温度对六种鲤科鱼类临界氧压(P_(crit))及鳃部形态结构的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了考察温度对中华倒刺鲃Spinibarbus sinensis,鳊鱼Parabramis pekinensis,草鱼Ctenopharyngodon idellus,花鲢Aristichthys nobilis,白鲢Hypophthalmichthys molitrix以及建鲤Cyprinus carpiovar Jian的幼鱼常规代谢率(RMR)、临界氧压(P_(crit))以及鳃部形态结构的影响,首先将6种幼鱼分别驯化在10℃、15℃、20℃、25℃、30℃条件下2周。之后分别用密闭呼吸室测定代谢率并以双线法计算P_(crit)。在每个温度组分别选取每种实验鱼3条,取右侧第二鳃弓做扫描电镜检查。旨在揭示栖息于不同水层的温水性鲤科鱼类其耐低氧能力受环境温度的影响的机制,为三峡库区鱼类资源保护提供有价值的资料。
     研究结果:
     1.温度和鱼种对常规代谢率的影响
     温度和鱼种对6种鲤科鱼类幼鱼的常规代谢率有显著影响(交互作用P<0.05)。所有实验鱼的常规代谢率随温度上升(10℃、15℃、20℃、25℃、30℃)而上升,且上升速率和幅度因种而异。在大多数温度条件下,各实验鱼种之间常规代谢率差异显著(P<0.05);仅在25℃时,除花鲢以外,各鱼种的常规代谢率处于同一水平。同一鱼种内,温度对常规代谢率的影响显著(P<0.05),且影响因鱼种的不同而表现出不同规律。
     2.温度和不同鱼种类对P_(crit)的影响
     温度和不同鱼种类的实验鱼对P_(crit)影响显著存在交互作用(P<0.05)。在各个温度下,P_(crit)表现出高低两种水平;不同鱼种对P_(crit)的影响显著(P<0.05):在绝大多数温度组(10℃、15℃、20℃、25℃),花鲢、白鲢和建鲤的P_(crit)显著低于中华倒刺鲃,鳊鱼和草鱼;在30℃时,除了中华倒刺鲃以外,所有实验鱼的P_(crit)处于一个相近的水平。在同一鱼种内,温度对P_(crit)的影响表现出3种类型:随着温度的升高,1)中华倒刺鲃的P_(crit)从17.05±1.25 (torr)升高至24.82±1.80 (torr),表现出明显上升的趋势(P<0.05);2)鳊鱼和草鱼的P_(crit)分别从29.20±4.33 (torr)和21.70±2.51 (torr)下降至16.70±0.91 (torr)和15.37±1.09 (torr),呈显著下降特征(P<0.05);3)白鲢和建鲤的P_(crit)虽然在整个温度区间不受温度变化的影响(P>0.05),但在不同温度区间内有着不同的变化趋势:20℃之前,其P_(crit)随温度升高而上升;20℃之后,其P_(crit)随温度升高而降低。花鲢的P_(crit)变化趋势与白鲢及鲤鱼类似,然而在整个温度区间其P_(crit)变化差异显著(P<0.05)。
     3.温度对鳃部形态结构的影响
     我们首次发现草鱼、白鲢和花鲢的鳃部在变化的温度中具有可塑性。在低温时(10℃)它们的鳃丝都埋藏在间质细胞中,而使整体鳃丝表现出“棒状”的外形;随着温度上升,间质细胞逐渐凋亡,使鳃丝暴露,渐渐转变为正常的鳃丝结构特征。而中华倒刺鲃,鳊鱼以及建鲤的鳃部则不具备类似的可塑性;随着环境温度的升高,它们的鳃丝没有出现明显的变化。
     以上结果表明:
     1.鲤科鱼类的常规代谢水平率随环境温度的升高而上升;但升高的幅度和速率与鱼种的生活习性有关。绝大多数实验鱼的常规代谢率在25℃时处于同一水平。这说明温水性鲤科鱼类的最适温度可能为25℃。
     2.实验中的6种鲤科鱼类P_(crit)对温度的反应各不相同,呈现出随温度升高而升高;降低及相对保守等3种类型;而且这些鱼类在自然界分布与P_(crit)无关;
     3.鳃部的可塑性与P_(crit)的变化无明显关联,摄氧与维持离子平衡的权衡可能是促使鱼类进行低温下鳃部结构改变的重要因素。
To investigate the temperature effect on RMR, P_(crit) and gill morphology in junvenile Spinibarbus sinensis, Parabramis pekinensis, Ctenopharyngodon idellus, Aristichthys nobilis, Hypophthalmichthys molitrix and Cyprinus carpiovar Jian. We firstly randomly allocated fishes at 5 rearing temperatures (10℃、15℃、20℃、25℃、30℃) for 2 weeks. Then determined RMR by using sealed respirometry, calculated P_(crit) by“two-line”regression method. The second gill arch from the right hand side of 3 fish from species at each rearing temperature was carefully dissected out, rinsed and fixed for later scanning electron microscopy. We hope that our study could explore the hypoxia tolerance mechanism in warm water carp from different vertical habitants and provide practical information for protection of fish resources in the Three Gorges reservoir region.
