改性稻草去除水中SO_4~(2-)和Cr(Ⅵ)的特性和机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硫酸根离子(SO_4~(2-))和六价铬(Cr (VI))等阴离子污染物是水体中常见的一类污染组分,能引起各种各样的环境问题。从它们都呈负电性的特点考虑,基于静电作用的吸附分离有可能成为一种有效的阴离子污染物去除方法。吸附法速度快,吸附剂种类多,有多种选择,还可回收有价值资源,在水处理领域应用前景广阔。特别是,从工农业废弃物中开发低成本吸附剂用于废水处理,可同时实现废物资源化利用和水污染治理的双重目的,这也是国内外研究的热点。本论文以南方常见的稻草秸秆为原料,通过化学改性的方法制备了阴离子吸附剂(RS-AE),对稻草化学改性过程和RS-AE的表面形貌、化学结构进行了分析和表征,并在此基础上研究了RS-AE吸附去除SO_4~(2-)、Cr (VI)的特性和机理,及RS-AE吸附柱动态分离SO_4~(2-)的特性,并初步探讨了RS-AE与微生物联合作用去除SO_4~(2-)的性能。
     本研究直接以稻草秸秆为原料,通过NaOH碱化、环氧氯丙烷醚化交联、三甲胺季铵化等化学改性步骤,制备出阴离子吸附剂RS-AE。进而探讨了NaOH浓度、碱化产物脱水方式和季铵化反应温度对RS-AE收率和吸附效率的影响。结果发现,增加NaOH浓度和升高季铵化反应温度,可提高RS-AE的吸附能力,但会降低产物收率;碱化产物脱水是关键步骤,相比较不脱水、抽滤、乙醇脱水方式,压榨脱水可得到吸附效率较高的改性稻草。采用10%(W/V)NaOH碱液、压榨脱水方式和80℃季铵化温度时,RS-AE收率约为77%,吸附性能良好,实验条件下对SO_4~(2-)的吸附效率为75%左右。稻草化学改性机理可概括为稻草纤维结构中的羟基先被NaOH活化形成醇钠,接着与环氧氯丙烷醚化交联,随后与体系中三甲胺发生季铵化反应。
     利用元素分析、扫描电子显微镜及能谱分析(SEM/EDX)、傅立叶变换红外光谱(FT-IR)、固态核磁共振碳谱(~(13)C-NMR)、X-射线衍射(XRD)及自动压汞分析等表征方法,对原稻草和RS-AE的元素组成、表面形貌、主要功能基团、纤维结晶结构以及孔结构进行了系统的对比研究。结果显示,稻草改性后表面暴露出大量纤维丝,表面元素组成中氮和氯含量显著增加,总含氮量为2.75%,理论交换吸附量达1.96mEq·g~(-1)。RS-AE成分以纤维素为主,主要功能基团是季铵基和羟基,这说明化学改性向稻草结构中引入了大量季铵基。与原稻草相比,RS-AE中纤维素结晶度及结晶度指数都明显降低,而且纤维素101晶面衍射峰消失、002晶面衍射峰强度降低,晶面间距变大,由此推测稻草纤维素聚集结构中101结晶面活性较高,最先被改性试剂侵入反应。稻草原料孔表面积为4.51m~2·g~(-1),以2~50nm的中孔为主;RS-AE孔表面积为1.19m~2·g~(-1),且其孔直径较大,以>50nm的大孔居多。
     采用批吸附实验,从吸附影响因素、吸附平衡、吸附动力学和热力学角度,研究了RS-AE吸附SO_4~(2-)的特性和机理。结果表明,RS-AE吸附SO_4~(2-)平衡时间短,约为20min;在pH值为3~8时吸附效果最佳;符合Langmuir吸附等温模型,最大吸附容量为74.76mg·g~(-1)(远大于原稻草的11.68mg·g~(-1))。RS-AE吸附SO_4~(2-)过程中吉布斯自由能变化ΔG为负值(-2.35到-3.46kJ·mol~(-1)),焓变ΔH和熵变ΔS分别为8.49kJ·mol~(-1)和0.0376kJ·K~(-1)·mol~(-1),吸附活化能Ea为19.3kJ·mol~(-1),由此判断此吸附为自发、吸热的化学吸附过程。此吸附过程可由伪二级动力学方程描述,伪二级动力学速率系数kp2随SO_4~(2-)初始浓度变化不明显,而受温度影响显著,此外整个吸附动力学过程极可能是由液膜扩散过程控制。SO_4~(2-)的去除机理主要是与RS-AE表面负载的Cl-进行离子交换,实验测定交换系数为1.8,接近离子荷电数之比2。RS-AE对SO_4~(2-)具有较强的选择吸附能力,对水体中常见阴离子的结合力顺序为SO_4~(2-)> CrO_4~(2-)> NO3-> PO43-,并且RS-AE具有良好再生性能和重复利用潜力。
     在去除Cr (VI)方面,研究发现RS-AE去除Cr (VI)速度快,在pH值为2~6的酸性条件下效果好,中性条件下依然有较高效率;吸附符合Langmuir模型,最大吸附容量在298K时为18.7mg·g~(-1)。RS-AE吸附Cr (VI)过程ΔG为负值,ΔH和ΔS分别为11.5kJ·mol~(-1)和0.0664kJ·K~(-1)·mol~(-1),活化能Ea为24.5kJ·mol~(-1)。这说明RS-AE吸附Cr (VI)也是自发的、吸热的化学吸附过程。吸附符合伪二级动力学方程,而Elovich方程可以解释吸附初始阶段的动力学特性,通常情况下膜扩散过程是吸附动力学控制步骤,而仅在Cr (VI)稀溶液中,颗粒内扩散过程才可能是吸附速率决定步骤。Cr (VI)也是注意以离子交换方式得以去除。此外,在吸附过程中发现了铬价态变化,通过X-射线光电子能谱(XPS)表征证实,部分Cr (VI)在RS-AE表面上被还原为Cr (III),而且酸性溶液条件有利于Cr (VI)还原。
     实验还制作了RS-AE吸附柱,在固定床和膨胀床操作条件下研究了其分离SO_4~(2-)的特性,并应用Thomas动态吸附模型对不同条件下的流出曲线进行分析。结果发现,在固定床操作下SO_4~(2-)穿透时间随高径比的增加而延长,随初始SO_4~(2-)浓度和流量的增加而显著缩短。RS-AE固定床吸附柱容易再生,采用0.1M NaOH和0.1M HCl作为再生溶液时,SO_4~(2-)解析效果最佳。RS-AE膨胀床的膨胀率与进水流量呈正相关性;在低膨胀率范围内,SO_4~(2-)穿透时间随膨胀率的增加逐渐缩短,而耗竭时间略有延长。在膨胀率7%时,从Thomas模型计算得到柱吸附容量最大,为16.69mg/g。对比膨胀床和固定床吸附柱发现,低膨胀率下的膨胀床柱吸附容量较大,床层耗竭时间较长,适合去除SO_4~(2-)。
     最后,分别在静态培养和厌氧反应器连续运行条件下,考察了RS-AE联合微生物去除SO_4~(2-)的效果。RS-AE与硫酸盐还原菌(SRB)静态培养实验发现,与两者单独作用相比,RS-AE联合SRB可以更快、更彻底的去除SO_4~(2-),两者具有一定协同作用。SRB附着生长在RS-AE表面形成SO_4~(2-)吸附-降解体系,使得基质SO_4~(2-)浓度在60h内从约1000mg·L~(-1)降至100mg·L~(-1)以下。在厌氧反应器中,RS-AE联合微生物可以实现SO_4~(2-)的连续去除,监测到最佳SO_4~(2-)和总有机碳(TOC)去除率分别为76%和65%;45天左右RS-AE开始产生絮状体,出现降解的现象,降低了TOC去除率。这对反应运行不利,但也启示RS-AE是一种生物可降解吸附材料。
Anions pollutants such as sulphate (SO_4~(2-)), hexavalent chromium (Cr (VI)) are commoncomposition in water, and can cause various environmental problems. Electrostaticforce-based adsorption technique may be effective to eliminate negative charged anionpollutants from aqueous solution. Absorption is rapid, and has the potential to recover someelements. Many kinds of materials can be used as adsorbents in wastewater treatment.Especially, low-cost adsorbents originated from agricultural/industrial wastes has becameattractive in recent years because of its significance both in environmental remediation and inreuse of wastes resource. In this study, rice straw that is a common agricultural residues insouthern China was modified into anionic adsorbent (RS-AE) to remove SO_4~(2-)and Cr (VI)from water. The surface morphology and chemical structure of raw straw and RS-AE werecharacterized and analyzed. Then, the removal characteristics and mechanism of sulphate andCr (VI) by RS-AE were investigated. The RS-AE adsorption column was made and used toseparate sulphate from water. In addition, removal of SO_4~(2-)by the method of RS-AEcombined with microorganism (sulphate reducing bacteria) also was carried out.
