasma-membrane and endosome localized carrier proteins.PIN proteins are the well studied auxin efflux components implicated in the establishment of the auxin gradient required for growth and development of plants.In this study,we analyzed the expression patterns of OsPINs and the response to auxin and nutrients using RT-PCR and transgenic plants with GUS report gene.The results are summarized as follows:
     1.Rice(Oryza sativa L.) genome contains 9 PIN proteins.All OsPINs contain two hydrophobic domains(each with five transmembrane helices) separated by a hydrophilic loop.There is an internalization motif NPXXY in the second hydrophobic domain.This motif represents a conserved part of the sequence, which is important for the interaction of the transmembrane protein with the adaptor proteins during clathrin-dependent endocytosis.
     2.Our research revealed the overlapping but distinct expression patterns of these OsPIN genes.Histochemical analysis of promoter-driven GUS expression in transgenic rice showed a predominant activity in the vascular tissues of stem,leaf and panicle.There are predominant activity in root cap,stele and adventitious root primodia of OsPIN1b,lateral root primodia,stele and adventitious root primodia of OsPIN4 and OsPIN9,and the zone of cell division of another OsPIN genes.
     3.The expression of OsPINs in root are significantly induced by exogenous auxin and ethylene.
     4.There was no overall response of OsPINs to nitrogen and phosphorus,but the expression of OsPIN5b was significantly induced by NH_4~+ after pretreated with nitrogen starvation,and expression of OsPIN4 was reduced by Pi-starvation.The result indicate that NH_4~+-N and Pi-starvation signaling is involved in AUX signaling.
引文
Abas, L., R. Benjamins, N. Malenica, T. Paciorek, J. Wisniewska, J.C.Moulinier-Anzola, T. Sieberer, J. Friml, and C. Luschnig. 2006.Intracellular trafficking and proteolysis of the Arabidopsis auxin-efflux facilitator PIN2 are involved in root gravitropism. Nat Cell Biol 8:249-56.
    Aida, M., D. Beis, R. Heidstra, V. Willemsen, I. Blilou, C. Galinha, L. Nussaume,Y.S. Noh, R. Amasino, and B. Scheres. 2004. The PLETHORA genes mediate patterning of the Arabidopsis root stem cell niche. Cell 119:109-20.
    Benjamins, R., A. Quint, D. Weijers, P. Hooykaas, and R. Offringa. 2001. The PINOID protein kinase regulates organ development in Arabidopsis by enhancing polar auxin transport. Development 128:4057-67.
    Benkova, E., M. Michniewicz, M. Sauer, T. Teichmann, D. Seifertova, G. Jurgens,and J. Friml. 2003. Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115:591-602.
    Bhalerao, R.P., J. Eklof, K. Ljung, A. Marchant, M. Bennett, and G. Sandberg.2002. Shoot-derived auxin is essential for early lateral root emergence in Arabidopsis seedlings. Plant J 29:325-32.
    Blilou, I., J. Xu, M. Wildwater, V. Willemsen, I. Paponov, J. Friml, R. Heidstra,M. Aida, K. Palme, and B. Scheres. 2005. The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 433:39-44.
    Boonsirichai, K., C. Guan, R. Chen, and P.H. Masson. 2002. Root gravitropism: an experimental tool to investigate basic cellular and molecular processes underlying mechanosensing and signal transmission in plants. Annu Rev Plant Biol 53:421-47.
    Chambers, J.B., T.D. Williams, A. Nakamura, R.P. Henderson, J.M. Overton,and M.E. Rashotte. 2000. Cardiovascular and metabolic responses of hypertensive and normotensive rats to one week of cold exposure. Am J Physiol Regul Integr Comp Physiol 279:R1486-94.
    Chen, R., P. Hilson, J. Sedbrook, E. Rosen, T. Caspar, and P.H. Masson. 1998.The arabidopsis thaliana AGRAVITROPIC 1 gene encodes a component of the polar-auxin-transport efflux carrier. Proc Natl Acad Sci USA95:15112-7.
    Cho, M., S.H. Lee, and H.T. Cho. 2007. P-glycoprotein4 displays auxin efflux transporter-like action in Arabidopsis root hair cells and tobacco cells. Plant Cell 19:3930-43.
    Christensen, S.K., N. Dagenais, J. Chory, and D. Weigel. 2000. Regulation of auxin response by the protein kinase PINOID. Cell 100:469-78.
    Dai, Y., H. Wang, B. Li, J. Huang, X. Liu, Y. Zhou, Z. Mou, and J. Li. 2006. Increased expression of MAP KINASE KINASE7 causes deficiency in polar auxin transport and leads to plant architectural abnormality in Arabidopsis.Plant Cell 18:308-20.