     The results are:
     1. Effect of temperature and genus on RMR
     Temperature and genus together have significant effect on RMR in juvenile carps ( interaction effect P<0.05). The RMR of all experimental species elevated along with rearing temperature (10℃、15℃、20℃、25℃、30℃). The magnitude and rising pace was in accordance with species characteristics. At most rearing temperature, there were significant differences in RMR among species (P<0.05); only at 25℃, all except Aristichthys nobilis reached to a similar zone in RMR level. Put the genus factor aside, temperature has profound effect on RMR within species (P<0.05), the effect was represented in different patterns.
     2. Effect of temperature and genus on P_(crit)
     Temperature and genus together have significant effect on P_(crit) in juvenile carps (interaction effect P<0.05). At each rearing temperature, genus has significant effect on P_(crit) (P<0.05), two levels were revealed: at most temperature groups (10℃, 15℃, 20℃,25℃), the P_(crit) of Aristichthys nobilis, Hypophthalmichthys molitrix and Cyprinus carpiovar Jian were significant lower than that of Spinibarbus sinensis, Ctenopharyngodon idellus and Parabramis pekinensis. P_(crit) value of all species reach a similar level at 30℃, except Spinibarbus sinensis. Within species, the temperature effect on P_(crit) represented 3 types: Temperature had significant effect on P_(crit) in Spinibarbus sinensis, Parabramis pekinensis and Ctenopharyngodon idellus (P<0.05). With ascending temperature, Spinibarbus sinensis had its P_(crit) increased from 17.05±1.25 (torr) to 24.82±1.80 (torr); the P_(crit) values of Parabramis pekinensis and Ctenopharyngodon idellus decreased from 29.20±4.33, 21.70±2.51 to 16.70±0.91, 15.37±1.09, separately. Hypophthalmichthys molitrix and Cyprinus carpiovar Jian’P_(crit) values showed a firstly increased, then dropped pattern, with a peak P_(crit) values at 20℃. Though temperature had significant effect on P_(crit) in Aristichthys nobilis (P<0.05), its P_(crit) changing type was similar to Hypophthalmichthys molitrix and Cyprinus carpiovar Jian’s, of which was not affected by temperature change.
     3. Effect of temperature on gill morphology in carps.
     We first found that the gill plasticity existed in Ctenopharyngodon idellus, Aristichthys nobilis, and Hypophthalmichthys molitrix due to temperature changes. At lower temperature, the lamellae were embedded with a large interlamellar cell mass (ILCM), resulting in a sausage-like morphology. As temperature went higher, through a apoptosis and cell cycle arrest process, the gills transformed into‘normal’gills with protruding lamellae. However, Spinibarbus sinensis, Parabramis pekinensis and Cyprinus carpiovar Jian didn’t have such gill remodeling potential.
     In conclusion:
     1. The RMR in carps elevated along with rearing temperature grew; the magnitude and rising pace was in accordance with species characteristics. Most carp’s RMR reached a similar zone at 25℃, which suggested 25℃might be the optimal temperature for warm water carps.
     2. The P_(crit) responses towards temperature varied among species, which revealed 3 patterns: increasing, decreasing and being conservative along with temperature elevation. The wild distribution has no relation with P_(crit).
     3. The gill plasticity has no relation with P_(crit). The oxygen acquisition and ion endogenous balance trade off might be the driven force of gill remodeling.
引文
[1] Schmidt-Nielsen, K. Animal Physiology. 5th ed. 1997,Cambridge University Press, Cambridge.
