阿魏硝胺对心肌缺血/再灌注的保护作用和机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:研究阿魏硝胺(FLNT)对心肌缺血/再灌注(I/R)的保护作用并探讨其可能作用机制。
     方法:建立大鼠在体I/R模型、后期预适应(LPC)模型,测定心肌保护的血清学和组织学指标,观察FLNT对I/R损伤的治疗作用和LPC预防性保护作用;建立血管张力体外模型观察FLNT对KCl、去甲肾上腺素和乙酰胆碱等预收缩的外周血管和冠脉血管舒张作用;运用鸟苷酸环化酶(GC)和钾通道的阻断剂预孵育血管和膀胱平滑肌,观察FLNT对GC酶和钾通道的作用;对FLNT代谢后血清和尿液样品进行HPLC-MS-MS分析,观察FLNT的主要代谢途径,并对其主要代谢物进行抗心肌I/R损伤和血管舒张的活性研究。
     结果:FLNT对I/R损伤有治疗性和预适应性保护作用,它显著减少梗死范围(IS),降低血清中肌酸激酶(CK),和乳酸脱氢酶(LDH)的水平,减轻细胞膜损伤;减轻心肌缺血/再灌造成心电图的改变;提高组织中NO的含量;降低膜脂质过氧化产物丙二醛的水平,提高机体的抗氧化能力。
     另外,FLNT能诱导心肌后期缺血预适应,减少IS,降低CK、LDH水平,提高I/R后心肌组织中Mn-SOD和Bcl-2/Bax的水平,增强了机体的抗氧化和抗凋亡的能力,提高无I/R过程的心肌组织中诱导型一氧化氮合成酶(iNOS)的水平,为LPC提供保护介质。
     FLNT对离体外周血管和冠脉血管都有剂量依赖性舒张作用,对动脉血管平滑肌的舒张为非内皮依赖的,鸟苷酸环化酶(GC)抑制剂能明显减弱FLNT的血管舒张作用。
     FLNT能显著减弱血管平滑肌和膀胱平滑肌内向整流性、ATP依赖性和钙离子激活性钾通道阻断剂的血管收缩作用。
     FLNT的代谢途径有脱硝基和脱乙酰基两种途径,其中脱乙酰基代谢物去乙酰阿魏硝胺(N-(2-羟乙基)阿魏酰胺硝酸酯,DFNT)和FLNT一样有抗心肌I/R损伤和舒张血管的活性。
     结论:FLNT有抗心肌缺血/再灌注损伤的治疗性和缺血预适应性保护作用;有舒张外周血管,冠脉血管和膀胱平滑肌的活性,对动脉血管平滑肌的舒张为非内皮依赖的。其作用机制可能与其作为NO供体,刺激鸟苷酸环化酶和开放钾离子通道,抑制电压依赖性钙通道或受体操纵性钙通道,降低细胞内钙释放、阻止细胞外钙内流有关而舒张血管,增强机体抗氧化和抗凋亡能力作用有关。FLNT脱乙酰基主要代谢物DFNT有抗心肌缺血/再灌注损伤和血管舒张的活性。
Aim: to investigate the cardioprotection of N—2-(acetylferulamidoethyl)nitrate(FLNT) against myocardium ischemia/reperfusion(I/R) injury and the possible mechanism
     Methods: Three varieties of animal experimental models were successfully made: myocardium ischemia/reperfusion (I/R), late ischemia preconditioning (LPC) and vessel tension in vitro. The makers of cardioprotection against myocardium I/R damage were investigated. The vessel tension was investigated to study the vasorelaxation effect of FLNT in vitro. And the the blockers of guanylate cyclase(GC) and potassium channels were used to study the possible mechanism of vasoreactivity. The serum and urine were analysed through HPLC-MS-MS to identify the possible metabolites of FLNT in rats. And the activity of the major metabolite DFNT on the cardioprotection against myocardium I/R injury and its vasoactiviry was also investigated.
     Results: FLNT could protect rats myocardium against I/R through the stragies of treatment and preconditioning. It diminished the infarct size, reduced the level of creatine kinase(CK) and lactate dehydrogenase (LDH). FLNT increase the level of NO in heart tissue, reduced the level of maleic dialdehyde (MDA). FLNT also could induce late ischemia preconditioning in rats, it diminished myocardium infarct size, reduced the level of CK and LDH, increased the level of Mn-SOD and Bcl-2/Bax in heart tissue after I/R procedure, which strengthen the potency of anti-oxidant and anti-apoptosisasis, It increase the level of induced nitric oxide synthase in heart tissues without I/R procedure, which supples the effect media of LPC.
     FLNT could relax the peripheril vessels and coronary artery. The relaxation on arteries was endothium-independent. The blocker of guanylate cyclase(GC) could diminish the relaxation of FLNT.
     The metabolites of FLNT included two varaties: nitro group free metabolites and acetyl group free metabolites. The major acetyl group free metabolite (N-2-(ferulamidoethyl)nitrate(DFNT) had the activity of cardioprotection against I/R and vasorelaxation.
