AZ31B镁合金板材热轧变形行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文借助物理模拟和数值模拟技术,采用Gleeble-1500热模拟实验机和MARC有限元分析软件,对AZ31B镁合金热塑性变形行为进行了研究。
     本文以AZ31B镁合金高温等温压缩变形的真应力一真应变曲线的特征分析为基础,研究了变形温度、变形速度对流变应力的影响规律,建立了AZ31B镁合金流变应力本构方程;利用热力耦合弹塑性有限元法对合金的轧制过程进行了数值模拟分析;并对AZ31B镁合金多道次热轧变形进行了实验模拟。得出以下结论:
     1.AZ31B镁合金在变形温度为200~500℃、应变速率为0.01~10 s-1范围内变形时的真应力—真应变曲线为动态再结晶型,流变应力随变形温度的升高和变形速率的降低而减小。该合金高温变形时的本构方程为:其中,
     2.对AZ31B镁合金在热压缩变形过程中的组织演变进行了观察,发现热变形过程的动态再结晶是主要的应变软化机制。AZ31B镁合金在变形温度300℃时开始发生动态再结晶,温度升高或应变速率降低有利于再结晶的加快和再结晶晶粒的长大。
     3.二维有限元模拟研究结果表明:AZ31B镁合金板材从表面到心部,在一定厚度范围内出现明显的温度梯度;在整个轧制过程中AZ31B板材内部节点的温度变化缓慢,而板材表面节点的温度变化较为剧烈。轧制完成后,表面温度最低点为400℃,心部温度为460℃左右。轧制变形区内拉、压应力的转折处约为板材厚度的1/4处。最大拉应力分布在板材中心位置,最大压应力分布在板材表面。轧制过程最大应变均发生在板材的次表面,从次表面至板材中心部,塑性应变依次降低,最小等效应变发生在板材中心部芯部。其结果与实验情况吻合较好。
     4.本文对AZ31B镁合金热轧过程进行三维模拟,由于研究条件限制,三维轧制过程仅进行了四个道次的有限元模拟。对轧制过程中板材成形规律进行了分析,对板材温度和轧制速度对变形的影响进行模拟。结果表明,适当提高轧制温度可以减轻变形不均匀性并降低温升;提高变形速度使温升加剧。
     5.在Gleeble-1500热模拟机上,对AZ31B镁合金多道次热轧进行实验模拟。经流变应力分析发现,AZ31B镁合金在多道次热轧变形过程中流变应力表现出加工硬化——应变软化——二次加工硬化的特征。
In the dissertation, hot deformation behaviors of AZ31B magnesium alloy have been extensively investigated with physical and numerical simulation techniques.
     True stress-strain behaviors were investigated by hot compressive testing on Gleeble-1500 thermal simulator at temperature range of 250 to 500℃with strain rate varying from 0.01 to 10 s-1. The relationships between flow stress, strain rate and deformation temperature were analyzed. The coupled thermo-mechanical simulation analysis of rolling for the alloy was done by using elastic-plastic finite element method on the software platform of MSC.MARC. The results are as follows:
     1. True stress-strain behavior of the alloy at different strain rate and temperature is characteristic as dynamic recrystallization. And the flow stress decreases with the increase of temperature, while increases with the increases with strain rate. The constitutive equation established by Zener-Hollomo parameter method are: Where,
     2. Microstructure evolution of AZ31B magnesium alloy during hot-compressive deformation was observed. The results show that, dynamic recrystallization was the main strain softening mechanism during hot deformation. Dynamic recrystallization of AZ31B magnesium alloy start at the temperature of 300℃. Increase of temperature or decrease of strain rate is benefits for dynamic recrystallization or coursen of dynamic recrystallization grains.
     3. There is obvious temperature gradicent from surface to centre of the workpiece within a certain depth. And the surface temperature changes sharply during the rolling process, while the center temperature changes little. After rolling, the surface temperature is 400℃, while the temperature of center is 460℃. Maximum compressive stress and maximum tensile stress occurr in the surface and center in the deforming region. During the rolling process, strain of secondary surface layer is biggest.The equivalent strain gradually decreases from secondary surface to the center, and the smallest equivalent strain occurres in the center. The simulated results show a satisfactory coincidence with the industrial measured data.
     4. In this dissertation, three-dimensional simulation of rolling for the AZ31B alloy was done by using finite element method. As the study is limited by conditions, three-dimensional rolling processes were simulated only four passes. Forming law of rolling process of AZ31B magnesium alloy was simulated by finite element method.The effect of process parameters, including the deformation temperature and the deformation velocity on the equivalent stress, the equivalent strain, the temperature raise during rolling deformation has been studied by numerical simulation.