     To prepare RS-AE, raw rice straw was firstly treated by NaOH alkaline treatment, thenreacted with epichlorohydrin and finally quaternized with trimethylamine solution. The effectof NaOH concentration, dehydration of alkaline treated products and the temperature ofquaternization on the yield and adsorption efficiency of RS-AE was discussed. The resultsshowed that the yield was enhanced with increase of NaOH concentration and quaternizationtemperature, but the adsorption efficiency was decreased. Dehydration of alkaline treatedstraw was important for preparation of RS-AE. Compared with non-dehydration, filtrationand ethanol treatment, compression was more suitable for preparation of RS-AE. The yield ofRS-AE could reach77%under the condition of10%(W/V) NaOH solution, compressiondehydration and80℃quaternization temperature, and RS-AE exhibited a higher adsorptionefficiency75%for sulphate. The modification mechanism included three steps: the–OHcontained in straw was activited by NaOH; the activated–OH was etherized and crosslinked by epichlorohydrin; the etherized product was quaternized with trimethylamine.
     Characterization methods, such as scanning electron microscope (SEM), Fouriertransform infrared spectrum (FT-IR), solid state~(13)C nuclear magnetic resonance (~(13)C-NMR),X-ray diffraction (XRD) and pore autoanalyzer (Hg compression method) and so on, wereemployed to determine the element content, surface morphology, functional groups, crystaland pore structure of raw rice straw and prepared RS-AE. The results showed that manycellulosic fibers were exposed on the surface of straw after modification, and the content ofnitrogen and chlorine increased. The total nitrogen content of RS-AE is2.75%, from whichthe total exchange capacity was calculated as1.96mEq·g~(-1). The main functional groups ofRS-AE were quaternary amino and hydroxyl groups. The crystalinity degreee and crystalinityindex of straw was decreased after modification, especially,101-crystal plane of cellulose wasdisappeared and diffraction intensity at002-crystal plane was impaired. The pore area of rawstraw was4.51m~2·g~(-1)and pores maily were mesopores (2~50nm); while pore area of RS-AEwas1.19m~2·g~(-1)and macropores (>50nm) account for about94%.
     Batch adsorption experiments showed that adsorption of sulphate on RS-AE was rapid,and the equilibrium time was about20min. The best sulphate removal was observed in pHrange of3~8. The adsorption followed Langmuir adsorption model, and the maximumsulphate adsorption capacity of RS-AE was evaluated as74.76mg·g~(-1), which was higher thanthat of raw rice straw (11.68mg·g~(-1)). Gibbs free energy ΔG of the adsorption were negative(-2.35~-3.46kJ·mol~(-1)), and ΔH, ΔS and adsorption activated energy Eawere8.49kJ·mol~(-1),0.0376kJ·K~(-1)·mol~(-1)and19.3kJ·mol~(-1), respectively. These adsorption thermodynamicparameters suggested that the adsorption of sulphate by RS-AE was a spontaneous,endothermic chemical adsorption. Pseudo-second order rate equation can be used to describethe adsorption process. The pseudo-second order rate constant kp2increased with the rise oftemperature, and fluctuated with sulphate initial concentration. In addition, the adsorptionkinetics was possibly controlled by liquid membrane diffusion. Sulphate anions were mainlyremoved through the way of ion exchange with chlorine ions on RS-AE. The measuredexchange coefficient was1.8that was close to the theoretical value2. RS-AE exhibited an selectivity for common anions in the order SO_4~(2-)> CrO_4~(2-)> NO3-> PO43-. Regenerationexperiments suggested that RS-AE has the potential for repeatedly use in removal of sulphate.
     Batch adsorption experiments for Cr (VI) removal by RS-AE indicated that theadsorption was apparently affected by solution pH conditions. For instance, best removal wasobtained in pH range of2~6, then with the increase of pH, adsorption efficiency wasdecreased, and when the pH>9, the adsorption was inhibited. The adsorption equilibriumtime for Cr (VI) was short. Langmuir adsorption model fitted the adsorption equilibrium databetter, and the calculated maximum adsorption capacity was18.7mg·g~(-1)at298K. Theadsorption thermodynamic parameters (ΔG, ΔH, ΔS, and Ea) were evaluated. It found that ΔGwas negative, and ΔH, ΔS and Eawere11.5kJ·mol~(-1),0.0664kJ·K~(-1)·mol~(-1)and24.5kJ·mol~(-1),repectively. Tthe results clearly demonstrated that the adsorption of Cr (VI) on RS-AE was aspontaneous, endothermic chemical adsorption. Adsorption kinetics studies showed that thecomplete process of adsorption could be described by pseudo-second order adsorption kineticmodel, while the Elovich’s equation only can be used to describe the initial adsorption stage.Diffusion model analysis suggested that Cr (VI) removal rate was controlled by liquidmemerbrane diffusion process, however, in diluted Cr (VI) solution, intraparticle diffusionmight be the determined step. The removal mechanism of Cr (VI) was ion exchange coupledwith Cr (VI) reduction to Cr (III). X-Ray photoelectron spectrum (XPS) characterizationshowed that Cr (III) was formed in the surface of RS-AE, moreover, adsorption of Cr (VI)under acidic conditions can favor the reduction of Cr (VI) to Cr (III).
