高强高韧Al-Zn-Mg-Cu合金疲劳断裂性能以及微观组织的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过扫描电子显微技术(SEM)、透射电子显微技术(TEM)以及电子背散射衍射技术(EBSD)的观察和分析,研究了Al-Zn-Mg-Cu系合金的疲劳、断裂的微观特征、基本规律以及裂纹萌生与扩展的微观机制,并从理论上对其进行了分析和讨论,得到了如下的主要结论:
     1.过时效状态Al-Zn-Mg-Cu合金的断裂韧性主要受到第二相粒子的影响,其断裂方式以粗大第二相粒子引起的韧窝断裂为主。由合金基体的强度和晶界沉淀相的变化所引起的基体与晶界的差异会对合金的断裂方式和断裂韧性起到决定性的作用。
     2. Al-Zn-Mg-Cu合金的疲劳损伤一般是由试样自由表面及其附近的富Fe相粒子所引起的,引起疲劳损伤最初形成的粒子大小一般约为10×12~17μm2。微裂纹一般在粒子中间断开处、粒子与基体的界面处、晶界以及表面凹坑等缺陷处萌生,裂纹形成后,继续向纵深扩展,最后发生瞬断。
     3.试样在330Mpa的应力幅值下进行疲劳拉伸,其裂纹源区附近约170×190μm2的区域内没有观察到疲劳辉纹,随着裂纹的进一步扩展,可以逐渐观察到二次破裂、疲劳辉纹等典型的断口形貌,在可以观察到疲劳辉纹的区域内,疲劳辉纹的间距随着裂纹扩展的进行而逐渐加宽。
     4. Al-Zn-Mg-Cu合金疲劳裂纹的扩展可分为三个阶段,当△K<16MPa×m1/2时,为裂纹扩展的第一阶段,此阶段断口上有很多微小的峭壁;当16MPa×m1/2 <△K<33MPa×m1/2时,为裂纹扩展的第二阶段,疲劳辉纹是该阶段的主要特征形貌;当△K>33MPa×m1/2时,为裂纹扩展的第三阶段(瞬断阶段),断口上可以观察到大量的韧窝和破碎粒子,类似于静载拉伸的形貌。
     5. Al-Zn-Mg-Cu合金疲劳裂纹的扩展呈穿晶与沿晶混合的方式,相邻晶粒的晶粒结构与裂纹扩展之间的关系遵循于裂纹尖端的晶体塑性变形机制。当相邻两晶粒的有效滑移面间的面间角较大时,裂纹不能直接穿越晶界,倾向于沿晶扩展。
     6.当疲劳裂纹穿越晶界进入下一个新的晶粒时,相比于扭转,裂纹尖端的简单偏转更容易发生。
     7.对于不同应力幅值下进行疲劳试验的合金,应力幅值越大,裂纹源距材料的自由表面越近,无辉纹区域的面积也越小;裂纹扩展区中疲劳辉纹的间距、裂纹扩展速率以及疲劳断口上瞬断区占总断面面积的比例也越大。
The fatigue and fracture properties and microstructure of the fatigue specimen have been investigated by using SEM (including EBSD (Electron Back-scattering Patterns) analysis techniques) and TEM techniques, which reveals the micromechanisms of fatigue crack initiation and growth. After further analysis the conclusions come as follow:
     1. The fracture toughness of overaged Al-Zn-Mg-Cu alloy is mainly affected by the second phase particles and the fracture mode of this kind of aluminum alloy is dimple fracture caused by coarsed second phase particles. The variation of strength of the alloy matrix and precipitation at grain boundaries give rise to a discrepancy between matrix and grain boundaries, which has an extreme impact on fracture mode and fracture toughness of alloys.
     2. The fatigue damage of Al-Zn-Mg-Cu alloys are usually caused by Fe-rich intermetallic particels at or near the surface of the specimen, which are approximately 10×12~17μm2 in size. Micro cracks usually initiate in defects such as fracture particles, interface between partiles and matrix, grain boundaries or surface pits. After initiation fatigue cracks propagate further towards the center of the specimen, and finally fatigue failure occurs.