     5. The experiment simulation of multi-pass hot rolling of AZ31B magnesium alloy was done by Gleeble-1500 thermal mechanical simulator. By flow stress analysis, the flow stress of AZ31B magnesium alloy in the multi-pass hot rolling process shows work hardening stage-softening stage-the second work-hardening characteristics.
引文
[1]刘静安.镁合金加工技术的发展趋势与开发应用前景[J].四川有色金属,2005,(4):1-10.
    [2]Polmear I J. Magnesium alloys and applications[J]. Materials Science and Technology, 1994,10(1):1-16.
    [3]陈振华.变形镁合金[M].北京:冶金工业出版社,2005.
    [4]Avedesian M M, Baker H. Magnesium and Magnesium Alloys[M]. ASM International. Materials Park, USA,1999.
    [5]余琨.稀土变形镁合金组织性能及加工工艺研究:[博士学位论文].长沙:中南大学,2000.
    [6]Kojima Y. Project of platform science and technology for advanced magnesium alloys[J], MaterialsTransactions,2001,42 (7):1154~1159.
    [7]曹乃光.金属塑性加工原理[M].北京:冶金工业出版社,1983.
    [8]彭大暑.金属塑性加工原理[M].长沙:中南大学出版社,2004.
    [9]王占学.塑性加工金属学[M].北京:冶金工业出版社,1991.
    [10]Bussiba A, Ben Artzy A, Shtechman A, et al. Grain refinement of AZ31 and ZK60 Mg alloys-towards super-plasticity studies[J]. Materials Science and Engineering A,2001, 302(1):56~62.
    [11]Lin H K, Huang J C. High strain rate and/or low temperature superplasticity in AZ31 Mg alloys processed by simple high-ratio extrusion methods [J]. Materials Transactions, 43(10):2424~2432.
    [12]李忠盛,潘复盛,张静.AZ31镁合金的研究现状和发展前景[J].金属成形工艺,2004,22(1):54~57.
    [13]刘满平,马春江,王渠东,等.工业态AZ31镁合金的超塑性变形行为[J].中国有色金属学报,2002,12(4):797~900.
    [14]Junichi Kaneko, Makoto Sugamata, et al. Effect of texture on the mechanical properties and formability of magnesium wrought materials[J].Journal of Japan Institute of Light metals, 2000,64(2):141~147.
    [15]Shuhei A, Hiroshi T. Deep-drawability of cup on AZ31 magnesium alloy plate[J]. Journal of Japan Institute of Light metals,2000,50(9):456~461.
    [16]吕宜振,翟春泉,王渠东,等.压铸镁合金的应用现状及发展趋势[[J].铸造,1998,49(12):50~53.
    [17]曾荣昌,柯伟,徐永波,等.Mg合金的最新发展及应用前景[J].金属学报,2001,37(7): 673~685.
    [18]张诗昌,段汉桥,蔡启舟,等.主要合金元素对镁合金组织和性能的影响[J].铸造,2001,50(6):310~314.
    [19]陈振华.镁合金[M].北京:化学工业出版社,2004.
    [20]美国金属学会.金属手册第九版第二卷[M].北京:机械工业出版社,1994.
    [21]H Watanabe A H, Tsutsui B, T Mukai, M Kohzu, S Tanabe, K Higashi. Deformation mechanism in a coarse-grained Mg-Al-Zn alloy at elevated temperature[J], Internation Journal of Plasticity,2001,17(3):387~397.
    [22]张先宏.镁合金热变形过程试验研究和数值模拟:[博士学位论文].上海:上海交通大学,2003.
    [23]Aida T, Hatta H, Ramesh C. Workability and mechanical properties of lighter-than-water Mg-Li alloy[A]. Proc of the 3rd Inter Magnesium Confer Manchester[C]. Manchster,1996: 143-153.
    [24]Clow B B. Magnesium industry overview[J]. Advanced Materials and Processing,1996, 150(4):33-36.
    [25]Shuhei A, Hiroshi T. Deep-drawability of cup on AZ31 magnesium alloy plate[J]. Journal of Japan Institute of Light matal s,2000,50(9):456~461.
    [26]Doege E, Draker K. Sheet metal forming of magnesium wrought alloy formability and process technology [J]. Journal of Material Process Technology,2001,115(1):14~19.
    [27]谢春晓,陈丙璇,刘凯.AZ31变形镁合金的研究与开发[J].金属世界,2006,2(1):22~26.