    Decker, E.L., W. Frank, E. Sarnighausen, and R. Reski. 2006. Moss systems biology en route: phytohormones in Physcomitrella development. Plant Biol (Stuttg) 8:397-405.
    Delbarre, A., P. Muller, and J. Guern. 1998. Short-Lived and Phosphorylated Proteins Contribute to Carrier-Mediated Efflux, but Not to Influx, of Auxin in Suspension-Cultured Tobacco Cells. Plant Physiol 116:833-44.
    Deruere, J., K. Jackson, C. Garbers, D. Soll, and A. Delong. 1999. The RCN1-encoded A subunit of protein phosphatase 2A increases phosphatase activity in vivo. Plant J 20:389-99.
    Dhonukshe, P., F. Aniento, I. Hwang, D.G Robinson, J. Mravec, Y.D. Stierhof,and J. Friml. 2007. Clathrin-mediated constitutive endocytosis of PIN auxin efflux carriers in Arabidopsis. Curr Biol 17:520-7.
    Finn, R.D., J. Mistry, B. Schuster-Bockler, S. Griffiths-Jones, V. Hollich, T.Lassmann, S. Moxon, M. Marshall, A. Khanna, R. Durbin, S.R. Eddy,E.L. Sonnhammer, and A. Bateman. 2006. Pfam: clans, web tools and services. Nucleic Acids Res 34:D247-51.
    Forde, B.G. 2002. Local and long-range signaling pathways regulating plant responses to nitrate. Annu Rev Plant Biol 53:203-24.
    Friml, J., J. Wisniewska, E. Benkova, K. Mendgen, and K. Palme. 2002 a. Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis.Nature 415:806-9.
    Friml, J., A. Vieten, M. Sauer, D. Weijers, H. Schwarz, T. Hamann, R. Offringa,and G. Jurgens. 2003. Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature 426:147-53.
    Friml, J., E. Benkova, I. Blilou, J. Wisniewska, T. Hamann, K. Ljung, S. Woody,G. Sandberg, B. Scheres, G. Jurgens, and K. Palme. 2002 b. AtPIN4 mediates sink-driven auxin gradients and root patterning in Arabidopsis. Cell 108:661-73.
    Friml, J., X. Yang, M. Michniewicz, D. Weijers, A. Quint, O. Tietz, R. Benjamins,P.B. Ouwerkerk, K. Ljung, G. Sandberg, P.J. Hooykaas, K. Palme, and R.Offringa. 2004. A PINOID-dependent binary switch in apical-basal PIN polar targeting directs auxin efflux. Science 306:862-5.
    Galweiler, L., C. Guan, A. Muller, E. Wisman, K. Mendgen, A. Yephremov, and K. Palme. 1998. Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science 282:2226-30.
    Geldner, N., J. Friml, Y.D. Stierhof, G. Jurgens, and K. Palme. 2001. Auxin transport inhibitors block PIN1 cycling and vesicle trafficking. Nature 413:425-8.
    Geldner, N., N. Anders, H. Wolters, J. Keicher, W. Kornberger, P. Muller, A.Delbarre, T. Ueda, A. Nakano, and G. Jurgens. 2003. The Arabidopsis GNOM ARF-GEF mediates endosomal recycling, auxin transport, and auxin-dependent plant growth. Cell 112:219-30.
    Gil, P., E. Dewey, J. Friml, Y. Zhao, K.C. Snowden, J. Putterill, K. Palme, M.Estelle, and J. Chory. 2001. BIG: a calossin-like protein required for polar auxin transport in Arabidopsis. Genes Dev 15:1985-97.
    Heisler, M.G., C. Ohno, P. Das, P. Sieber, G.V. Reddy, J.A. Long, and E.M.Meyerowitz. 2005. Patterns of auxin transport and gene expression during primordium development revealed by live imaging of the Arabidopsis inflorescence meristem. Curr Biol 15:1899-911.
    Hulo, N., A. Bairoch, V. Bulliard, L. Cerutti, E. De Castro, P.S.Langendijk-Genevaux, M. Pagni, and C.J. Sigrist. 2006. The PROSITE database. Nucleic Acids Res 34:D227-30.
    Jaillais, Y., I. Fobis-Loisy, C. Miege, C. Rollin, and T. Gaude. 2006. AtSNX1 defines an endosome for auxin-carrier trafficking in Arabidopsis. Nature 443:106-9.
    Jaillais, Y., M. Santambrogio, F. Rozier, I. Fobis-Loisy, C. Miege, and T. Gaude.2007. The retromer protein VPS29 links cell polarity and organ initiation in plants. Cell 130:1057-70.