     3. The specimen was subjected to a tensile test with stress amplitude of 330Mpa. In a region of approximately 170×190μm2 no striations were observed. As the fatigue cracks propagate secondary some typical fracture morphology like cracks and striations could be observed. In regions where striations are visible a uniform increase in striation distance as the crack length increased.
     4. There are 3 stages of the crack propagation, when△K<16MPa×m1/2, it is the first stage, during which a great number of micro cliffs on the fracture surface can be observed. Afterwards when 16MPa×m1/2<△K<33MPa×m1/2, striation is the characteristic morphology. Thirdly, under the condition of△K> 33 MPa×m1/2, fracture failure occurs, lots of dimples and fracture particles are visible, the fracture surface is familiar with that of static tention.
     5. The propagation mode of Al-Zn-Mg-Cu alloys is a mixed pattern of intergranular and transgranular ones. The relationship between misorientation of adjacent grains and propagation of fatigue crack obeys the crystal deformation mechanism of crack tips. When the interfacial angle of adjacent grains is relatively wide, fatigue cracks can't propagate through the grain boundaries and is apt to be intergranular.
     6. When fatigue cracks cross the grain boundaries and enter an adjacent grain, compared with twist, deflection of the crack tip is more likely to happen.
     7. For experimental alloys in tesile tests, with the increase of stress amplitude, the distance between the crack source and the free surface of the specimen decreases, and the size of the region without striations is smaller. At the same time the striation distance, the growth rate of cracks and the size of the fatigue rupture region increase.
引文
[1]王洪斌,黄进峰,杨滨,等.Al-Zn-Mg-Cu系合金[J].材料科学导报,2003,17(9): 1-4
    [2]Wei Qiang, Xiong Baiqing, Zhang Yong an, et al. Production of high strength Al-Zn-Mg-Cu alloys by spray forming process[J]. Trans Nonfrrous Met Soc China,2001,11(2):258-261
    [3]熊柏青.喷射成形技术的产业化现状及应用发展方向[J].稀有金属,1999,11(6):425-430
    [4]张永安.国家高新技术研究发展计划(863计划).超高强度高韧性铝合金的研究开发与产业化,2001,9:5
    [5]陈昌麒.超高强度铝合金的发展[J].中国有色金属学报,2001,3:2.
    [6]李红英,董显娟.高强高韧铝合金研究现状及展望[J].湖南有色金属,2002,18(5):33~34
    [7]弗得良捷尔,吴学译.高强度变形铝合金[M].上海科技出版社,1963
    [8]J. S. Robinson. Influence of retrogression and reaging on fracture toughness of 7010 aluminium alloy[J]. Materials Science and Technology,2003,19: 1697-1704
    [9]T. S. Srivatsan. Microstructure, tensile properties and fracture behaviour of aluminium alloy 7150[J]. Journal of Materials Science,1992,27:4772-4781
    [10]M. B. Hall, J. W. Martin. Effect of retrogression temperature on the properties of an RRA (retrogressed and re-aged) 7150 aluminium alloy[J]. Zeitschrift fuer Metallkunde,1994,85(2):134-139
    [11]Y. V. Milman, A. I. Sirko, D. V. Lotsko, D. B. Miracle, O. N. Senkov. Microstructure and Mechanical Properties of Cast and Wrought Al-Zn-Mg-Cu Alloys Modified with Zr and Sc[J]. Mater. Sci. Forum,2002,396-402: 1217-1222
    [12]甘卫平,范洪涛,许可勤,周兆锋.Al-Zn-Mg-Cu系高强铝合金研究进展[J].铝加工,2003,(3):1-12
    [13]W.F.史密斯,张泉等译.工程合金的组织和性能[M].北京:冶金工业出版社,1984
    [14]郑虹.高强度变形铝合金—Al-Zn-Mg-Cu系合金[J].鞍山师范学院学报,2001,3(3):71-73