    [28]Watanabe H, Mukai T, Ishikawa K. Differential speed rolling of an AZ31 magnesium alloy and the resulting mechanical properties [J]. Journal of Materials science,2004,39(4): 1447~1480.
    [29]Su-Hyeon Kim, Bong-Sim You, Chang Dong Yim. Texture and microstructure changes in asymmetrically hot rolled AZ31 magnesium alloy sheets[J].Materials Letters,2005, 59(29/30):3876~3880.
    [30]Yasumasa Chino, Mamoru Mabuchi, Ryuji Kishihara. Mechanical properties and press formability at room temperature of AZ31 Mg Alloy processed by single roller driverolling[J]. Materials Transaction,2002,43(10):2554~2555.
    [31]F.W. Bach, M. Rodman, M. Schaper, et al. Improvements to the rolling-process in order to increase the formability of magnesium wrought alloys[J]. Proceedings of the 6th International Conference Magnesium Alloys and Their Applications,2003:285~293.
    [32]T Laser, Ch Hartig, R Bormann, J Bohlen, et al. Dynamic recrystallization of Mg-3Al-1Zn[J]. Proceedings of the 6th International Ccnference Magnesium Alloys and Their Applications,2003:164~169.
    [33]Kaiser F, Bohlen J. Correlation of Microstructure and Mechanical properties of Rolled magnesium sheet AZ31[J]. In edited by Kainer K U. Preceedings of the 6th International Conference in Magnesium Alloy and Their Application, Weinheim:Wiley-VCH,2004: 456~462.
    [34]汪凌云,黄光杰,陈林,等.镁合金板材轧制工艺及组织性能分析[J].稀有金属材料与工程,2007,36(5):910~914.
    [35]傅定法,许芳艳,夏伟军,等.退火工艺对轧制AZ31镁合金组织和性能的影响[J].湘潭大学自然科学学报,2005,27(4):57~61.
    [36]张青来,卢晨,朱燕萍,等.轧制方式对AZ31镁合金薄板组织和性能的影响[J].中国有色金属学报,2004,14(3):392~397.
    [37]张文玉,刘先兰,陈振华.轧制路径对AZ31镁合金薄板组织性能的影响[J].特色铸造及有色金属,2007,27(9):716~719.
    [38]曲家惠,张正贵,王福,等.AZ31镁合金室温异步轧制的织构演变[J].材料研究学报,2007,21(4):354~358.
    [39]翟春泉,秦富生,陈恭努.镁合金研制的最新发展[J].铸造纵横,2006,10(1):27-34.
    [40]张莹,耿茂棚,王艳春,等.镁合金的双辊板带连续铸轧技术[J].铸造技术,2005,26(1):79~81.
    [41]李永林,李铮,邸洪双,等.AZ31镁合金薄带直接铸轧新工艺[J].轻合金加工技术,2004,32(7):15~17.
    [42]户泽康寿.申光宪译.关于薄板的三元轧制理论[J].东北重型机械学院学报,1982,1(1):3~145.
    [43]Christian J W, Mahajan S. Deformation twinning[J]. Progress in Materials Science,1995, 39(1):1~157.
    [44]Jaswon M, Dove D. The crystallography of deformation twinning[J]. Acta Crystallographica, 1960,13(3):110-123.
    [45]Yasumasa Chino, Katsuya Kimura, Masataka Hakamada, et al. Mechanical anisotropy due to twinning in an extruded AZ31 Mg alloy[J]. Materials Science and Engineering:A,2008, 485(1):311-317.
    [46]Lan Jiang, John J Jonas, Alan A Luo, et al. Influence of {10-12} extension twinning on the flow behavior of AZ31 Mg alloy[J]. Materials Science and Engineering:A,2007, 445-446(1):302-309.
    [47]S Godet, L Jiang, A A Luoc, et al. Use of Schmid factors to select extension twin variants in extruded magnesium alloy tubes[J]. Scripta Materialia,2006,55(11):1055-1058.
    [48]Cizek P, Barnett M R. Characteristics of the contraction twins formed close to the fracture surface in Mg-3Al-1Zn alloy deformed in tension[J]. Scripta Materialia,2008,59(9): 959-962.
    [49]L Jiang, J J Jonas, K Boyle, et al. Deformation behavior of two Mg alloys during ring hoop tension testing[J]. Materials Science and Engineering:A,2008,492(1):68-73.
    [50]Wang Y N, Huang J C. The role of twinning and untwinning in yielding behavior in hot-extruded Mg-Al-Zn alloy[J]. Acta Materialia,2007,55(3):897-905.
    [51]L Jiang, J J Jonas, A Luo, et al. Twinning-induced softening in polycrystalline AM30 Mg alloy at moderate temperatures[J]. Scripta Materialia,2006,54(5):771-775.