     Conclusion: FLNT had the activities of protecting myocardium against I/R injury through pathways of treatment and ischemia proconditioning. The machanis was possibly related to its characteristics of anti-oxidant, anti-apoptosis. It could relax peripheral artery and coronary artery possibly by stimulating GC and opening potassium channels as nitric oxide donor. Its major acetyl group free metabolite DFNT had the activities of cardioprotection against myocardium I/R injury and vasorelaxation.
引文
1. Hill M, Takano H, Tang XL, et al. Nitro GLycerin induces late preconditioning against myocardial infarction in conscious rabbits despite development of nitrate tolerance[J]. Circultion, 2001, 104: 694-699.
    2. Leesar MA, Stoddard MF, Dawn B, et al. Delayed preconditioning-mimetic action of nitro GLycerin in patients undergoing coronary angioplasty[J]. Circulation, 2001, 2: 660-668.
    3. Qin Yang, Rong-Zhen Zhang, Anthony PC, Guo-Wei He. Release of Nitric Oxide and Endothelium-Derived Hyperpolarizing Factor (EDHF) in Porcine Coronary Arteries Exposed to Hyperkalemia: Effect of Nicorandil[J]. Ann Thorac Surg 2005; 79: 2065-2071.
    4. Hitoshi Takano, Srinivas Manchikalapudi, Xian-Liang Tang, Nitric Oxide Synthase Is the Mediator of Late Preconditioning Against Myocardial Infarction in Conscious Rabbits, Circulation. 1998, 98: 441-449.
    5. Dawn B, Bolli R, Role of nitric oxide in myocardial preconditioning[J], Ann NY Acad Sci, 2002, 962: 18-42.
    6. Kleschyov AL, Oelze M, Daiber A, Huang Y, Mollnau H, Schulz E, Sydow K, Fichtlscherer B, Mulsch AM. Dose Nitric Oxide Mediate the Vasoditor Activity of NitroGLycerin. Circ Res, 2003, 93: e104-e112.
    7. Magnon M, Durand I, Cavero I. The contribution of guanylate cyclase stimulation and K+ channel opening to nicorandil-induced vasorelaxation depends on the conduit vessel and on the nature of the spasmogen. J Pharmacol Exp Ther. 1994, 268(3): 1411-8.
    8. Ueda K, Goto C, Jitsuiki D, Umemura T, Nishioka K, Kimura M, et al, The nicorandil-induced vasodilation in humans is inhibited by miconazole. J Cardiovasc Pharmacol, 2005, 45(4): 290-294.
    9. Cheryl L Holmes, Donald W Landry and John T Granton. Vasopressin and the cardiovascular system part 2 -clinical physiology, Critical Care, 2004, 8 (1): 15-23.
    10. SD Koh, JD Campbell, A Carl and KMSanders, Nitric oxide activates multiple potassium channels in canine colonic smooth muscle, The Journal of Physiology, 1995, 489 (3): 735-743.
    11. Haburcak M, Wei L, Viana F, Prenen J, Droogmans G, Nilius B. Calcium-activated potassium channels in cultured human endothelial cells are not directly modulated by nitric oxide. Cell Calcium. 1997, 21(4): 291-300.
    12.娄建石,梁会旭,刘艳霞.硝酸甘油与丁丙诺啡合用抗大鼠心肌缺血的药理性预适应研究:早期心脏保护作用[J].中国药理学通报,2003,199(10):1119-1125.
    13. Bradford HM. A rapid and sensitive method for the guantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Anal Biochem, 1976, 72: 248-254.
    14.陈修,陈维洲,曾贵云.心血管药理学[M].北京:人民卫生出版社(第三版),2002.4-4
    15. Duranski MR, Greer JJ, Dejam A, et al. Cytoprotective effects of nitrite during in vivo ischemia-reperfusion of the heart and liver[J]. J Clin Invest, 2005, 115: 1232-1240
    16.刘皋林,安登魁,张正行.新型NO供体SP/W-5186在心肌缺血/再灌损伤中的作用和机制[J].中国临床药学杂志,2000,9(2):84-90.
    17. Feldman T, Chua KG, Childers RW. R wave of the surface and intracoronary electrogram during acute coronary artery occlusion [J]. Am J Cardiol. 1986; 58(10): 885-90
    18. Kishida H, Murao S. Effect of a new coronary vasodilator, nicorandil, on variant angina pectoris[J]. Clin Pharmacol Ther, 1987, 42(2): 166-174
    19. Sato S, Ikegaki I, Asano T, Shimokawa H. Antiischemic properties of fasudil in experimental models of vasospastic angina [J]. Jpn J Pharmacol. 2001, 87(1): 34-40.