    [15]Morere Bruce, Maurice Claire, Shahani Rave. The Influence of Al3Zr Dispersoids on the Recrystallization of Hot-Deformed AA 7010 Alloys[J]. Metall Mater Trans A,2001,32(3):625-632
    [16]J. D. Robson et al. Predicting the recrystallized volume fraction in 7050 hot rolled plate[J]. Mater Sci Techn,2002,18(6):607-618
    [17]Y. L. Wu, et al. Microalloying of Sc, Ni and Ce in an advanced Al-Zn-Mg-Cu alloy[J]. Mater Trans A,1999,30(4):1017-1020
    [18]S. Kikuchi, H. Yamazaki, T Otsuka. Peripheral-recrystallized structures formed in Al-Zn-Mg-Cu-Zr alloy materials during extrusion and their quenching sensitivity[J]. Mater Proc Techn,1993,38(4):689-701
    [19]J. R. Pickness, T. J. Langan. Metall Trans A,1987,18:1735
    [20]陈昌麒.超高强铝合金的发展[J].中国有色金属学报,2002,12(3):22-27
    [21]F. A.Costello, J. D. Robson, P. B. Prangnell. The Effect of Small Scandium Additions to AA7050 on the As-Cast and Homogenized Microstructure[J]. Mater. Sci. Forum,2002,396-402:757-762
    [22]O. N. Senkov, D. B. Miracle, Y. V. Milman, J. M. Scott, D. V. Lotsko, A. Sirko. Low Temperature Mechanical Properties of Scandium-Modified Al-Zn-Mg-Cu Alloys[J]. Mater. Sci Forum,2002,396-402:1127-1132
    [23]倪培相,左秀荣,吴欣凤.Al-Zn-Mg系合金研究现状[J].轻合金加工技术,2007,35(1):7-11
    [24]C. E. Macchi, A. Somoza, A. Duspasquier, et al. Secondary precipitation in Al-Zn-Mg-(Ag) alloys[J]. Acta Mater,2003,51(17):5151-5158
    [25]C. E. Macchi, A. Somoza, A. Duspasquier, et al. Influence of Small Additions of Ag on the Ageing Kinetics of an Al-Zn-Mg Alloy:A Positron Annihilation Study[J]. Mater Sci Forum,2002,396-402:833-838
    [26]M. De Sanctis. Structure and properties of rapidly solidified ultrahigh strength Al-Zn-Mg-Cu alloys produced by spray deposition[J]. Mater Sci Eng,1991, A141(1):103-121
    [27]N. A. Belov, V. S. Zolotorevskity. The Effect of Nickel on the Structure, Mechanical and Casting Properties of Aluminium Alloy of 7075 Type[J]. Mater. Sci. Forum,2002,396-402:935-940
    [28]Y. L. Wu, F. H. Froes, C. G Li, J Liu. Effects of Microalloying with Sc, Ni and Ce on the Behavior of Ingot Aluminum Alloy C912 (Al-Zn-Mg-Cu), Synthesis/Processing of Lightweigth Metallic Materials II[J]. TMS Annual Meeting,1997,9-13
    [29]Y. L. Wu, F. H. Froes, C. G Li, A. Alvarez. Microalloying of Sc, Ni and Ce in an Advanced Al-Zn-Mg-Cu Alloy[J]. Met allurgical and Materials Transaction A, 1999,30(4):1017-1024
    [30]牟春,林学丰,黎文献.微量稀土对7075合金组织和性能的影响[J].铝加工,2001(5):27-31
    [31]J. R. Pcken. Aluminum powder metallurgy technology for high-strength applications[J]. Journal of Materials Science,1981,16:1437-1457
    [32]J. A. Wert, N. E. Paton, C. H. Hamilton, M. W. Mahoney. Grain refinement in 7075 aluminum by thermo-mechanical processing[J]. Metallurgical Transactions A,1981,12A:1267-1276
    [33]Z. M. El-Baradie. Effect of double thermomechanical treayments on the properties of 7075 alloy[J]. Journal Materials Process Technology,1996,62: 76-80
    [34]邱惠中,吴志红.航天用高性能金属材料的新进展[J].宇航材料工艺,1996,(2): 18-20
    [35]K. Osamura. Microscopic structure of super-high strength P/M Al-Zn-Mg-Cu alloys[J]. Materials Science Forum,1996,212-222:1829-1834
    [36]赵振业.高强度合金抗疲劳应用技术研究与发展[J].中国工程科学,2005,7(3): 90-94