     RS-AE adsorption columns were prepared to investigated the dynamic adsorption ofsulphate under fixed-and expanded-bed operation conditions. The breakthrough curves wereanalyzed with Thomas dynamic adsorption model. The experimental results showed that, forRS-AE fixed-bed columns, sulphate breakthrough time increased with the rise of H/D(height/diameter) ratio; while with the increase of sulphate initial concentration, thebreakthrough time was shorten. And RS-AE fixed-bed columns were easy to be regeneratedby0.1M NaOH and0.1M HCl solution. For RS-AE expanded-bed columns, a positiverelationship between influent flow rate and the expansion ratio was found. With the increase of expansion ratio, the breakthrough time reduced, however, the exhaustion time wasextended. At expansion ratio7%, the maximum column adsorption capacity from Thomasmodel was16.69mg·g~(-1). From the comparison between fixed-and expanded-bed operations,it found RS-AE expanded-bed column with low expansion ratio was more suitable to removesulphate because of its larger column adsorption capacity and longer exhaustion time.
     The method of RS-AE combined with sulphate reducing bacteria (SRB) was tested forsulphate removal by static cultivation experiments. A better removal of sulphate can beobtained with the combined method in contrast to separately use of RS-AE or SRB. FromSEM images, it could be seen that many spherical bacteria were attached on the surface ofRS-AE forming adsorption-degradation system of sulphate. The experiments results showedthat sulphate concentration of culture medium can be reduced from1000mg·L~(-1)to100mg·L~(-1)in60hours by RS-AE combined with SRB. Furthermore, a anaerobic bioreactor was designedto evaluate the continuously removal of sulphate from synthesized wastewater by RS-AEcombined with microorganism. The best removal percentage of sulphate and total organiccarbon (TOC) were observed as76%and65%in two months running experiments. It isnecessary to point out that RS-AE started to be degraded by bacteria in45days, whichreduced the TOC removal percentage of effluent. However, this phenomenon suggested thatRS-AE was a biodegradable adsorbent that deserved further research.
引文
[1]彭党聪.水污染控制工程(第3版)[M].北京:冶金工业出版社2010:1-10.
    [2] Ostroumov S.A. On the Biotic Self-purification of Aquatic Ecosystems:Elementsof the Theory[J]. Doklady Biological Sciences,2004,396:206-211.
    [3]詹平,陈华.环境卫生学[M].北京:科学出版社,2008:15-35.
    [4]滕葳.重金属污染对农产品的危害与风险评估[M].北京:化学工业出版社,2010:1-10.
    [5] Bringas E., Roma′n M.F.S., and Ortiz I. Separation and Recovery of AnionicPollutants by the Emulsion Pertraction Technology. Remediation of PollutedGroundwaters with Cr(VI)[J]. Ind. Eng. Chem. Res.,2006,45:4295-4303.
    [6] Bringas E., Roma′n M.F.S., and Ortiz I. Removal of anionic pollutants fromgroundwaters using Alamine336:chemical equilibrium modelling[J]. Journal ofChemical Technology and Biotechnology,2006,81:1829-1835.
    [7] Ortiz I., Bringas E., Samaniego H., et al. Membrane processes for the efficientrecovery of anionic pollutants[J]. Desalination,2006,193:375-380.
    [8] Baruthio F. Toxic Effects of Chromium and Its Compounds[J]. Biological TraceElement Research,1992,32:145-153.
    [9] Acharyya S.K., Chakraborty P., Lahiri S., et al. Arsenic poisoning in the Gangesdelta[J]. Nature,1999,401:545.
    [10] Conley D.J., Paer H.W., Howarth R.W., et al. Controlling Eutrophication:Nitrogen and Phosphorus[J]. Science,2009,323:1015-1014.
    [11] Gong R., Ding Y., Li M., et al. Utilization of powdered peanut hull as biosorbentfor removal of anionic dyes from aqueous solution[J]. Dyes and Pigments,2005,64:187-192.
    [12] Muyzer G., and Stams A.J.M. The ecology and biotechnology of sulphatereducing bacteria[J]. Nature Reviews Microbiology,2008,6:441-454.
    [13] Johnson D.B., and Hallberg K.B. Acid mine drainage remediation options:areview[J]. Science of the Total Environment,2005,338:3-14.
    [14] Chandra A.P., and Gerson A.R. The mechanisms of pyrite oxidation and leaching:A fundamental perspective[J]. Surface Science Reports,2010,65(9):293–315.
    [15] Rohwerder T., Gehrke T., kinzler K., et al. Progress in bioleaching:fundamentalsand mechanisms of bacterial metal sulfide oxidation[J]. Appl.MicrobiolBiotechnol,2003,63:239-248.
    [16] Dang Z., Liu C.-q., and Martin J.H. Mobility of heavy metals associated with thenatural weathering of coal[J]. Environmental Pollution,2002,118(3):419-426.
    [17] Caraballo M.A., Macías F., R tting T.S., et al. Long term remediation of highlypolluted acid mine drainage: A sustainable approach to restore theenvironmental quality of the Odiel river basin[J]. Environmental Pollution,2011,159(12):3613–3619.
    [18] Singer G., Ptacek C., and etal. Evaluation of long-term sulfide oxidationprocesses within pyrrhotite-rich tailings, Lynn Lake, Manitoba[J]. Journal ofContaminant Hydrology,2006,83:149-170.
    [19] lestin B.C., LubabaNkulu, NawrotTimS, et al. High human exposure to cobaltand other metals in Katanga, a mining area of the Democratic Republic ofCongo[J]. Environmental Research,2010.
    [20] Soucek D.J., Cherry D.S., and Trent G.C. Relative Acute Toxicity of Acid MineDrainage Water Column and Sediments to Daphnia magna in the Puckett'sCreek Watershed, Virginia, USA[J]. Arch Environ Contam Toxicol,200038(3):305-315.
    [21] Silva A.J., Varesche M.B., Foresti E., et al. Sulphate removal from industrialwastewater using a packed-bed anaerobic reactor.[J]. Process Biochemistry,2002,37:927-935.
    [22] Weeth H.J., and Hunter J.E. Drinking of Sulfate-Water by Cattle[J]. J. Anim Sci.,1971,32:277-281.
    [23] Cammack K.M., Wright C.L., Austin K.J., et al. Effects of high-sulfur water andclinoptilolite on health and growth performance of steers fed forage-baseddiets[J]. J. Anim Sci.,2010,88:1777-1785.
    [24] Leduc D., Leduc L.G., and Ferroni G.D. Quatification of bacteria populationindigenous to acidic drainage streams[J]. Water, Air, and Soil Pollution,2002,135:1-21.
    [25] Chen J.-k., Jiang M.-q., and Zhu J. Damage evolution in cement mortar due toerosion of sulphate[J]. Corrosion Science,2008,50:2478-2483.
    [26]张文广.膜分离技术在废水处理中的关键技术[J].中国粉体工业,2009(3):1-4.