    20. Tomoko Uchino, Hideo Iwasaka, Satoshi Hagiwara, Hiroshi Miyakawa, Takayukf Noguchi, Tomoko Uchino, et al. Nitric Oxide Triggers the Late Phase of Preconditioning in the Heart by Inducing HSP 70 Expression, Anesthesiology[J], 2005, 103: A482
    21. Jun M, Yukihiro H, Michiya O, Satoshi K, Takako F, Hisayoshi F. Expression of bcl-2 Protein, an Inhibitor of Aproptosis, and Bax, an Accelerator of Apoptosisosis, in Ventricular Myocytes of Human Hearts with Myocadial Infarction. Circulation, 1996; 94: 1506-1512.
    22. Xian-Liang Tang, Yu-Ting Xuan, Yanqing Zhu, Gregg S, Roberto B. Nicorandil induces late preconditioning against myocardial infarction in conscious rabbits. Am J Physiol Heart Circ Physiol, 2004, 286: H1273-H1280.
    23. Pieper GM, Gross GJ, Salutary action of nicorandil, a new antianginal drug, on myocardial metabolism during ischemia and postischemic function in a canine preparation of brief, respective coronary artery occlusions: comparison with isosorbide dinitrate[J]. Circulation, 1987, 76: 916-928.
    24. Sasaaki N, Sato T, Ohler A, et al, Activation of mitochondrial ATP-dependent potassium channels by nitric oxide[J]. Circulation, 2000, 101: 439-445.
    25. Steven P. Jonesl, Michaela R. Hoffmeyerl, Brent RS et al, Role of intracellular antioxidant enzymes after in vivo myocardial ischemia and reperfusion[J]. Am J Physiol Heart Circ Physiol 2003, 284(1): H277-282.
    26.张峰,梅其炳,张涛.内源性及外源性一氧化氮诱导心肌细胞预适应的延迟保护作用[J].中华麻醉学杂志[J],2004,24(2):113-115.
    27. Bolli R, Dawn B, Tang XL, et al. The nitric oxide hypothesis of late phase of preconditioning[J], Basic Res Cardiol, 1998, 93: 325-338.
    28. Nakano A, Liu GS, Heusch G, Downey JM, Cohen MV, Exogenous nitric oxide can trigger a preconditioned state through a free radical mechanism, but endogenous nitric oxide is not a trigger of classical ischemic preconditioning[J]. J-Mol-Cell-Cardiol. 2000, 32(7): 1159-1167.
    29. Isabella Tritto, Davide D'Andrea, Nicola Eramo, et al, Oxygen Radicals Can Induce Preconditioning in Rabbit Hearts[J], Circulation Research. 1997; 80: 743-748.
    30. Bolli R, Cardioprotective function of inducible nitric oxide synthase and role of nitric oxide in myocardial ischemia and preconditioning: an overview of a decade of reserves, J Mol Cell Cardiol[J], 2001, 33: 1897-1918.
    31. Jones WK, Flaherty MP, Tang XY, et al. Ischemic preconditioning increase iNOS transcript levels in conscious rabbits via a nitric oxide-dependent mechanism[J]. J Mol Cell Cardiol, 1999, 31(8): 1469-1481.
    32. Guo Y, Stein WJ, Wu X, et al, Late preconditioning induced by NO donors, adenosine Al receptor agonists, and deltal-opioid receptor agonists is mediated by iNOS[J], Am J Physiol Heart Circ Physiol, 2005, 289(5): H2251-H2257.
    33. Li Q, Guo Y, Xuan YT, et al, Gene therapy with inducible nitric oxide synthase protects against myocardial infarction via a cyclooxygenase-2-dependent mechanism[J]. Circ Res, 2003, 92: 741-748.
    34. Beckman JS, Beckman TW, Chen J et al, Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide[J], Proc Natl Acad Sci USA, 1990, 87: 1620-1624.
    35. Hockenbery DM, Zutter M, Hickey W, Nahm M, Korsmeyer SJ. Bcl-2 protein is topographically restricted in tissues characterized by apoptosisotic cell death. Proc Natl Acad Sci USA, 1991; 88: 6961-5.
    36. Jacobson MD. Reactive oxygen apecies and programmed cell death. Trends Biochem Sci, 1996, 21(3): 83-86.
    37. Mikhail P, Verma S, Fedak PW, Weisel R D, Li R K. Does ischemic preconditioning afford clinically relevant cardioprotection? Am-J-Cardiovasc-Drugs. 2003; 3(1): 1-11.
    38. Glavind-Kristensen M, Matchkov V, Hansen VB, Forman A, Nilsson H, Aalkjaer C, KATP-channel-induced vasodilation is modulated by the Na, K-pump activity in rabbit coronary small arteries.. Br J Pharmacol. 2004, 143(7): 872-80.
    39. R Loutzenhiser, Y Matsumoto, W Okawa and M Epstein, H(+)-induced vasodilation of rat aorta is mediated by alterations in intraceltular calcium sequestration, Circulation Research, Vol 1990, 67: 426-439.
    40. Dhanakoti, SN, Gao Y, Nguyen MQ, and Raj JU. Involvement of cGMP-dependent protein kinase in the relaxation of ovine pulmonary arteries to cGMP and cAMP. J Appl Physiol 2000, 88: 1637-1642,.