    [37]崔约贤,王长利.金属断口分析[M].哈尔滨工业大学出版社,1998
    [38]郑修麟.材料的力学性能[M].西北工业大学出版社,2004
    [39]B.г.库德良绍夫.铝合金断裂韧性[M].冶金工业出版社,1980
    [40]M. C. Carroll. Improvements to the strength and corrosion resistance of Al-Zn-Mn alloys of Near-AA5083 chemistry. Dissertation for the Doctoral Degree in Engineering of the Ohio State University,2001:18
    [41]周鸿章.高强铝合金的研究进展[J].稀有金属材料与工程,2001,30(6):87-92
    [42]谢优华,杨守杰.含锆Al-Zn-Mg-Cu合金的研究进展及发展概况[J].中国有色金属学报,2003,3(2):87
    [43]邓安化.有色金属的脱溶转变[J].上海有色金属,1995,16(5):304-309
    [44]宁爱林,曾苏民.时效制度对7B04铝合金组织和性能的影响[J].中国有色金属学报,2004,14(6):921-927
    [45]D. Dumont, A. Deschamps, Y. Brechet. On the relationship between microstructure, strength and toughness in AA7050 aluminum alloy[J]. Materials Science and Engineering A,2003, A356:326-336
    [46]段玉波,唐剑,黄平,李成利,曾苏民.7B04合金的断裂韧性[J].中国有色金属学报,2003,13(2):216-221
    [47]Y. Xue, H. El Kadiri, M. F. Horstemeyer, J. B. Jordon, H. Weiland. Micromechanisms of multistage fatigue crack growth in a high-strength aluminum alloy[J]. Acta Materialia,2007,55(6):1975-1984
    [48]王仁智,吴培远.疲劳失效分析[M].机械工业出版社,1987
    [49]D. Dumont, A. Deschamps, Y. Brechet. A model for predicting fracture mode and toughness in 7000 series aluminum alloys[J]. Acta Materialia,2004,52: 2529-2540
    [50]N. Kamp, I. Sinclair, M. J. Starink. Toughness-strength relations in the overaged 7449 Al-based alloy[J]. Metallurgical and Materials Transactions A,2002,33A: 1125-1135
    [51]R.A. Suresh,王中光译.材料的疲劳[M].国防工业出版社,1993
    [52]陈传尧.疲劳与断裂[M].华中科技大学出版社,2002
    [53]王弘.材料疲劳裂纹扩展和断裂定量规律的研究.西北工业大学博士论文,2002
    [54]李文辉.基于位错滑移的铝合金断裂行为的研究.中南大学博士论文,2008
    [55]李志辉,熊柏青,张永安等.7B04铝合金预拉伸厚板的微观组织与性能[J].稀有金属,2007,3(4):440-446
    [56]李雪.2124铝合金板材断裂韧性和高周疲劳特性研究.中南大学硕士学位论文,2007
    [57]A. Heinz a, A. Haszler, C. Keidel, et al. Recent development in aluminium alloys for aerospace applications[J]. Materials Science and Engineering,2000,2: 102-107
    [58]J. N. Fridlyander. Development and application of high-strength Al-Zn-Mg-Cu alloys[J]. Materials Science Forum,1996,217(222):1813-1818
    [59]蹇海根,姜锋,官迪凯等.固溶处理对7B04铝合金组织和性能的影响[J].材料热处理学报,2006,3(28):72-75
    [60]汝继刚,伊琳娜.7B04铝合金疲劳断裂性能研究[J].轻合金加工技术,2007,35(10): 3~6
    [61]K.S. Al-Rubaie, E. K. L. Barroso, L. B. Godefroid. Fatigue crack growth analysis of pre-strained 7475-T7351 aluminum alloy[J]. International Journal of Fatigue,2006,28:934-942
    [62]G..Fajdiga, M. Sraml. Fatigue crack initiation and propagation under cyclic contact loading[J]. Engineering Fracture Mechanics,2009,20(2):14-18
    [63]D. F. Ding, J. Z. Liu, X. R. Wu. An investigation of small-crack and long-crack propagation behavior in titanium alloy TC4 and aluminum alloy 7475-T7351[J]. Journal of Aeronautical Materials,2005,25(6):11-16
    [64]C. Froustey, J. L. Lataillade. Influence of the microstructure of aluminium alloys on their residual impact properties after a fatigue loading program[J]. Materials Science and Engineering A,2009,500(1):155-163
    [65]T. Zhai, A. J. Wilkinson, J. W. Martin. A crystallographic mechanism for fatigue crack propagation through grain boundaries[J]. Acta Materialia,2000,48: 4917-4927