    [27]袁建华.盐水脱SO42-新技术总结[J].氯碱工业,2002(2):9-13.
    [28]杨晓宇,王丽波,李双.活性炭、离子交换树脂应用于去除水中硫酸根的比较[J].内蒙古石油化工,2010:26-30.
    [29] Thauer R.K., Jungermann K., and Decker K. Energy conservation inchemotrophic anaerobic bacteria[J]. Bacteriol. Rev.,1977,41:100–180.
    [30] J rgensen B.B. Mineralization of organic matter inthe seabed—the role ofsulphate reduction[J]. Nature,1982,96:643-645.
    [31]任南琪.厌氧生物技术原理与应用[M].北京:化学工业出版社,2004.
    [32] Maree J.P., and Strydom W. Biological Sulphate Removal in an Upflow PackedBed Reactor[J]. Water Research,1985,19(9):1101-1106.
    [33] Lettinga G., John F., Jerry V.L., et al. Advanced anaerobic wastewater treatmentin the near future[J]. Wat. Sci. Tech.,1997,35:5-12.
    [34] Morgan J.W., Lim M. E. and Fid C.F. Internal architecture of anaerobic sludgegranular[J]. Chem. Technol. Biotechnol,1991,502(11-26).
    [35] Burgess J.E. and Stuetz R.M. Activated sludge for the treatment of sulphur-richwastewaters[J]. Minerals Engineering,2002,15:839-846.
    [36] Dvorak D.H., Hedin R.S., Edenborn H.M., et al. Treatment of metalcontaminated water using bacterial sulfate reduction: results from a pilot-scalereactor[J]. Biotechnol. Bioeng.,1992,40:609-616.
    [37] Jong T. and Parry D.L. Removal of sulfate and heavy metals by sulfate reducingbacteria in short-term bench scale upflow anaerobic packed bed reactor runs[J].Water Research,2003,37:3379-3389.
    [38] Chockalingam E., and Subramanian S. Studies on removal of metal ions andsulphate reduction using rice husk and Desulfotomaculum nigrificans withreference to remediation of acid mine drainage[J]. Chemosphere,2006,62(699-708).
    [39] Dabrowski A., Hubicki Z., Podkoscielny P., et al. Selective removal of the heavymetal ions from waters and industrial wastewaters by ion-exchange method[J].Chemosphere,2004,56:91–106.
    [40] Miretzky P. and Cirelli A.F. Cr(VI) and Cr(III) removal from aqueous solution byraw and modified lignocellulosic materials: A review[J]. Journal of HazardousMaterials,2010,180:1-19.
    [41] Ral D., Eary L.E. and Zachara J.M. Environmental Chemistry of Chromium[J].The Science of the Total Environment,1989,86:15-23.
    [42] Park D., Yun Y.-S. and Park J.M. Reduction of Hexavalent Chromium with theBrown Seaweed Ecklonia Biomass[J]. Environ. Sci. Technol.,2004,38:4860-4864.
    [43] Park D., Lim S.-R. Yun Y.-S., et al. Development of a new Cr(VI)-biosorbentfrom agricultural biowaste[J]. Bioresource Technology,2008,99:8810-8818.
    [44] Katz S.A. and Salem H. The Toxicology of Chromium with Respect to itsChemical Speciation: a Review[J]. Journal of Applied Toxicology,1993,13(3):217-224.
    [45] Zhitkovich A. Importance of Chromium-DNA Adducts in Mutagenicity andToxicity of Chromium(VI)[J]. Chem. Res. Toxicol.,2005,18(1):3-11.
    [46] Kratochvil D., Pimentel P. and Volesky B. Removal of Trivalent and HexavalentChromium by Seaweed Biosorbent[J]. Environ. Sci. Technol.,1998,32:2693-2698.
    [47] Raji C. and Anirudhan T.S. Batch Cr (VI) removal by polyacrylamide-graftedsawdust: Kinetics and thermodynamics[J]. Water Research,1998,32:3772-3780
    [48]李国会,马相宾,裴熵.化学还原法处理电镀含铬废水的工程应用[J].工业安全与环保,2011,37(10):12-14.
    [49]闫旭,李亚峰.含铬废水的处理方法[J].辽宁化工,2010,39(2):143-145.
    [50] Ana M., Eliceche S.M., Corval M., et al. Minimum membrane area of anemulsion pertraction process for Cr(VI) removal and recovery [J]. Computersand Chemical Engineering,2005,29:456-472.
    [51] Haq R.u. and Shakoori A.R. Short Communication: Microbiological treatment ofindustrial wastes containing toxic chromium involving successive use ofbacteria, yeast and algae[J]. World Journal of Microbiology&Biotechnology,1998,14:583-585.
    [52]张文标.活性污泥生物去除六价初步研究[D].上海:同济大学硕士学位论文,2008.
    [53] Pehlivan E. and Cetina S. Sorption of Cr (VI) ions on two Lewatit-anionexchange resins and their quantitative determination using UV–visiblespectrophotometer[J]. Journal of Hazardous Materials,2009,163:448-453
    [54] Sharma D.C. and Forster C.F. A preliminary examination into the adsorption ofhexavalent chromium using low-cost adsorbents[J]. Bioresour. Technol.,1994,47:257-264.
    [55] Gupta V.K. Shrivastava A.K., and Jain N. Biosorption of Chromium (VI) FromAqueous solutions by green algae spirogyra species[J]. Water Research,2001,35:4079-4085
    [56] Deng S.-B. and Ting Y.-P. Polyethylenimine-Modified Fungal Biomass as aHigh-Capacity Biosorbent for Cr (VI) nions: Sorption Capacity and UptakeMechanisms[J]. Environ. Sci. Technol,2005,39:8490-8496.
    [57] Rojas G., Silva J., Flores J.A., et al. Adsorption of chromium onto cross-linkedchitosan[J]. Separation and Purification Technology2005,44:31-36.
    [58] Bhattacharyya K.G. and Gupta S.S. Adsorption of Chromium(VI) from Water byClays[J]. Ind. Eng. Chem. Res.,2006,45:7232-7240.
    [59] Wu J., Zhang H., He P.-J., et al. Cr(VI) removal from aqueous solution by driedactivated sludge biomass[J]. Journal of Hazardous Materials,2010,176:697-703.
    [60]陈冠兰,陈银广.低成本生物材料吸附六价铬研究进展[J].水处理技术,2008,34(12):7-22.
    [61]传秀云,郑辙,陈晶.汉朝马王堆木炭中的笼状碳[J].无机材料学报,2003,18(4):917-922.
    [62]近藤精一,石川达雄,安部郁夫.吸附科学[M].北京:化学工业出版社,2005.
    [63]王宇.利用农业秸秆制备阴离子吸附剂及其性能的研究[D].济南:山东大学博士学位论文,2007
    [64] Suzuki M., Adsorption Engineering[M]. Japan: Kodansha ltd Press,1990
    [65]蓝静,刘敬勇,黄曼雯,等.吸附剂的制备及其改性技术研究进展[J].安徽农学通报,2011,17(16):189-193.