    41. Toyoshima, H, Nasa Y, Hashizume Y, goseki Y, Isayama Y, Koshaka Y, Yamada T, and Takeo S. Modulation of cAMP-mediated vasorelaxation by endothelial nitric oxide and basal cGMP in vascular smooth muscle. J Cardiovasc Pharmacol 1998, 32: 543-551.
    42. Tune JD, Gorman MW, Feigl EO. Matching conorary blood flow to myocardial oxygen consumption. J Appl Physiol, 2004, 97(1): 404-415.
    43. Fishman AP. Hypoxia and its effects on the pulmonary circulation[J]. Circ Res, 1976, 38: 221.
    44. Ignarro LJ, Ross G, Tillisch J. Pharmacology of endothelium-derived nitric oxide and nitrovasodilators[J]. West J Med, 1991, 154: 5.
    45.王惠娣,汝海龙,王宵霞.木犀草素对大鼠主动脉的舒张作用及相关机制研究[J].中国药学杂志,2005,40(6):427-430.
    46.刘书勤,藏伟进,李增利,等.电压激活的钾通道阻断剂抑制山茛菪碱松弛去甲肾上 腺素预收缩的兔主动脉平滑肌[J].生理学报,2005,57(1):21-26.
    47. Holzmann S, Kukovetz WR, Braida C, Poch G. Pharmacological interaction experiments differentiate between GLybenclamide-sensitive K+ channels and cyclic GMP as components of vasodilation by nicorandil. Eur J Pharmacol. 1992, 29, 215(1): 1-7.
    48. Nelson MT, Quayle JM. Physiological roles and properties of potassium channels in arterial smooth muscle, Am J Physiol Cell Physiol 1995, 268: C799-C822.
    49. Gopalakrishnan M, Shieh CC, Potassium channel subtypes as molecular targets for overactive bladder and other urological disorders, Expert Opin Ther Targets. 2004, 8(5): 437-58.
    50. Milicic I, Buckner SA, Daza A, Coghlan M, Fey TA, Brune ME, Gopalakrishnan M. Pharmacological characterization of urinary bladder smooth muscle contractility following partial bladder outlet obstruction in porcines. Eur J Pharmacol. 2006, 17; 532(1): 107-14.
    51. Q Zhou, N Satake, S Shibata, The inhibitory mechanisms of nicorandil in isolated rat urinary bladder and femoral artery., Eur J Pharmacot, 1995, 273: 153-159.
    52. Kovalev Ⅳ, Popov AG, Panov AA, Borodin IuL, Afinogenova IaD, Kapilevich LV, Baskakov MB, Medvedev MA. Mechanisms of NO-dependent relaxation in smooth muscles of the rat aorta with nitro compounds. Eksp Klin Farmakol. 2001, 64(3): 33-6
    53. Badawi JK, Langbein S, Current diagnostics and therapy of the overactive bladder and urge incontinence, Dtsch Med Wochenschr. 2005, 130(24): 1503-1506.
    54. Badawi JK, Langbein S, Selective beta-adrenoceptor agonists, calcium antagonists and potassium channel openers as a possible medical treatment of the overactive bladder and urge incontinence. Pharmazie, 2006, 61(3): 175-178.
    55. Moon A. Influence of nitric oxide signalling pathways on pre-contracted human detrusor smooth muscle in vitro,, BJU-Int. 2002 Jun; 89(9): 942-949.
    56. Fujiwara M, Andersson K, Persson K. Nitric oxide-induced cGMP accumulation in the mouse bladder is not related to smooth muscle relaxation. Eur J Pharmacol. 2000, 401(2): 241-250.
    57.王东文,双卫兵,高俊平 等.非胰岛素依赖型糖尿病大鼠膀胱兴奋性自律性以及舒张功能的改变,中华实验外科杂志,2004,21(12):1533
    58.方光光,曾一平,王学仁,苏学宁.吡那地尔及苄基四氢巴马叮对离体大鼠膀胱平滑肌和豚鼠心房的影响,同济医科大学学报,1995,24(5):349-353.
    59. Scott A. Barman, Shu Zhu, Guichan Han, and Richard E. White, cAMP activates BKCa channels in pulmonary arterial smooth muscle via cGMP-dependent protein kinase, Am J Physiol Lung Cell Mol Physiol, 2003, 284: L1004-L1011.
    60. Peng, W, Hoidal JR, Farrukh IS. Regulation of Ca~(2+)-activated K~+ channels in pulmonary vascular smooth muscle cells: role of nitric oxide, J Appl Physiol, 1996, 81: 1264-1272.
    61. Hirsi KA, Kenji K, Hiroyuki N. Pharmacological and physiological significance of ion channels and factors that modulate them in vascular tissues. Pharmacol Rev, 1995, 47: 387-392.
    62. Wang XL, Hua Z, Zhang LM. Effect of potassium channel blockers on isolated rat atrium. Drug Dev Res, 1997, 39: 161-165.