    [66]K. S. Al-Rubaie, E. K. L. Barroso, L. B. Godefroid. Fatigue crack growth analysis of pre-strained 7475-T7351 aluminum alloy[J]. International Journal of Fatigue,2006,28:934-942
    [67]W. Ludwig, J. Y. Buffiere, S. Savelli, P. Cloetens. Study of the interaction of a short fatigue crack with grain boundaries in a cast Al alloy using X-ray microtomography[J]. Acta Materialia,2003,51:585-598
    [68]K. S. Ravichandran, X. D. Li. Fracture mechanical character of small cracks in polycrystalline materials:Concept and numerical k calculations[J]. Acta Materialia,2000,48:525-40
    [69]雷家峰,刘羽寅,杨锐.一种亚稳β钛合金中疲劳短裂纹穿晶扩展晶体学特征的EBSD研究[J].金属学报,2002,38:272-276
    [70]T. Zhai, X. P. Jiang, J. X. Li. The grain boundary geometry for optimum resistance to growth of short fatigue cracks in high strength Al-alloys[J]. International Journal of Fatigue,2005,27:1202-1209
    [71]陈耀明.评价及估算切口疲劳强度的新方法[M].航空工业出版社,2006:98-102
    [72]徐以锋.电解含钛铝合金的疲劳性能研究.郑州大学硕士论文,2003:9-12
    [73]孙秀堂,李洪升,常成.平面应力断裂韧度Kc的测试与研究[J].宇航材料工艺,1994,(2):53-55
    [74]金属板材Kr曲线实验方法.中华人民共和国航空工业部标准.航空工业部,1984,213-214
    [75]李念奎.船用铝合金的机械性能[J].轻金属,1994,(9):54~55
    [76]王祝堂,田荣璋.铝及铝合金加工手册[M].中南工业大学出版社,1989
    [77]陈昌麒.高强铝合金穿晶剪切断裂研究[J].北京航空航天大学学报,2002,28(5): 519-523
    [78]A. L. David, M. H. Ray. Aluminum alloy development efforts for compression dominated structure of aircraft[J]. Light Metal Age,1991,2(9):11-15
    [79]L. Lengsfeld, et al. Microstructure and mechanical behavior of spray deposited Zn modified 7xxx series Al alloys[J]. International journal of rapid solidification,1995, 8(4):237-265
    [80]G. T. Fry, F. V. Lawrence, A. R. Robinson. A model for fatigue defect nucleation in thermite rail welds[J]. Fatigue & Fracture of Engineering Materials & Structures,2007,19(6):655-668
    [81]H. Matsuo, M. Mitsuhara, K. Ikeda, S. Hata, H. Nakashima. Electron microscopy analysis for crack propagation behavior of alumina[J]. International Journal of Fatigue,2010,32(3):592-598
    [82]D. A. Lados, D. Apelian, J. K. Donald. Fatigue crack growth mechanisms at the microstructure scale in Al-Si-Mg cast alloys:Mechanisms in the near-threshold regime[J]. Acta Materialia,2006,54(6):1475-1486
    [83]J. J. Schubbe. Fatigue crack propagation in 7050-T7451 plate alloy[J]. Engineering Fracture Mechanics,2009,76(8):1037-1048
    [84]V. K. Gupta, S. R. Agnew. Measuring the effect of environment on fatigue crack-wake plasticity in aluminum alloy 2024 using electron backscatter diffraction[J]. Materials Science and Engineering,2008,494(1-2):36-46
    [85]U. Krupp, O. Duber, H. J. Christ, B. Kunkler, P. Koster, C. P. Fritzen. Propagation mechanisms of microstructurally short cracks-Factors governing the transition from short-to long-crack behavior[J]. Materials Science and Engineering,2007,462(1-2):174-177
    [86]D. A. Lados, D. Apelian. Relationships between microstructure and fatigue crack propagation paths in Al-Si-Mg cast alloys[J]. Engineering Fracture Mechanics,2008,75(3-4):821-832
    [87]I. Simonovski, K. F. Nilsson, L. Cizelj. The influence of crystallographic orientation on crack tip displacements of microstructurally small, kinked crack crossing the grain boundary[J]. Computational Materials Science,2007,39(4): 817-828