    [66] Suhas, Carrott P.J.M., and Carrott M.M.L.R. Lignin–from natural adsorbent toactivated carbon: A review[J]. Bioresource Technology,2007,98:2301–2312.
    [67]吴平霄.黏土矿物材料与环境修复[M].北京:化学工业出版社,2004:17-24.
    [68]杨仁海,石云兴,严建华,等.非金属矿物吸附剂在水处理方面的应用[J].中国非金属矿工业导刊,2007,59(18-22).
    [69] Wang S., Li H. and Xu L. Application of zeolite MCM-22for basic dye removalfrom wastewater[J]. Journal of Colloid and Interface Science,2006,295:71-78.
    [70] Yildlz, Gonulsen R. and Ailn E. Adsorption of benzoic acid and hydroquinone byorganically modified bentonites[J].[J]. Colloids and Surfaces A: Physicochem.Eng. Aspects,2005,260:87-94.
    [71] Helfferich F.G. Ion Exchange[M]. America:New York Press,1995.
    [72]范娟,詹怀宇,刘明华.木质素基吸附材料的研究进展[J].中国造纸学报,2004,19(2):181-187.
    [73]朱媛媛,蒋新元,胡迅.木质素基吸附材料的制备及其吸附性能研究[J].环境科学与技术,2009,32(1):71-74.
    [74]李春光,郑宾国,孔殿超.壳聚糖吸附废水中Cr (VI)的工艺研究[J].工业安全与环保,2001,37(5):1-4.
    [75] Crini G. and Badot. P.M. Application of chitosan,a naturalaminopolysaccharide,for dye removal from aqueous solutions by adsorption processes using batchstudies:A review of recent literature[J]. Progress in Polymer Science,2008,33(4):399-447.
    [76] Winter S.S. The physical chemistry of polyelectrolytes and ion exchangeresins[J]. Journal of chemical Education,1956,33(5):246-252.
    [77] Boyd G.E., Adamson A.W., and Myers L.S. The exchange adsorption of ionsfrom aqueous solutions by organic zeolites. II. Kinetics[J]. J. Am. Chem. Soc.,1947,69:2836-2848.
    [78] Kunin R. Ion exchange Resins[M]. America:New York Science Press,1990.
    [79] Boyd G.E., Schubert J. and Adamson A.W. The Exchange Adsorption of Ionsfrom Aqueous Solution by Organic Zeolites. I Ion-exchange Equilibria[J].Journal of American Chemical Society,1947,69:2818-2829.
    [80] Pauling L. The principles determining the structure of complex ionic crystals[J].Journal of American Chemical Society,1929,51(4):1010-1021.
    [81] Grahame D.C. The Electrical Double Layer and the Theory of Electrocapillarity[J]. Chem. Rev.,1947,41(3):441-501.
    [82] Guldbrand L., J nsson B., Wennerstr m H., et al. Electrical double layer forces.A Monte Carlo study [J]. J. Chem. Phys.,1984,80:2221-2228.
    [83] Gregore H. Gibbs-Donnan Equilibria in Ion Exchange Resin Systems[J]. Journalof American Chemical Society,1951,73:642-650.
    [84]臧克强.生物技术[M].北京:科学技术出版社,1994:16-34.
    [85] Lynd L.R., Weimer P.J., Zyl W.H.v., et al. Microbial Cellulose Utilization:Fundamentals and Biotechnology[J]. Microbiology and Molecular BiologyReviews,2002,66(3):506-577.
    [86]詹怀宇.纤维素化学与物理[M].北京:科学出版社,2005:21-105.
    [87] Nishiyama Y., Langan P. and Chanzy H. Crystal Structure and HydrogenBonding System in Cellulose IB from Synchrotron X-ray and Neutron FiberDiffraction[J]. Journal of American Chemical Society,2002,124:9074-9082.
    [88] Marchetti M., Mill. C., Ailn. L., et al. Decontaminationof synthetic solutionscontaining heavy metals usingchemically modified sawdusts bearingpolyacrylic acid chains[J]. Journal of Wood Science,2000,46:331-333.
    [89] Low K.S., Lee C.K., and Mak S.M. Sorption of copper and lead by citric acidmodified wood[J]. Wood Science and Technology,2004,38:629-640.
    [90] Navarro R.R., Sumi K., Fujii N., et al. Mercury removal from wastewater usingporous cellulose carrier modified with polyethyleneimine[J]. Water Research,1996,30(10):2488-2494.
    [91] Saliba R., Gauthier H., and Gauthier R. Adsorption of heavy metal ions on virginand chemically-modified lignocellulosic materials[J]. Adsorption Science andTechnology,2005,23(4):313–322.
    [92] Bicak N., Sherrington D.C., and Senkal B.F. Graft copolymer of acrylamide ontocellulose as mercury selective sorbent [J]. Reactive and Functional Polymers,1999,41:69-76.
    [93] Liu M., Y. D., Zhan H., et al. Removal and recovery of chromium(III) fromaqueous solutions by aspheroidal cellulose adsorbent[J]. Water EnvironmentalResearch,2001,73:(3):322–328.
    [94]郑刘春.玉米秸秆及其纤维素的改性和吸附水体中镉离子的机理研究[D].广州:华南理工大学博士学位论文,2011.
    [95] Zhao B.-X., W. P., Tong Z., et al. Preparation and adsorption performance of acellulosic adsorbent resin for copper(II)[J]. Journal of Applied Polymer Science,2006,99:2951-2956.
    [96] Tashiro T. and Shimura Y. Removal of mercuric ions by systems based oncellulose derivatives[J]. Journal of Applied Polymer Science,1982,27:747-756.
    [97] Maekawa E. and Koshijima T. Properties of2,3-dicarboxy cellulose combinedwith various metallic ions [J]. Journal of Applied Polymer Science,1984,29:2289–2297.
    [98]张智峰.纤维素改性研究进展[J].化工进展,2010,29(8):1493-1500.
    [99] Zhang W., Liang M., and Lu C.-H. Morphological and structural development ofhardwood cellulose during mechanochemical pretreatment in solid state throughpan-milling [J]. Cellulose,2007,14(5):447-456.
    [100]陈育如,夏黎明,岑沛霖,等.蒸汽爆破预处理对植物纤维素性质的影响[J].高校化学工程学报,1999,13(2):234-239.
    [101] Kumar S., Rily G., Yin L.Y., et al. Cellulose pretreatment in subcritical water:Effect of temperature on molecular structure and enzymatic activity[J].Bioresource Technology,2010,101(4):1337-1347.
    [102]茂尧,由利丽.液氨预处理对纤维素可及度和反应性的影响[J].纤维素科学与技术,1998,6(3):45-51.
    [103] Jackson L.S., Arnaud. H.J. and William. J.T. Enzymatic modifications ofsecondary fiber[J]. Tappi Journal,1993,76(3):147-154.
    [104] Moran B.R. Enzyme treatment improve refining efficiency[J]. Pulp and Paper,1996,9:119-121.
    [105]管斌,杜建华,谢来苏,等.杨木SGW浆复合纤维素酶改性的研究[J].中国造纸,1999,5:27-30.