    63. Malmgren A, Andersson KE, Andersson PO, Fovaeus M, Sjorgren C. Effects of cromakalim (BRL 34915) and pinacidil on normal and hypertrophied rat detrusor in vitro. J Urol 1990, 143: 828-834.
    64. Malmgren A, Andersson KE, Sjorgren C, Andersson PO. Effects of pinacidil and cromakalim (BRL 34915) on bladder function in rats with detrusor instability. J Urol 1989; 142: 1134-1138.
    65. Aman SH, Natascha HC, Brian EM, James F, Gerald SM, Kanji N. Glyceryl Trinitrate-Induced Vasodilation Is Inhibited by Ultraviolet Irradiation Despite Enhanced Nitric Oxide Generation: Evidence for Formation of a Nitric Oxide Conjugate, Pharmacology and experimental therapetics, 1999, 289(2): 895-900.
    66. Takaharu I, Masami H, Shoichi I. 2-Nicotinamidoethyl acetate (SG-209) is a potassium channel opener: Structure activity relationship among nicorandil derivatives, Naunyn-Schmiedeberg's Archives of Pharmacology. 1991, 344 (2): 235-239.
    67.郭继芬,孙璐,钟大放.用液相色谱-离子肼质谱联用检测兔体液中阿普唑仑及其主要代谢产物[J].沈阳药科大学学报,2000,17(5):358-360.
    68.常雁,再帕尔阿不力孜,王慕邹.串联质谱新技术及其在药物代谢研究中的应用进展,药学学报,2000,35(1):73-78.
    69. Abou-Mohammed G, Kaesemeyer WH, Caldwell RB, Caldwell RW. Role of 1-arginine in the vascular actions and development of toltolerance to nitro GLycerin. Br J Pharmacol 2000; 130: 211-218.
    70. Hirohito Y, Aizo F, Tatsuhichiro H, Jirou T, Yoshiyuki I. Effect of Isosorbide Dinitrate on Nitric Oxide Synthase under Hypoxia Pharmacology 2001; 62: 10-16.
    71. Dejam A, Hunter CJ, Schechter AN, Gladwin MT, Emerging role of nitrite in human biology, Blood Cells Mol Dis. 2004, 32(3): 423-429.
    72. Mark R, Duranski J, Greet M, Andre D, Sathya J, Neil H, William L, et al. Cytoprotective effects of nitrite during in vivo ischemia-reperfusion of the heart and liver. J Clin Invest. 2005, 115(5): 1232-1240.
    73. Andrew W, Richard B, Peter M, Rakesh U, Nigel B, Amrita A. Reduction of nitrite to nitric oxide during ischemia protects against myocardial ischemia-reperfusion damage. PNAS, 2004, 101(37): 13683-13688.
    74. Masini E, Bianchi S, Mugnai L, Gambassi F, Lupini M, Pistelli A, Mannaioni PF. The effect of nitric oxide generators on ischaemia reperfusion injury and histamine release in isolated perfused guinea-pig heart. Agents Actions, 33: 53-56.
    75. Massoudy P, Becker BF, Gerlach E. Nitric oxide accounts for postischaemic cardioprotection resulting from angiotensin-converting enzyme inhibition: indirect evidence for a radical scavenger effect in isolated guinea pig heart. J. Cardiovasc. Pharmacol. 1995, 25: 440-447.
    76. Bolli R. The Late Phase of Preconditioning. Circulation Research. 2000, 87: 972-987.
    77. Beckman JS, Koppenol WH. Nitric oxide, superoxide, and peroxynitrite: the good, the bad and ugly. Am. J. Physiol. 1996, 271: C1424-C1437.
    78. Rubbo H, Radi R, Trujillo M, Telleri R, Kalyanaraman B, Barnes S, Kirk M, Reeman BA. Nitric oxide regulation of superoxide and peroxynitrite-dependent lipid peroxidation. Formation of novel nitrogen-containing oxidized lipid derivatives. J. Biol. Chem. 1994, 269: 26066-26075
    79. Taimor G, Hofstaetter B, Piper HM. Apoptosis induction by nitric oxide in adult cardiomyocytes via cGMP-signaling and its impairment after simulated ischaemia. Cardiovasc. Res. 2000, 45: 588-594.
    80. Gao F, Gao E., YUE TL, OhlsteiN EH, Lopez BL, Christopher TA, Ma XL. Nitric oxide mediates the antiapoptotic effect of insulin in myocardial ischaemia-reperfusion: the roles of PI3-kinase, Akt, and endothelial nitric oxide synthase phosphorylation. Circulation, 2002, 105: 1497-1502.
    81. Sam F, Sawyer DB, Xie Z, Chang DL, Ngoy S, Brenner DA, Siwik DA, Singh K, Apstein CS, Colucci WS. Mice lacking inducible nitric oxide synthase have improved left ventricular contractile function and reduced apoptotic cell death late after myocardial infarction. Circ. Res. 2001, 89: 351-356.
    82. Pasquale P, Amedeo C, Daniele M. et al. Coronary endothilial dysfunction after ischemia and reperfusion and its prevention by ischemic preconditioning. Ital Heart J, 2003, 4(6): 383-394.