    Kleine-Vehn, J., P. Dhonukshe, M. Sauer, P.B. Brewer, J. Wisniewska, T.Paciorek, E. Benkova, and J. Friml. 2008. ARF GEF-dependent transcytosis and polar delivery of PIN auxin carriers in Arabidopsis. Current Biology 18:526-531.
    Laxmi, A., J. Pan, M. Morsy, and R. Chen. 2008. Light plays an essential role in intracellular distribution of auxin efflux carrier PIN2 in Arabidopsis thaliana.PLoS ONE 3:e1510.
    Lee, S.H., and H.T. Cho. 2006. PINOID positively regulates auxin efflux in Arabidopsis root hair cells and tobacco cells. Plant Cell 18:1604-16.
    Lomax, T.L., R.J. Mehlhorn, and W.R. Briggs. 1985. Active auxin uptake by zucchini membrane vesicles: quantitation using ESR volume and delta pH determinations. Proc Natl Acad Sci U S A 82:6541-5.
    Malenica, N., L. Abas, R. Benjamins, S. Kitakura, H.F. Sigmund, K.S. Jun, M.T.Hauser, J. Friml, and C. Luschnig. 2007. MODULATOR OF PIN genes control steady-state levels of Arabidopsis PIN proteins. Plant J 51:537-50.
    Marchant, A., J. Kargul, S.T. May, P. Muller, A. Delbarre, C.Perrot-Rechenmann, and M.J. Bennett. 1999. AUX1 regulates root gravitropism in Arabidopsis by facilitating auxin uptake within root apical tissues. EMBO J 18:2066-73.
    Matsuoka, S., D.A. Nicoll, R.F. Reilly, D.W. Hilgemann, and K.D. Philipson. 1993. Initial localization of regulatory regions of the cardiac sarcolemmal Na(+)-Ca2+ exchanger. Proc Natl Acad Sci U S A 90:3870-4.
    Michniewicz, M., M.K. Zago, L. Abas, D. Weijers, A. Schweighofer, I. Meskiene,M.G. Heisler, C. Ohno, J. Zhang, F. Huang, R. Schwab, D. Weigel, E.M.
    
    Meyerowitz, C. Luschnig, R. Offringa, and J. Friml. 2007. Antagonistic regulation of PIN phosphorylation by PP2A and PINOID directs auxin flux.Cell 130:1044-56.
    Morris, D.A. 2000. Transmembrane auxin carrier systems—dynamic regulators of polar auxin transport. Plant Growth Regul 32:161-72.
    Muday, G.K., and A. DeLong. 2001. Polar auxin transport: controlling where and how much. Trends Plant Sci 6:535-42.
    Muday, G.K., and A.S. Murphy. 2002. An emerging model of auxin transport regulation. Plant Cell 14:293-9.
    Muday, G.K., T.L. Lomax, and D.L. Rayle. 1995. Characterization of the growth and auxin physiology of roots of the tomato mutant, diageotropica. Planta 195:548-53.
    Muday, G.K., S.R. Brady, C. Argueso, J. Deruere, J.J. Kieber, and A. DeLong.2006. RCN1-regulated phosphatase activity and EIN2 modulate hypocotyl gravitropism by a mechanism that does not require ethylene signaling. Plant Physiol 141:1617-29.
    Ni, W.M., X.Y. Chen, Z.H. Xu, and H.W. Xue. 2002. A pin gene families encoding components of auxin efflux carriers in Brassica juncea. Cell Res 12:247-55.
    Okada, K., J. Ueda, M.K. Komaki, C.J. Bell, and Y. Shimura. 1991. Requirement of the Auxin Polar Transport System in Early Stages of Arabidopsis Floral Bud Formation. Plant Cell 3:677-684.
    Paponov, I.A., W.D. Teale, M. Trebar, K. Blilou, and K. Palme. 2005. The PIN auxin efflux facilitators: evolutionary and functional perspectives. Trends in Plant Science 10:170-177.
    Parry, G., A. Delbarre, A. Marchant, R. Swarup, R. Napier, C.Perrot-Rechenmann, and M.J. Bennett. 2001. Novel auxin transport inhibitors phenocopy the auxin influx carrier mutation aux1. Plant J 25:399-406.
    Peer, W.A., A. Bandyopadhyay, J.J. Blakeslee, S.N. Makam, R.J. Chen, P.H.Masson, and A.S. Murphy. 2004. Variation in expression and protein localization of the PIN family of auxin efflux facilitator proteins in flavonoid mutants with altered auxin transport in Arabidopsis thaliana. Plant Cell 16:1898-911.