    [106]屈佳玉.微生物固定化技术及其在污水处理领域的研究进展[J].工业水处理,2010,30(10):14-16.
    [107] Bailey S., Olin T.J., Bricka R.M., et al. A Review of Potentially Low-CostSorbent for Heavy Metals[J]. Water Research,1999,33(11):2469-2479.
    [108] Krishnani K.K., Meng X., Christodoulatos C., et al. Biosorption mechanism ofnine different heavy metals onto biomatrix from rice husk[J]. Journal ofHazardous Materials,2008,153:1222-1234
    [109] Kumar U. Agricultural products and by-products as a low cost adsorbent forheavy metal removal from water and wastewater: A review[J]. ScientificResearch and Essay,2006,1(2):033-037.
    [110] Sag Y. and Kutsal T. Recent Trends in the Biosorption of Heavy Metals: AReview[J].6,2001, Biotechnol. Bioprocess Eng:376-385.
    [111] McKelvey J.B., Benerito R.R., Berni R.J., et al. The action of epichlorohydrin inthe presence of alkalies and various salts on the crease recovery of cotton [J].Journal of Applied Polymer Science,1961,7:1371-1389.
    [112] McKelvey J.B. and Benerito R.R. Epichlorohydrin-triethanolamine reaction inthe preparation of quaternary cellulose anion exchangers[J]. Journal of AppliedPolymer Science,1967,11:1693-1701.
    [113] Laszlo J.A. Preparing an ion exchange resin from sugarcane bagasse to removereactive dye from wastewater [J]. Textile Chemist and Colorist,1996,28:13-17.
    [114] Simkovic I. Preparation of anion exchangers from beech sawdust and wheatstraw[J]. Industrial Crops and Products1999,10(167-173).
    [115] Marshall W.E. and Wartelle L.H. An anion exchange resin from soybean hulls[J].J Chem Technol Biotechnol2004,79:1286-1292.
    [116] Wartelle L.H. and Marshall W.E. Quaternized agricultural by-products as anionexchange resins[J]. Journal of Environmental Management2006,78:157-162.
    [117] Orlando U.S., Baes A.U., Nishijima W., et al. A new procedure to producelignocellulosic anion exchangers from agricultural waste materials[J].Bioresource Technology,2002,83:195-198.
    [118] Orlando U.S., Baes A.U., Nishijima W., et al. Preparation of agricultural residueanion exchangers and its nitrate maximum adsorption capacity[J]. Chemosphere,2002,48:1041-1046.
    [119] Wang Y., Gao B.-y., Yue W.-w., et al. Preparation and utilization of wheat strawanionic sorbent for the removal of nitrate from aqueous solution[J]. Journal ofEnvironmental Sciences,2007,19:1305-1310.
    [120] Wang Y., Gao B.-Y., Yue W.-W., et al. Adsorption kinetics of nitrate fromaqueous solutions onto modified wheat residue[J]. Colloids and Surfaces A:Physicochem. Eng. Aspects2007,308:1-5.
    [121] Anirudhan T.S., Jalajamonya S. and Suchithraa P.S. Improved performance of acellulose-based anion exchanger with tertiary amine functionality for theadsorption of chromium(VI) from aqueous solutions [J]. Colloids and SurfacesA: Physicochemical and Engineering Aspects,2009,335:107-113.
    [122] Gao B.-Y., Xu X., Wang Y., et al. Preparation and characteristics of quaternaryamino anion exchanger from wheat residue[J]. Journal of Hazardous Materials,2009,165:461-468.
    [123] Anirudhan T.S., Noeline B.F. and Manohar D.M. Phosphate Removal fromWastewaters Using a Weak Anion Exchanger Prepared from a LignocellulosicResidue[J]. Environ. Sci. Technol,2006,40:2740-2745.
    [124] Mulinari D.R. and Silva M.L.C.P.d. Adsorption of sulphate ions by modificationof sugarcane bagasse cellulose[J]. Carbohydrate Polymers,2008,74:617-620.
    [125] Cimino G., Passerini A. and Toscano G. Removal of toxic cations and Cr(VI)from aqueous solution by hazelnut shell[J]. Water Research,2000,34:2955-2962
    [126] Aoyama M. and Tsuda M. Removal of Cr (VI) from aqueous solutions by larchbark[J]. Wood Sci. Technol.,2001,35425-434.
    [127] Sarin V. and Pant K.K. Removal of chromium from industrial waste by usingeucalyptus bark[J]. Bioresour. Technol.,2006,97:15-20.
    [128] Bai R.S. and Abraham T.E. Studies on chromium(VI) adsorption–desorptionusing immobilized fungal biomass[J]. Bioresource Technology,2003,87:17-26.
    [129] Hamadi N.K., Chen X.D., Farid M.M., et al. Adsorption kinetics for theremoval of chromium(VI) from aqueous solution by adsorbents derived fromused tyres and sawdust[J]. Chemical Engineering Journal,2001,84:95-105.
    [130] Baral S.S., Dasa S.N. and Rath P. Hexavalent chromium removal from aqueoussolution by adsorption on treated sawdust[J]. Biochemical Engineering Journal,2006,31:216-222.
    [131] Dupont L. and Guillon E. Removal of Hexavalent Chromium with aLignocellulosic Substrate Extracted from Wheat Bran[J]. Environ. Sci. Technol,2003,37:4235-4241.
    [132] Babe S. and Kurniawana T.A. Cr(VI) removal from synthetic wastewater usingcoconut shell charcoal and commercial activated carbon modified withoxidizing agents and/or chitosan[J]. Chemosphere,2004,54:951-967
    [133] Suksabye P., Thiravetyan P., Nakbanpote W., et al. Chromium removal fromelectroplating wastewater by coir pith[J]. Journal of Hazardous Materials2007,141637-644.
    [134] Gonzalez M.H., Araujo G.C.L., Pelizaro C.B., et al. Coconut coir as biosorbentfor Cr(VI) removal from laboratory wastewater[J]. Journal of HazardousMaterials,2008,159252-256.
    [135] Bishnoi N.R., Bajaj M., Sharma N., et al. Adsorption of Cr(VI) on activated ricehusk carbon and activated alumina[J]. Bioresource Technology,2004,91:305-307.
    [136] Singh K.K., Rastogi R. and Hasan S.H. Removal of Cr(VI) from wastewaterusing rice bran[J]. Journal of Colloid and Interface Science,2005,290:61-68.
    [137] Jain M., Garg V.K. and Kadirvelu K. Chromium(VI) removal from aqueoussystem using Helianthus annuus (sunflower) stem waste[J]. J. Hazard. Mater.,2009,162365-372.
    [138] Wang X.S., Lia Z.Z. and Taoa S.R. Removal of chromium (VI) from aqueoussolution using walnut hull[J]. Journal of Environmental Management,2009,90:721-729
    [139] Koroki M. Saito S., Hashimoto H., et al. Removal of Cr(VI) from aqueoussolutions by the culm of bamboo grass treated with concentrated sulfuric acid[J].Environmental Chemistry Letters,2010,8:59-61.