    83. Wink DA, Hanbauer I, Krishna MC. Nitric oxide protects against cellular damage and cytotoxicity from reactive oxygen species. Proc Natl Acad Sci USA, 1993, 90: 9813~9817.
    84. Villarroya M, Lopez MG, de Pascual R, Garcia AG., Preclinical profile of PF9404C, a nitric oxide donor with beta receptor blocking properties. Cardiovasc Drug Rev. 2005, 23(2): 149-160.
    85. Khattar RS, Senior RS, Marco BM, Lahiri, A. Efficacy of ITF-296, a Nitric Oxide Donor, in Patients with Chronic Stable Angina. Journal of Cardiovascular Pharmacology. 1998, 32(2): 295-299.
    86.曾志勇,王志农,徐志云,等.缺血预处理对缺血再灌注心肌细胞凋亡的影响[J].第二军医大学学报,2003,24(3):255-257.
    87. Tsao PS, Aoki N, Lefer DJ, et al. Time course of endothelial dysfunction and myocardial injury during myocardial ischemia and reperfusion in the cat. Circulation, 1990, 82: 1402-1412.
    88. Lefer AM, Lefer DJ. The role of nitric oxide and cell adhesion molecules on the microcirculation in ischemia-reperfudion. Cardilvasc Res, 1996, 32: 723-725.
    89. Qining Qin, Xi-Ming Yang, Lin Cui, Stuart DC, Michael VC, Natasha CB, Thomas ML, James MD. Exogenous NO triggers preconditioning via a cGMP- and mitoK_(ATP)-dependent mechanism Am J Physiol Heart Circ Physiol 2004, 287: H712-H718.
    90. Ghosh S, Standen NB, Galinanes M. Evidence for mitochondrial K_(ATP) channels as effectors of human myocardial preconditioning. Cardiovasc Res. 2000, 45: 934-940.
    91. Masashi S, Norihito S, Takashi M, Naoya S, Yuki OS, Masaji T, Susumu S, Eduardo M, Haruaki N. Role of sarcolemmal K_(ATP) channels in cardioprotection against ischemia/reperfusion injury in mice, J Clin Invest. 2002, 109(4): 509-516.
    92. Das B, Sarkar C., Is the sarcolemmal or mitochondrial K(ATP) channel activation important in the antiarrhythmic and cardioprotective effects during acute ischemia/reperfusion in the intact anesthetized rabbit model? Life Sci. 2005, 77(11): 1226-1148.
    93.冯力,邱健,马骏,黄小波 查道刚,宾建平.缺血再灌注不同时间点给予尼可地尔对犬心肌梗死范围的影响,中国危重病急救医学,2005,17(3):125-128.
    94.周寿红,凌宏艳,田绍文,刘显庆,王炳香,胡弼.17 β-雌二醇对去卵巢胰岛素抵抗大鼠主动脉舒缩功能损伤的保护作用,生理学报,,2005,57(5):627-635.
    95. Sellke FW, Myers PR, Bates N, Harrison DG. Influence of vessel size on the sensitivity of porcine coronary microvessels to nitroglycerin, Am J Physiol Heart Circ Physiol, 1990, 258: H515-H520.
    96. Brodmann M, Lischnig U, Lueger A, Stark G, Pilger E. The effect of the K+ agonist nicorandil on peripheral vascular resistance. Int J Cardiol, 2006, 111(1): 49-52.
    97. Meisheri KD, Cipkus-Dubray LA, Hosner JM, Khan SA., Nicorandil-induced vasorelaxation: functional evidence for K+ channel-dependent and cyclic GMP-dependent components in a single vascular preparation. J Cardiovasc Pharmacol, 1991, 17(6): 903-912.
    98. Manuel I, Juan T. Effects of nicorandil as compared to mixtures of sodium nitroprusside and levcromakalim in isolated rat aorta. British Journal of Pharmacology, 1999, 126: 1025-1033.
    99. Deka DK, Ravi Prakash V, Mishra SK. Sodium nitroprusside relaxes goat coronary artery through activation of calcium-dependent K+ channels, Indian J Exp Biol. 2005, 43(4): 324-329.
    100. Chih-Ming LT, Mohammad A, Tabrizi F, Ho-Leung Fung. Differential Sensitivity among Nitric Oxide Donors toward ODQ-Mediated Inhibition of Vascular Relaxation, pharmacology and experimental therapy. 2000, 292(2): 737-742.
    101. O'Rourke, Stephen T. K_(ATP) Channel Activation Mediates Nicorandil-Induced Relaxation of Nitrate-Tolerant Coronary Arteries. Journal of Cardiovascular Pharmacology. 1996, 27(6): 831-837.
    102. Butera JA, Jenkins DJ, Lennox JR, Sheldon JH, Norton NW, Warga D, Argentieri TM, Synthesis and bladder smooth muscle relaxing properties of substituted 3-amino-4-ary1-(and aralky1-)cyclobut-3-ene-1, 2-diones. Bioorg Med Chem Lett. 2005, 15(10): 2495-2501.