    [2] Dalla Via, J., Van den Thillart, G., Cattani, O., De Zwaan, A. Influence of long-term hypoxia exposure on the energy metabolism of Solea solea. II. Intermediary metabolism in blood, liver and muscle. Marine Ecology Progress Series, 1994, 111, 17–27.
    [3] Peckol, P., Rivers, J.S., Physiological responses of the opportunistic macroalgae Cladophora vagabunda (L.) and Gracilaria tikvahiae (McLachlan) to environmental disturbances associated with eutrophications. Journal of Experimental Marine Biology and Ecology,1995, 190, 1–16.
    [4] Gamenick, I.A., Vopel, J.K., Giere, O. Hypoxia and sulphide as structuring factors in macrozoobenthic community on the Baltic Sea Shore: colonization studies and tolerance experiments. Marine Ecology Progress Series, 1996, 144, 73–85.
    [5] Sandberg, E. Does oxygen deficiency modify the functional responses of Saduria entomon (Isopoda) to Bathyporeia pilosa (Amphipoda). Marine Biology, 1997, 729, 499–504.
    [6] Wu, R.S.S., Lam, P.K.S. Glucose-6-phosphate dehydrogenase and lactate dehydrogenase in the green-lipped muscle (Perna virids): possible biomarkers for hypoxia in the marine environment. Water Research, 1997, 11, 2797–2801.
    [7] Aarnio, K., Bonsdorff, E., Norkko, A. Role of Halicryptus spinulosus (Priapulida) in structuring meiofauna and settling macrofauna. Marine Ecology Progress Series, 1998, 163, 145–153.
    [8] Mason Jr., W.J. Macrobenthic monitoring in the Lower St. Johns River, Florida. Environmental Monitoring and Assessment, 1998, 50, 101–130.
    [9]郭文献,夏自强,王鸿翔,等.近50年来长江宜昌站水温变化的多尺度分析.水利学报, 2008, 39, 1197–1203.
    [10]吴强,段辛斌,徐树英,熊传喜,陈大庆.长江三峡库区蓄水后鱼类资源现状.淡水渔业, 2007, 37(2), 70–75.
    [11] Baden, S.P., Loo, L.O., Pihl, L., Rosenberg, R., Effects of eutrophication on benthic communities including fish: Swedish west coast. Ambio, 1990, 19, 113–122.
    [12] Diaz, J.R., Rosenberg, R. Marine benthic hypoxia: a review its ecological effects and the behavioural responses of benthic marcofauna. Oceanography and Marine Biology Annual Review, 1995, 33, 245–303.
    [13] Lu, L., Wu, R.S.S.. An experimental study on recolonization and succession of marinemacrobenthos in defaunated sediment. Marine Biology, 2000, 136, 291–302.
    [14] Lipton, P. Ischemic cell death in brain neurons. Physiological Reviews, 1999, 79, 1431–1568.
    [15] Mink, J. W., Blumenschine, R. J., Adams, D. B.. Ratio of central nervous system activity to body metabolism in vertebrates: its constancy and functional basis. American Journal of Physiology–Regulatory, Integrative and Comparative Physiology, 1981, 241, R203–R212.
    [16] Nilsson, G. E. Brain and body oxygen requirements of Gnathonemus petersii, a fish with an exceptionally large brain. Journal of Experimental Biology, 1996, 199, 603–607.
    [17] Van Ginneken, V., Nieveen, M., Vaneersel, R., Van Den Thillart, G., Addink, A. Neurotransmitter levels and energy status in brain of fish species with and without the survival strategy of metabolic depression. Comparative Biochemistry and Physiology,1996, 114A, 189–196.
    [18] Ishibashi, Y., Ekawa, H., Hirata, H., Kumai, H. Stress response and energy metabolism in various tissues of Nile tilapia Oreochromis niloticus exposed to hypoxic conditions. Fisheries Science, 2002, 68, 1374–1383.
    [19] Johansson, D., Nilsson, G. E., Tornblom, E. Effects of anoxia on energy metabolism in crucian carp brain slices studied with microcalorimetry. Journal of Experimental Biology, 1995, 198, 853–859.
    [20] Hansen, A. J. Effect of anoxia on ion distribution in the brain. Physiological Reviews, 1985, 65, 101–148.
    [21] Diangelo, C. R. Heath, A. G. Comparison of in vivo energy metabolism in the brain of rainbow trout, Salmo gairdneri, and bullhead catfish, Ictalurus nebulosus, during anoxia. Comparative Physiology and Biochemistry, 1987, 88B, 297–303.