    [140] Celik A., Dost K. and Sezer H. An investigation of chromium (VI) ion removalfrom wastewaters by adsorption on residual lignin [J]. Fresenius EnvironmentalBulletin,2004,13:124-127.
    [141] Garg U.K., Kaur M.P., Garg V.K., et al. Removal of hexavalent chromium fromaqueous solution by agricultural waste biomass[J]. Journal of HazardousMaterials,2007,140:60-6.
    [142] Anirudhan T.S. and Unnithan M.R. Arsenic(V) removal from aqueous solutionsusing an anion exchanger derived from coconut coir pith and its recovery[J].Chemosphere,2007,65:60-65.
    [143]麻芳,曲荣君,孙昌梅,等.生物吸附材料吸附水中砷的研究进展[J].离子交换与吸附,2010,26(2):187-192.
    [144] Robinson T., Chandran B., and Nigam P. Removal of dyes from a synthetictextile dye effluent by biosorption on apple pomace and wheat straw[J]. WaterResearch,2002,36:2824-2830.
    [145] Wang X.-L., and Xing B.-S. Importance of Structural Makeup of Biopolymersfor Organic Contaminant Sorption[J]. Environ. Sci. Technol.,2007,41:3559-3565.
    [146]罗学刚.高纯木素提取与热塑改性[M].北京:化学工业出版社,2008:1-23.
    [147] Hüttermann A., Mai C. and Kharazipour A. Modification of lignin for theproduction of new compounded materials[J]. Appllied Microbiology andBiotechnology,2001,55:387–394.
    [148] Mohanty A.K., Misra M., and Drzal L.T. Sustainable Bio-Composites fromRenewable Resources: Opportunities and Challenges in the Green MaterialsWorld[J]. Journal of Polymers and the Environment,2002,10:19-26.
    [149]邱卫华,陈洪章.木质素的结构、功能及高值化利用[J].纤维素科学与技术,2006,14(1):52-59.
    [150]任俊莉.蔗渣和麦草半纤维素分离、改性及其应用[D].广州:华南理工大学博士学位论文,2007.
    [151]余紫苹,彭红,林妲,等.植物半纤维素结构研究进展[J].高分子通报,2011(6):48-52.
    [152]陈洪章.生物质科学与工程[M].北京:化学工业出版社,2008:1-6.
    [153]张颖,王晓辉.农业固体废弃物资源化利用技术[M].北京:化学工业出版社,2005.
    [154] Soest P.J.V. Development of a Comprehensive System of Feed Analyses and itsApplication to Forages[J]. J. Anim Sci.,1967,26:119-128.
    [155]国家环保总局.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社,2002.
    [156] Lim S.K., Son T.W., Lee D.W., et al. Novel Regenerated Cellulose Fibers fromRice Straw[J]. Journal of Applied Polymer Science,2001,82:1705-1708.
    [157] Laszkiewicz B. and Wcislo P. Sodium cellulose formation by activation process[J]. Journal of Applied Polymer Science,1990,39(2):415-425.
    [158] Carey F.A. Organic Chemistry (Fourth Edition)[M]. New York: TheMcGraw-Hill Companies, Inc,2000.
    [159] Bai Y.-X. and Li Y.-F. Preparation and characterization of crosslinked porouscellulose beads[J]. Carbohydrate Polymers,2006,64:402-407.
    [160] Ek R., Wormald P., Ostelius J., et al. Crystallinity index of microcrystallinecellulose particles compressed into tablets[J]. International Journal ofPharmaceutics,1995,125:257-264.
    [161] Flogeac K., Guillon E., Marceau E., et al. Speciation of chromium on a strawlignin: adsorption isotherm,EPR, and XAS studies[J]. New J. Chem.,2003,27:714-720.
    [162] Liu C.F., Xu F., Sun J.X., et al. Physicochemical characterization of cellulosefrom perennial ryegrass leaves (Lolium perenne)[J]. Carbohydrate Research,2006,341(16):2677-2687.
    [163] Liu C.F., Sun R.C., Zhang A.P., et al. Preparation of sugarcane bagassecellulosic phthalate using an ionic liquid as reaction medium[J]. CarbohydratePolymers,2007,68:17-25
    [164] Ren J.L., Sun R.C., Liu C.F., et al. Synthesis and characterization of novelcationic SCB hemicelluloses with a low degree of substitution[J]. CarbohydratePolymers,2007,67(3):347-357.
    [165] Zheng L.-C., Dang Z., Zhu C.-F., et al. Removal of cadmium(II) from aqueoussolution by corn stalk graft copolymers[J]. Bioresource Technology2010,101:5820-5826.
    [166] Zhao H., Kwak J.H., Zhang Z.C., et al. Studying cellulose fiber structure bySEM, XRD, NMR and acid hydrolysis[J]. Carbohydrate Polymers2007,68:235-241.
    [167] Sun L., Du Y., Fan L., et al. Preparation, characterization and antimicrobialactivity of quaternized carboxymethyl chitosan and application as pulp-cap[J].Polymer,2006,47:1796–1804.
    [168] Segal L., Creely J.J., Jr A.E.M., et al. An empirical method for estimating thedegree of crystallite of native cellulose using X-ray diffractometer[J]. TextileResearch Journal,1959,29:786-792.
    [169] Tao Z.-y., and Chu T.-w. On the Applicability of the Langmuir Equation toEstimation of Adsorption Equilibrium Constants on a Powdered Solid fromAqueous Solution[J]. Journal of Colloid and Interface Science,2000,231:8-12.
    [170] Zheng L., Dang Z., Yi X., et al. Equilibrium and kinetic studies of adsorption ofCd(II) from aqueous solution using modified corn stalk[J]. Journal ofHazardous Materials,2009:650-656
    [171] Aksu Z. Determination of the equilibrium, kinetic and thermodynamicparameters of the batch biosorption of nickel(II) ions onto Chlorella vulgaris[J].Process Biochemistry,2002,38:89-99.
    [172] Giles C.H., Smith D. and Huitson A. A general treatment and classification ofthe solute adsorption isotherm. I. Theoretical[J]. Journal of Colloid andInterface Science,1974,47:755-765.
    [173] Vadivelan V. and Kumar K.V. Equilibrium, kinetics, mechanism, and processdesign for the sorption of methylene blue onto rice husk [J]. Journal of Colloidand Interface Science,2005,286:90-100.
    [174] Horn J.R., Russell D., Lewis E.A., et al. Van’t Hoff and Calorimetric Enthalpiesfrom Isothermal Titration Calorimetry: AreThere Significant Discrepancies[J].Biochemistry,2001,40:1774-1778.
    [175] Al-Ghouti M., Khraisheh M.A.M., Ahmad M.N.M., et al. Thermodynamicbehaviour and the effect of temperature on the removal of dyes from aqueoussolution using modified diatomite: A kinetic study[J]. Journal of Colloid andInterface Science,2005,287:6-13.