    103. Bolotina VM, Najibi S, Palacino JJ, Pagano PJ, Cohen RA. Nitric oxide directly activates calcium-dependent potassium channels in vascular smooth muscle. Nature. 1994, 368: 850-853.
    104. Archer SL, Huang JM, Hampl V, Nelson DP, Shultz PJ, Weir EK: Nitric oxide and cGMP cause vasorelaxation by activation of a charybdotoxin-sensitive K channel by cGMP-dependent protein kinase. Proc Natl Acad Sci USA 1994, 91: 7583-7587.
    105. WajimaT, Shimizu S, Hiroi T, Ishii M, Kiuchi Y. Reduction of myocardial infarct size by tetrahydrobiopterin: possible involvement of mitochondrial KATP channels activation through nitric oxide production.: J-Cardiovasc-Pharmacol. 2006, 47(2): 243-249.
    106. Shinbo A, Iijima T. Potentiation by nitric oxide of the ATP-sensitive K~+ current induced by K~+ channel openers in guinea-porcine ventricular cells. Br. J Pharmacol. 1997, 120: 1568-1574.
    107. Maczewski M, Beresewicz A. Inhibitors of nitric oxide synthesis and ischemia/reperfusion attenuate coronary vasodilator response to pinacidil in isolated rat heart. J. Physiol. Pharmacol. 1997, 48: 737-737
    108. Ramzi O, Venkata RE, Shinji O Michael B, Kavitha K, Rakesh CK. Opening of mitochondrial KATP channel induces early and delayed cardioprotective effect: role of nitric oxide Am J Physiol Heart Circ Physiol, 1999, 277: H2425-H2434.
    109. Maynes, JH, Robinson J, Saunders L, Taylor AE, and Strada SJ. Role of cAMP-dependent protein kinase in cAMP-mediated vasodilation. Am J Physiol Heart Circ Physiol, 992, 262: H511-H516.
    110. Murphy ME, Brayden JE. Nitric oxide hyperpolarizes rabbit mesenteric arteries via ATP-sensitive potassium channels, The Journal of Physiology, 1995, 486 (1): 47-58.
    [1] Elkayam U. Prevention of nitrate tolerance with concomitant administration of hydralazine[J]. Can J Cardiol, 1996, 12(Suppl C): 17C-21C.
    [2] Loeb HS, Johnson G, Henrick A, et al. Effect of enalapril, hydralazine plus isosorbide dinitrate and prazosin on hospitalization in patients with chronic congestive heart failure. The V-HeFT VA Cooperative Studies Group[J]. Circulation, 1993, 87: Ⅵ178-Ⅵ187.
    [3] 柳玉华,方毅民,范会兵等.硝酸异山梨酯与还原型谷胱甘肽联合治疗心绞痛临床观察[J].中国全科医学,2005,8(5):415-415.
    [4] 吴辉,冼绍祥,黄衍寿.川芎嗪对硝酸甘油耐药性的拮抗作用[J].中药新药与临床药 理,2000,11(4):201-204.
    [5] Mukherjee D, Lingam P, Chetcuti S, et al. Missed opportunities to teat atherosclerosis in patients undergoing peripheral vascular interventions: insights from the University of Michigan peripheral Vascular Disease Quality Improvement Initiative (PVD-QI2)[J]. Circulation, 2002, 106: 1909-1912
    [6] Yusuf S, Zhao F, Mehta SR, et al. Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. The Heart Outcomes Prevention Evaluation Study Investigators[J]. N Engl J Med, 2000, 342: 145-53.
    [7] Gibbons RJ, Abrams J, Chatterjee K et al. ACC/AHA 2002 guideline update for the management of patients with chronic stable angina-summary article: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on the Management of Patients With Chronic Stable Angina)[J]. Circulation, 2003; 107: 149-158
    [8] Wald NJ, Law MR.. A strategy to reduce cardiovascular disease by more than 80%[J]. BMJ, 2003, 326: 1419-1423.
    [9] Stanley Chetcuti, Debabrata Mukherjee. Combination Secondary Prevention Therapies in Vascular Diseases[J]. Vascular Disease Prevention, 2005, 2(1): 17-19.
    [10] Debabrata Mukherjee, Jianming Fang, Stanley Chetcuti et al. Impact of Combination Evidence-Based Medical Therapy on Mortality in Patients With Acute Coronary Syndromes[J]. Circulation, 2004; 109: 745-749.
    [11] Schleinitz MD, Weiss JP, Owens DK. Clopidogrel werus aspirin for secondary prophylaxis of vascular events: a cost-effectiveness analysis[J]. Am J Med, 2004, 116: 797-806
    [12] Yusurf S, Zhao F, Mehta SR, Chrolavicius S, et al. Effects of clopidogrel in addition to aspirin in patients with acute coronary syndromes without ST-segment elevation[J]. N Engl J Med, 2001, 345: 494-502
    [13] Ahn JC, Song WH, Kwon JA. Effects ofcilostazol on platelet activation in coronary stenting patients who already treated with aspirin and clopidogrel [J]. Korean J Intern Med, 2004, 19(4): 230-236.