    [22] Van Raaij, M. T. M., Bakker, E., Nieveen, M. C., Zirkzee, H. Van Den Thillart, G. E. E. J. M. Energy status and free fatty acid patterns in tissues of common carp (Cyprinus carpio L.) and rainbow trout (Oncorhynchus mykiss L.) during severe oxygen restriction. Comparative Physiology and Biochemistry, 1994, 109A, 755–767.
    [23] Hochachka, P. W. Somero, G. N. Biochemical Adaptation. Oxford University Press, New York. 2002.
    [24] Brand, M. Approximate yield of ATP from glucose, designed by Donald Nicholson. Biochemistry and Molecular Biology Education, 2003, 31, 2–4.
    [25] Steffensen J F. Oxygen consumption of fish exposed to hypoxia: Are they all oxyregulators or are any oxyconformers? Proceedings of the Ninth International Symposium, Capri, Italy, 2006, April, 24–28.
    [26] Mckenzie D J, Steffensen J F, Korsmeyer K, et al. Swimming alters responses to hypoxiain the Adriatic sturgeon Acipenser naccarii. Journal of Fish Biology, 2007, 70: 651–658.
    [27] Prosser, C. L., Brown, F. A.. Comparative Animal Physiology. 1961, W. B. Saunders Co., Philadelphia.
    [28] Schurmann. H, Steffensen. J. F, Effects of temperature, hypoxia and activity on the metabolism of juvenile Atlantic cod. Journal of Fish Biology, 1997, 50, 1166–1180.
    [29] Mckenzie. D. J, Steffensen. J. F, Korsmeyer. K, Whiteley. N. M, Bronzi. P, Taylor. E. W, Swimming alters responses to hypoxia in the Adriatic sturgeon Acipenser naccarii. Journal of Fish Biology, 2007, 70, 651–658
    [30] Hughes, G. M. and Saunders, R. L. Responses of the respiratory pumps to hypoxia in the rainbow trout (Salmo gairdneri). J. Exp. Biol, 1970, 53, 529-545.
    [31] Randall D. The control of respiration and circulation in fish during exercise and hypoxia. Journal of Experimental Biology, 1982, 100: 275–288.
    [32] Davis, J. C. An infrared photographic technique useful for studying vascularization of fish gills. J. Fish. Res. Board Can,1972, 29, 109-111.
    [33] Booth, J. H. The distribution of blood flow in the gills of fish: application of a new technique to rainbow trout (Salmo gairdneri). J. Exp. Biol, 1978, 73, 119-130.
    [34] Farrell, A. P., Sobin, S. S., Randall, D. J. and Crosby, S. Intralamellar blood flow patterns in fish gills. Am. J. Physiol, 1980, 239, 428-436.
    [35] Taylor, E. W. and Barrett, D. J. Evidence of a respiratory role for the hypoxic bradycardia in the dogfish Scyliorhinus canicula L. Comp. Biochem. Physiol, 1985, 80A, 99-102.
    [36] Sollid, J., De Angelis, P., Gundersen, K. and Nilsson, G. E. Hypoxia induces adaptive and reversible gross-morphological changes in crucian carp gills. J. Exp. Biol, 2003, 206, 3667-3673.
    [37] Nilsson G E. Gill remodeling in fish—a new fashion or an ancient secret? Journal of Experimental Biology, 2007, 210: 2403–2409.
    [38] Richards, J. G., Wang, Y. S., Brauner, C. J., Gonzalez, R. J., Patrick, M. L., Schulte, P. M., Choppari-Gomes, A. R., Almeida-Val, V. M. and Val, A. L. Metabolic and ionoregulatory responses of the Amazonian cichlid, Astronotus ocellatus, to severe hypoxia. J. Comp. Physiol. B, 2007,177, 361-374.
    [39] Matey. V, Richards. J. G, Wang. Y. X, Wood. C. M, Rogers. J, Davies. R, Murray. B. W, Chen. X. Q, Du. J, Brauner. C. J. The effect of hypoxia on gill morphology and ionoregulatory status in the Lak Qinghai scaleless carp, Gymnocypris przewalskii. The Journal of Experimental Biology, 2008, 211, 1063-1074
    [40] Paajanen, V. and Vornanen. M. Effects of chronic hypoxia on inward rectifier K+ current (IK1) in ventricular myocytes of crucian carp (Carassius carassius) heart. J. Membr. Biol, 2003, 194,119-127.