    [176] Khan A.A. and Singh R.P. Adsorption thermodynamics of carbofuran on Sn (IV)arsenosilicate in H+, Na+and Ca2+forms[J]. Colloids and Surfaces,1987,24(1):33-42.
    [177]叶林顺.不同固液两相吸附平衡常数的局限含义及其与吸附位覆盖度的关系[J].环境化学,2010,29(4):604-608.
    [178] Lagergren S. About the theory of so-called adsorption of soluble substances[J].Kungliga Svenska Vetenskapsakademiens. Handlingar,1898,24(4):1-39.
    [179] Ho Y.-S. Citation review of Lagergren kinetic rate equation on adsorptionreactions[J]. Scientometrics,2004,59:171-177.
    [180] Ho Y.S. and McKay G. Pseudo-second order model for sorption processes[J].Process Biochemistry,1999,34451–465.
    [181] Ho Y.S. and McKay G. A comparison of chemisorption kinetic models appliedto pollutant removal on various sorbents[J]. Trans IChemE,1998,76(Part B):332-340.
    [182] Mohan D., Singh K.P. and Singh V.K. Trivalent chromium removal fromwastewater using low cost activated carbon derived from agricultural wastematerial and activated carbon fabric cloth[J]. Journal of Hazardous Materials,2006, B135:280-295.
    [183] Reichenberg D. Properties of ion-exchange resins in relation to their structureIII, kinetics of exchange[J]. J. AM. CHEM. SOC.,1953,75:589-592.
    [184] Sarkar M., Acharya P.K. and Bhattacharya B. Modeling the adsorption kineticsof some priority organic pollutants in water from diffusion and activationenergy parameters[J]. Journal of Colloid and Interface Science,2003,266:28-32.
    [185] Qu R., Wang M., Song R., et al. Adsorption Kinetics and Isotherms of Ag(I) andHg(II) onto Silica Gel with Functional Groups of Hydroxyl-or Amino-Terminated Polyamines[J]. Journal of Chemical Engineering Data,2011,56:1982-1990.
    [186] Yoon S.-H. Adsorption Kinetics of Polyamide-epichlorohydrin on CellulosicFibres Suspended in Aqueous Solution[J]. J. Ind. Eng. Chem.,2006,12(6):877-881.
    [187] Dogan M. and Alkan M. Adsorption kinetics of methyl violet onto perlite[J].Chemosphere,2003(50):517-528.
    [188] Ho Y.S., Ng J.C.Y., and McKay G. Kinetics of pollutant sorption by biosorbents:review [J]. Separation and Purification Methods,2000,29(2):189-232.
    [189] Aksu Z. and Karabay r G. Comparison of biosorption properties of differentkinds of fungi for the removal of Gryfalan Black RL metal-complex dye[J].Bioresource Technology,2008,99:7730-7741.
    [190] Li Q., Chai L., Yang Z., et al. Kinetics and thermodynamics of Pb (II)adsorption onto modified spent grain from aqueous solutions[J]. AppliedSurface Science,2009,255:4298-4303.
    [191] Cheung C.W., Porter J.F., and Mckay G. Sorption kinetic analysis for theremoval of cadmium ions from efffuents using bone char[J]. Water Research,2001,35:605-612.
    [192] Sag Y.S. and Aktay Y. Kinetic studies on sorption of Cr (VI) and Cu (II) ions bychitin, chitosan and Rhizopus arrhizus[J]. Biochemical Engineering Journal,2002,12:143-153.
    [193] Dambies L., Guimon C., Yiacoumi S., et al. Characterization of metal ioninteractions with chitosan by X-ray photoelectron spectroscopy[J]. Colloids andSurfaces A: Physicochemical and Engineering Aspects,2001,177203-214.
    [194] Marmiroli M., Antonioli G., Maestri E., et al. Evidence of the involvement ofplant ligno-cellulosic structure in the sequestration of Pb: an X-rayspectroscopy-based analysis[J]. Environmental Pollution,2005,134:217-227.
    [195] Gonzalez M.r.H., C.L.Arau′jo G.r., Pelizaro C.B., et al. Coconut coir asbiosorbent for Cr (VI) removal from laboratory wastewater[J]. Journal ofHazardous Materials,2008,159:252-256.
    [196] Sumathi K.M.S., Mahimairaja S. and R. Naidu. Use of low-cost biologicalwastes and vermiculite for removal of chromium from tannery effluent[J].Bioresour. Technol.,2005,96:309-316.
    [197] Gode F., Atalay E.D. and Pehlivan E. Removal of Cr (VI) from aqueoussolutions using modified red pine sawdust[J]. Journal of Hazardous Materials,2008,152:1201-1207.
    [198]赵会义,朱慎林,骆广生,等.用离子交换膨胀床去除铬离子[J].清华大学学报(自然科学版),2003,43(10):1310-1313.
    [199]关红欣,韩凌,胡洪波,等.膨胀床吸附层析技术基础性能研究进展[J].化学世界,2004(3):162-167.
    [200] Uddin M.T., Rukanuzzaman M., Khan M.M.R., et al. Adsorption of methyleneblue from aqueous solution by jackfruit (Artocarpus heteropyllus) leaf powder:A fixed-bed column study[J]. Journal of Environmental Management2009,90:3443-3450.
    [201] Suksabye P., Thiravetyan P., and Nakbanpote W. Column study of chromium(VI)adsorption from electroplating industry by coconut coir pith[J]. Journal ofHazardous Materials,2008,160:56-62.
    [202]刘艳,党志,刘云,等.一株硫酸盐还原菌DSRBa的分离鉴定及特性分析[J].农业环境科学学报,2011,30(1):176-182.
    [203] Xu H., Zhang X., Li L., et al. Enhanced hydrogenotrophic sulfate reductionusing Desulfovibrio vulgaris Hildenborough cells permeabilized with ethanol[J].Journal of Chemical Technology and Biotechnology,2009,84(10):1539-1543.
    [204] Rampinelli L.R., Azevedo R.D., Teixeira M.C., et al. A sulfate-reducingbacterium with unusual growing capacity in moderately acidic conditions[J].Biodegradation,2008,19:613-619.
    [205] Ghojavand H., Vahabzadeh F., Mehranian M., et al. Isolation of thermotolerant,halotolerant, facultative biosurfactant-producing bacteria[J]. Appl MicrobiolBiotechnol,2008,80:1073-1085.
    [206]许雅玲,伍健东,周兴求. SO42-对SRB颗粒污泥性能的影响[J].环境科学与技术,2010,33(9):165-168.
    [207]贺延龄.废水的厌氧生物处理[M].北京:中国轻工业出版社,1998.
    [208]谢家仪,董光军,刘振英.扫描电镜的微生物样品制备方法[J].电子显微学报,2005,24(4):440.
    [209]秦利鸿,曹剑波.微生物样品在扫描电镜观察中的特殊制备方法[J].湖北植保,2008(1):35.
    [210] Barton L.L. and Fauque G.D. Biochemistry, Physiology and Biotechnology ofSulfate‐Reducing Bacteria[J]. Advances in Applied Microbiology,2009,68:41-98.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700