    [14] 邓中龙,罗海明,符德玉等.氯吡格雷加用较大剂量辛伐他汀对不稳型心绞痛患者早期预 后影响[J].中国临床医学,2005,12(3):525-527.
    [15] Matthew T Roe, Cynthia L Green, Robert P Giugliano. Improved Speed and Stability of ST-Segment Recovery With Reduced-Dose Tenecteplase and Eptifibatide Compared With Full-Dose Tenecteplase for Acute ST-Segment Elevation Myocardial Infarction[J]. Journal of the American College of Cardiology, 2004, 43(4): 549-555.
    [16] Armant T Askari, Michael Lincoff. GUSTO V: Combination drug treatment of acute myocardial infarction[J]. Cleveland and clinic journal of medicine [J]. 2002, 69(7): 554-559.
    [17] 刘宇宏,曾秋棠,陈斌.氟伐他汀与氯沙坦合用防治大鼠心肌梗死左室重塑的对比研究[J].中华医学杂志,2005,85(6):418-419.
    [18] Greg B Brown, Xue-Qiao Zhao, Alan Chait, et al. Simvastatin and Niacin, Antioxidant Vitamins, or the Combination for the Prevention of Coronary Disease[J]. N Engl J Med, 2001, 345(22): 1583-1592.
    [19] Zhao XQ, Morse JS, Dowdy AA et al. Safety and tolerability of simvastatin plus niacin in patients with coronary artery disease and low high-density lipoprotein cholesterol (The HDL Atherosclerosis Treatment Study)[J]. Am J Cardiol, 2004, 93(3): 307-312.
    [20] 李少龙,李小琴.中西医结合治疗心肌缺血的临床研究[J].实用临床医学,2003,4(5):137-137.
    [21] 丘瑞香,贺敬波,蓝军等.心脉通胶囊对冠心病患者心肌缺血总负荷影响及作用机制探讨[J].中国中西医结合杂志,2000,20(1):19-21.
    [22] 陈勇,缪灿铭,陈正贵.脑心通治疗心力衰竭的疗效观察[J].中西医结合心脑血管病杂志,2005,7(3):603-604.
    [23] 刘颖,吴伟康,赵明奇.四逆汤预处理诱导大鼠心肌延迟预适应中的作用[J].中国病理生理杂志,2005,21(3):519-523.
    [24] Chen X, et al. Extract of Ginkgobiboba-induced Delayed Myocardial Preconditioning via NO-heat Shock Protein Pathway[J]. FAEBJ, 1999, 13 (5): A762
    [25] 秦鉴,吴伟康,李俊彪等.四逆汤和硝酸异山梨酯单用或联用治疗冠心病心绞痛的比较研究[J].中国中医药科技,2001,8(1):6-8.
    [26] 祖丽华,秦玖刚.宣肺解郁汤联合西药治疗冠心病心绞痛40例[J].湖南中医药导报 2001,7(12):589-594.
    [27] 王建,饶磊,周勇等.疏血通治疗不稳定型心绞痛96例疗效观察[J].中西医结合心脑血管病杂志,2005,3(3):207-208.
    [1] 娄建石,梁会旭,刘艳霞.硝酸甘油与丁丙诺啡合用抗大鼠心肌缺血的药理性预适应研究:早期心脏保护作用[J].中国药理学通报,2003,199(10):1119-1125.
    [2] Kevin Channer, Francis Morris. ABC of clinical electrocardiography: Myocardial ischaemia[J]. BMJ, 2002, 324(7344): 1023-1026.
    [3] 陈修,陈维洲,曾贵云.心血管药理学[M].北京:人民卫生出版社(第三版),2002.4-4.
    [4] Duranski MR, Greer JJ, Dejam A, et al. Cytoprotective effects of nitrite during in vivo ischemia-reperfusion of the heart and liver[J]. J Clin Invest, 2005, 115: 1232-1240.
    [5] 刘皋林,安登魁,张正行.新型NO供体SP/W-5186在心肌缺血/再灌损伤中的作用和机制[J].中国临床药学杂志,2000,9(2):84-90.
    [6] Erdol C, Baykan M, Celik S, Gokce M, Karahan B, Orem C. Relationship between changes in R-wave amplitude during left ventriculography and the seriousness of coronary heart disease[J]. Ann Noninvasive Electrocardiol., 2002, 7(2): 114-119.
    [7] Kishida H, Murao S. Effect of a new coronary vasodilator, nicorandil, on variant angina pectoris[J]. Clin Pharmacol Ther, 1987, 42(2): 166-174.
    [8] Sato S, Ikegaki I, Asano T, Shimokawa H. Antiischemic properties of fasudil in experimental models of vasospastic angina[J]. Jpn J Pharmacol. 2001, 87(1): 34-40.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700