    [41] Lennard, R. and Huddart, H. The effects of hypoxic stress on the fine structure of the flounder heart (Platichthys flesus). Comp. Biochem. Physiol, 1992, 101, 723-732.
    [42] Driedzic, W. R., Gesser, H. and Johansen, K. Effects of hypoxic adaptation on myocardial performance and metabolism of Zoarces viviparous. Can. J. Zool, 1985, 63, 821-823.
    [43] Silkin Y A, Silkina E N. Effect of hypoxia on physiological biochemical blood parameters in some marine Fish. Journal of Evolutionary Biochemistry and Physiology, 2005, 41: 527–532.
    [44] Wood, S.C., Johansen, K. Adaptation to hypoxia by increased HbO2 affinity and decreased red cell ATP concentration. Nature, 1972, 237, 278–279.
    [45] Randall, D.J. The control of respiration and circulation in fish during exercise and hypoxia. Journal of Experimental Biology, 1982, 100, 275–288.
    [46] Val, A.L., Lessard, J., Randall, D.J. Effects of hypoxia on rainbow trout (Oncorhynchus mykiss): intraerythrocytic phosphates. Journal of Experimental Biology , 1995, 198, 305–310.
    [47] Storey, K.B. Suspended animation: the molecular basis of metabolic depression. Canadian Journal of Zoology, 1988, 66, 124–132.
    [48] Dalla Via. J, Van den Thillart. G, Cattani. O, De Zwaan. A. Influence of long-term hypoxia exposure on the energy metabolism of Solea solea. II. Intermediary metabolism in blood, liver and muscle. Marine Ecology Progress Series, 1994, 111, 17–27.
    [49] Hochachka, P.W. Oxygen—A key regulatory metabolite in metabolic defense against hypoxia. American Zoology, 1997, 37, 595–603.
    [50] Scott. G. R, Wood. C. M, Sloman. K. A, Iftikar. F. I, Boeck. G. D, Almeida-Val .V. M. F, Adalberto L. Val. Respiratory responses to progressive hypoxia in the Amazonian oscar, Astronotus ocellatus. Respiratory Physiology & Neurobiology, 2008,162, 109–116
    [51] Muusze, B., Marcon, J., Van den Thillart, G., Almeida-Val, V. Hypoxia tolerance of Amazon fish Respirometry and energy metabolism of the cichlid Astronotus ocellatus. Comp. Biochem. Physiol. A: Mol. Integr. Physiol., 1998, 120, 151–156.
    [52] Almeida-Val, V.M., Val, A.L., Duncan, W.P., Souza, F.C., Paula-Silva, M.N., Land, S. Scaling effects onhypoxia tolerance in the Amazonfish Astronotus ocellatus (Perciformes: Cichlidae): contribution of tissue enzyme levels. Comp. Biochem. Physiol. B: Biochem. Mol. Biol, 2000, 125, 219–226.
    [53] Shoubridge, E. A. and Hockachka, P. W. Ethanol: novel end product in vertebrate anaerobic metabolism. Science, 1980, 209, 308-309.
    [54] Nilsson, G. E. A comparative study of aldehyde dehydrogenase and alcohol dehydrogenase activity in crucian carp and three other vertebrates: apparent adaptations to ethanol production. J.Comp. Physiol. B, 1988, 158, 479-485.
    [55] Johnston, I. A. & Bernard, L. M. Utilization of the ethanol pathway in carp following exposure to anoxia. Journal of Experimental Biology, 1983, 104, 73–78.
    [56] Wissing, J. & Zebe, E. The anaerobic metabolism of the bitterling Rhodeus amarus (Cyprinidae, Teleostei). Comparative Biochemistry and Physiology 89B, 1988, 299–303.
    [57] Hyva¨rinen, Holopainen & Piironen, Anaerobic wintering of crucian carp (Carassius carassius L.)– I. Annual dynamics of glycogen reserves in nature. Comparative Biochemistry and Physiology 82A, 1985, 797–803.
    [58] Killgore. K. J, Hoover J. J. Effects of Hypoxia on Fish Assemblages in a Vegetated Waterbody. J. Aquat. Plant Manage, 2001, 39: 40-44.