    [88]C. Blochwitz, S. Jacob, W. Tirschler. Grain orientation effects on the growth of short fatigue cracks in austenitic stainless steel[J]. Materials Science and Engineering A,2008,496(1-2):59-66
    [89]I. Bantounas, D. Dye, T. C. Lindley. The effect of grain orientation on fracture morphology during high-cycle fatigue of Ti-6A1-4V[J]. Acta Materialia,2009, 57(12):3584-3595
    [90]I. Simonovski, L. Cizelj. The influence of grains'crystallographic orientations on advancing short crack[J]. International Journal of Fatigue,2007,29(9-11): 2005-2014
    [91]E. Donnelly, D. Nelson. A study of small crack growth in aluminum alloy 7075-T6[J]. International Journal of Fatigue,2002,24(11):1175-1189
    [92]T. S. Srivatsan. An investigation of the cyclic fatigue and fracture behavior of aluminum alloy 7055[J]. Materials and Design,2002,23(2):141-151
    [93]W. Ludwig, J. Y. Buffiere, S. Savelli, P. Cloetens. Study of the interaction of a short fatigue crack with grain boundaries in a cast Al alloy using X-ray microtomography[J]. Acta Materialia,2003,51(3):585-598
    [94]T. S. Srivatsan, D. Kolar, P. Magnusen. The cyclic fatigue and final fracture behavior of aluminum alloy 2524[J]. Materials and Design,2002,23(2): 129-139
    [95]T. S. Srivatsan, S. Anand, S. Sriram, V. K. Vasudevan. The high-cycle fatigue and fracture behavior of aluminum alloy 7055[J]. Materials Science and Engineering A,2000,281(1-2):292-304
    [96]F. Bridier, P. Villechaise, J. Mendez. Slip and fatigue crack formation processes in an α/β titanium alloy in relation to crystallographic texture on different scales[J]. Acta Materialia,2008,56(15):3951-3962
    [97]M. R. Bache, W. J. Evans, V. Randle, R. J. Wilson. Characterization of mechanical anisotropy in titanium alloys[J]. Materials Science and Engineering A,1998,257(1):139-144
    [98]E. E. Sackett, L. Germain, M. R. Bache. Crystal plasticity, fatigue crack initiation and fatigue performance of advanced titanium alloys[J]. International Journal of Fatigue,2007,29(9-11):2015-2021
    [99]J. Y. Buffiere, S. Savelli, P. H. Jouneau, E. Maire, R. Fougeres. Experimental study of porosity and its relation to fatigue mechanisms of model Al-Si7-Mg0.3 cast Al alloys[J]. Materials Science and Engineering A,2001,316(1-2):115-126
    [100]D. R. Swalla, R. W. Neu. Fretting damage assessment of titanium alloys using orientation imaging microscopy[J]. Tribology International,2006,39(10): 1016-1027
    [101]T. Zhai, J. W. Martin, G.. A. D. Briggs. Fatigue damage in aluminum single crystals-Ⅰ. On the surface containing the slip bergers vector[J]. Acta Metall Mater,1995,43(10):3813-3825
    [102]T. Zhai, J. W. Martin, G. A. D. Briggs. Fatigue damage at room temperature in aluminum single crystals-Ⅱ. TEM[J]. Acta Materialia,1996,44(5), 1729-1739
    [103]T. Zhai, J. W. Martin, G. A. D. Briggs, A. J. Wilkinson. Fatigue damage at room temperature in aluminum single crystals-Ⅲ. Rotation[J]. Acta Materialia, 1996,44(9):3477-3488
    [104]T. Zhai, G. A. D. Briggs, J. W. Martin. Fatigue damage at room temperature in aluminum single crystals-Ⅳ. Secondary Slip[J]. Acta Materialia,1996,44(9): 3489-3496

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700