    Petrasek, J., J. Mravec, R. Bouchard, J.J. Blakeslee, M. Abas, D. Seifertova, J.Wisniewska, Z. Tadele, M. Kubes, M. Covanova, P. Dhonukshe, P. Skupa,E. Benkova, L. Perry, P. Krecek, O.R. Lee, GR. Fink, M. Geisler, A.S.
    Murphy, C. Luschnig, E. Zazimalova, and J. Friml. 2006. PIN proteins perform a rate-limiting function in cellular auxin efflux. Science 312:914-8.
    Rashotte, A.M., A. DeLong, and G.K. Muday. 2001. Genetic and chemical reductions in protein phosphatase activity alter auxin transport, gravity response, and lateral root growth. Plant Cell 13:1683-97.
    Ruegger, M., E. Dewey, L. Hobbie, D. Brown, P. Bernasconi, J. Turner, G. Muday,and M. Estelle. 1997. Reduced naphthylphthalamic acid binding in the tir3 mutant of Arabidopsis is associated with a reduction in polar auxin transport and diverse morphological defects. Plant Cell 9:745-57.
    Sabatini, S., D. Beis, H. Wolkenfelt, J. Murfett, T. Guilfoyle, J. Malamy, P.Benfey, O. Leyser, N. Bechtold, P. Weisbeek, and B. Scheres. 1999. An auxin-dependent distal organizer of pattern and polarity in the Arabidopsis root. Cell 99:463-72.
    Schlicht, M., O. Samajova, D. Schachtschabel, S. Mancuso, D. Menzel, W.Boland, and F. Baluska. 2008. D'orenone Blocks Polarized Tip-Growth of Root Hairs by Interfering with the PIN2-Mediated Auxin Transport Network in the Root Apex. Plant J.
    Schnabel, E.L., and J. Frugoli. 2004. The PIN and LAX families of auxin transport genes in Medicago truncatula. Mol Genet Genomics 272:420-32.
    Schrader, J., K. Baba, S.T. May, K. Palme, M. Bennett, R.P. Bhalerao, and G.Sandberg. 2003. Polar auxin transport in the wood-forming tissues of hybrid aspen is under simultaneous control of developmental and environmental signals. Proc Natl Acad Sci U S A 100:10096-101.
    Sieberer, T., G.J. Seifert, M.T. Hauser, P. Grisafi, GR. Fink, and C. Luschnig.2000. Post-transcriptional control of the Arabidopsis auxin efflux carrier EIR1 requires AXR1. CurrBiol 10:1595-8.
    Sieburth, L.E., G.K. Muday, E.J. King, G Benton, S. Kim, K.E. Metcalf, L.Meyers, E. Seamen, and J.M. Van Norman. 2006. SCARFACE encodes an ARF-GAP that is required for normal auxin efflux and vein patterning in Arabidopsis. Plant Cell 18:1396-411.
    Smith, R.S., S. Guyomarc'h, T. Mandel, D. Reinhardt, C. Kuhlemeier, and P.Prusinkiewicz. 2006. A plausible model of phyllotaxis. Proceedings of the National Academy of Sciences of the United States of America 103:1301-1306.
    Tamaki, V., and H. Mercier. 2007. Cytokinins and auxin communicate nitrogen availability as long-distance signal molecules in pineapple (Ananas comosus).J Plant Physiol 164:1543-7.
    Turmel, M., C. Otis, and C. Lemieux. 2006. The chloroplast genome sequence of Chara vulgaris sheds new light into the closest green algal relatives of land plants. Mol Biol Evol 23:1324-38.
    Vieten, A., S. Vanneste, J. Wisniewska, E. Benkova, R. Benjamins, T. Beeckman,C. Luschnig, and J. Friml. 2005. Functional redundancy of PIN proteins is accompanied by auxin-dependent cross-regulation of PIN expression. Development 132:4521-31.
    Walch-Liu, P., Ivanov, II, S. Filleur, Y. Gan, T. Remans, and B.G. Forde. 2006.Nitrogen regulation of root branching. Ann Bot (Lond) 97:875-81.
    Xu, M., L. Zhu, H. Shou, and P. Wu. 2005. A PIN1 family gene, OsPIN1, involved in auxin-dependent adventitious root emergence and tillering in rice. Plant Cell Physiol 46:1674-81.
    Zazimalova, E., P. Krecek, P. Skupa, K. Hoyerova, and J. Petrasek. 2007. Polar transport of the plant hormone auxin - the role of PIN-FORMED (PIN) proteins. Cell Mol Life Sci 64:1621-37.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700