    [59] Kramer. D. L, McClure. Aquatic surface respiration, a widespread adaptation to hypoxia in tropical freshwater fishes. Em. Biol. Fish, 1982, 7 (1), 47-55.
    [60] Dupont-Prinet A, Claireaux G, McKenzie DJ. Effects of feeding and hypoxia on cardiac performance and gastrointestinal blood flow during critical speed swimming in the sea bass Dicentrarchus labrax. Comp Biochem Physiol A Mol Integr Physiol. 2009 , 154(2):233-40.
    [61] Nilsson, G. E., Rosén, P. and Johansson, D. Anoxic depression of spontaneous locomotor activity in crucian carp quantified by a computerized imaging technique. J. Exp. Biol, 1993, 180, 153-163.
    [62] Nilsson, G. E. Surviving anoxia with the brain turned on. News Physiol. Sci, 2001, 16, 218-221.
    [63] Jain, K.E., Farrell, A.P., 2003. Influence of seasonal temperature on the repeat swimming performance of rainbow trout Oncorhynchus mykiss. J. Exp. Biol. 206, 3569–3579.
    [64] Green, B.S., Fisher, R., 2004. Temperature influences swimming speed, growth and larval duration in coral reef fish larvae. J. Exp. Mar. Biol. Ecol. 299, 115-132.
    [65] Mandic. M, Todgham. A. E, Richards. J. G, Mechanisms and evolution of hypoxia tolerance in fish. Proceeding of Royal Society B, 2008, 276, 735–744.
    [66]林浩然.鱼类生理学(第二版).广州高等教育出版社. 2007, 64- 65
    [67] Fry F E J, Hart J S. The relation of temperature to oxygen consumption in the goldfish. Biological Bulletin, 1948, 94, 66–77.
    [68] Fernandes M N, Rantin F T. Respiratory responses of Oreochromis niloticus (Pisces, Cichlidae) to environmental hypoxia under different thermal conditions. Journal of Fish Biology, 1989, 35, 509–519.
    [69] Ott M E, Heisler N, Ultsch G R. A re-evaluation of the relationship between temperature and the critical oxygen tension in freshwater fishes. Comparative Biochemistry and Physiology A,1980, 67, 337–340.
    [70] Ultsch G R, Boschung H, Ross M J. Metabolism, critical oxygen tension, and habitat selection in darters (Etheostoma) . Ecology, 1978, 59, 99–107.
    [71] Sardella. B. A, Matey. V, Cooper. J, Gonzalez. R. J, Brauner. C. J. Physiological, biochemical and morphological indicators of osmoregulatory stress in 'California' Mozambique tilapia (Oreochromis mossambicus x O. urolepis hornorum) exposed to hypersaline water. J Exp Biol. 2004, 207(Pt 8), 1399-413.
    [72] Sardella, B.A, Cooper. J, Gonzalez. R. J, Brauner. C. J, The effect of temperature on juvenile Mozambique tilapia hybrids (Oreochromis mossambicus x O. urolepis hornorum) exposed to full-strength and hypersaline seawater. Comparative Biochemistry and Physiology - Part A: Molecular & Integrative Physiology, 2004, 137(4), 621-629.
    [73] Watson, W. & Walker JR, J. J. The world’s smallest vertebrate, Schindleria brevipinguis, a new paedomorphic species inthe family Schindleriidae (Perciformes: Gobioidei). Records of the Australian Museum, 2004, 56, 139–142.
    [74] Kottelat, M., Britz, R., Hui, T. H. & Witte, K.-E. Paedocypris, a new genus of Southeast Asian cyprinid fish with a remarkable sexual dimorphism, comprises the world’s smallest vertebrate. Proceedings of the Royal Society Series B , 2006, 273, 895–899.
    [75] Chen, C. T, Liu, K. W. & Young, S. J. Preliminary report on Taiwan’s whale shark fishery. In Elasmobranch biodiversity, conservation and management (eds. S. L. Fowler, T. Reid, and F. A. Dipper). Proc. Int. Seminar and Workshop in Sabah, Malaysia, 1999, 162–167. IUCN, Gland, Switzerland.
    [76] Nilsson, G. E, Nilsson. S. O. Does size matter for hypoxia tolerance in fish? Biol. Rev, 2008, 83, 173–189.
    [77] Barrionuevo, W. R., W. W. Burggren. O2 consumption and heart rate in developing zebrafish (Danio rerio): influence of temperature and ambient O2. Am. J. Physiol. 276 (Regulatory Integrative Comp. Physiol. 45), 1999, 505–513.
    [78] Andersen, J.B., Wang, T. Cardiorespiratory effects of forced activity and digestion in toads. Physiol. Biochem. Zool, 2003, 76, 459-470.
    [79] Fu, S.J., Zeng, L.Q., Li, X.M., Pang, X., Cao, Z.D., Peng, J.L., Wang, Y.X. The behavioral, digestive and metabolic characteristics of fishes with different foraging strategies. J. Exp. Biol, 2009, 212, 2296-2302.
    [80] Jordan. A. D, Steffensen. J. F. Effects of Ration Size and Hypoxia on Specific Dynamic Action in the Cod. Physiological and Biochemical Zoology, 2007, 80(2), 178–185.
    [81] McKenzie. D. J, Lund. I, Pedersen. P. B. Essential fatty acids influence metabolic rate andtolerance of hypoxia in Dover sole (Solea solea) larvae and juveniles. Mar Biol, 2008, 154:1041–1051.
    [82] Chapman, L. J., Chapman, C. A., Nordlie, F. G. & Rosenberger, A. E. Physiological refugia: swamps, hypoxia tolerance and maintenance of fish diversity in the Lake Victoria region. Comp. Biochem. Physiol. A, 2002, 133, 421–437.
    [83] Brand, M. Approximate yield of ATP from glucose, designed by Donald Nicholson. Biochemistry and Molecular Biology Education, 2003, 31, 2–4.
    [84] Hochachka, P. W. & Somero, G. N. Biochemical Adaptation. Oxford University Press, New York, 2002.
    [85] Davies, R. & Moyes, C. D. Allometric scaling in centrarchid fish: origins of intra- and inter-specific variation in oxidative and glycolytic enzyme levels in muscle. Journal of Experimental Biology, 2007, 210, 3798–3804.
    [86] Jensen, F. B. & Weber, R. E. Respiratory properties of tench blood and hemoglobin: adaptation to hypoxichypercapnic water. Mol. Physiol, 1982, 2, 235–250.
    [87]丁瑞华.四川鱼类志.四川科学技术出版社, 1994, 139-319
    [88] Yeager D P, Ultsch G R. Physiological regulation and conformation: a basic program for the determination of critical points. Physiological Zoology, 1989, 62, 888–907
    [89] Henriksson P, Mandic M, Richards J G. The osmorespiratory compromise in Sculpins: impaired gas exchange is associated with freshwater tolerance. Physiological and Biochemical Zoology, 2008, 81: 310–319.
    [90] Cault. M. S. The effect of temperature on routine metabolism in Tilapia rendalli boulenger. J. Fish Biol, 1977, 11, 549-553
    [91] Ho¨lker. F. The metabolic rate of roach in relation to body size and temperature. Journal of Fish Biology, 2003, 62, 565–579
    [92] Barrionuevo W R, Burggren W W. O2 consumption and heart rate in developing zebrafish (Danio rerio): influence of temperature and ambient O2. American Journal of Physiology, 1999, 276R, 505–513.
    [93] Johnston I A, Clarke A, Ward P. Temperature and metabolic rate in sedentary fish from the Antarctic. North Sea and Indo-West Pacific Ocean. Marine Biology, 1991,109 , 191–195.
    [94] Hanna. S. K, Haukenes. A. H, Foy. R. J, Buck, C. L. Temperature effects on metabolic rate, swimming performance and condition of Pacific cod Gadus macrocephalus Tilesius. Journal of Fish Biology, 2008, 72, 1068–1078
    [95]徐钢春,顾若波,闻海波.温度对花鱼骨耗氧率和排氨率的的影响.湖波科学, 2006, 18, 431–436.
    [96]周洪琪,潘兆龙,李世钦,等.草鱼代谢能的研究.水产学报, 1998, 22, 28–32.
    [97] Sollid. J, Weber. R. E. and Nilsson. G. E. Temperature alters the respiratory surface area of crucian carp Carassius carassius and goldfish Carassius auratus. J. Exp. Biol, 2005, 208, 1109-1116.
    [98] Ong. K. J, Stevens. E. D. and Wright. P. A. Gill morphology of the mangrove killifish (Kryptolebias marmoratus) is plastic and changes in response to terrestrial air exposure. J. Exp. Biol, 2007, 210, 1109-1115.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700