    [52]Ion S E, Humphreys F J, White S H. Dynamic recrystallisation and the development of microstructure during the high temperature deformation of magnesium[J]. Acta Metallurgica,1982,30(10):1909-1919.
    [53]Toshiji Mukai, Masashi Yamanoi, Hiroyuki Watanabe, et al. Ductility enhancement in AZ31 magnesium alloy by controlling its grain structure[J]. Scripta Materialia,2001,45(1): 89-94.
    [54]S Yi, C Davies, H Brokmeier, et al. R Bolmaro, K Kainer, J Homeyer. Deformation and texture evolution in AZ31 magnesium alloy during uniaxial loading[J]. Acta Materialia, 2006,54(2):549-562.
    [55]D W Brown, S R Agnew, M A M Bourke, et al. Internal strain and texture evolution during deformation twinning in magnesium[J]. Materials Science and Engineering:A,2005, 399(1/2):1-12.
    [56]M H Yoo, S R Agnew, J R Morris, et al. Non-basal slip systems in HCP metals and alloys: source mechanisms[J]. Materials Science and Engineering A,2001,319-321(1):87-92.
    [57]余琨,黎文献,王日初.镁合金塑性变形机制[J].中国有色金属学报,2005,15(7):1081-1086.
    [58]L Jiang, J J Jonas, R K. Mishra, A A Luo, A K Sachdev, S Godet. Twinning and texture development in two Mg alloys subjected to loading along three different strain paths[J]. Acta Materialia,2007,55(11):3899-3910.
    [59]Yoo M H. Slip, twinning, and fracture in hexagonal close-packed metals[J]. Metallurgy Transaction A,1981,12(3):409-418.
    [60]Barnett M R. Twinning and the ductility of magnesium alloys:Part Ⅰ:"Tension" twins[J]. Materials Science and Engineering:A,2007,464(1):1-7.
    [61]Barnett M R. Twinning and the ductility of magnesium alloys:Part Ⅱ:"Contraction" twins[J]. Materials Science and Engineering:A,2007,464(1):8-16.
    [62]Al-Samman T, Gottstein G. Room temperature formability of a magnesium AZ31 alloy: Examining the role of texture on the deformation mechanisms[J]. Materials Science and Engineering:A,2008,488 (1):406-414.
    [63]Wang Y N, Huang J C. Texture analysis in hexagonal materials[J]. Materials Chemistry and Physics,2003,81(1):11-26.
    [64]S R Agnew, P Mehrotra, Lillo T M, et al. Texture evolution of five wrought magnesium alloys during route A equal channel angular extrusion:Experiments and simulations[J]. Acta Materialia,2005,53(11):3135-3146.
    [65]Barnett M R, Keshavarz Z, Beer A G, et al. Influence of grain size on the compressive deformation of wrought Mg-3Al-1Zn[J]. Acta Materialia,2004,52(17):5093-5103.
    [66]Agnew S R, Duygulu O. Plastic anisotropy and the role of non-basal slip in magnesium alloy AZ31B[J]. International Journal of Plasticity,2005,21(6):1161-1193.
    [67]Klimanek P, Potzsch A. Microstructure evolution under compressive plastic deformation of magnesium at different temperatures and strain rates[J]. Materials Science and Engineering A,2002,324(1):145-150.
    [68]Agnew S R, Yoo M H, Tom C N. Application of texture simulation to understanding mechanical behavior of Mg and solid solution alloys containing Li or Y[J]. Acta Materialia,2001,49(20):4277-4289.
    [69]Morozumi S, Kikuchi M, Yoshinaga H. Electron microscope observation in and around {10-12} twins in magnesium[J]. Transactions of the Japan Institute of Metals,1976,17(3): 158-164.
    [70]Al-Samman T, Gottstein G Dynamic recrystallization during high temperature deformation of magnesium[J]. Materials Science and Engineering:A,2008,490(1):411-420.
    [71]汪锐,李帆,何丹农,等.基于相似理论的汽车覆盖件拉深成形物理模拟与数值模拟[J].锻压技术,2002,27(1):19~23.
    [72]牛济泰.材料和热加工领域的物理模拟技术[M].北京:国防工业出版社,1999.
    [73]J R Cho, Bae W B, Kim Y H, Choi S S, et al. Analysis of the cogging process for heavy ingots by finite element method and physical modeling method[J]. Journal of Materials Processing Technology,1998,80-81(1):161~165.
    [74]H. So, Y.F. Lin, K.W. Huang. Comparison of flow patterns between plasticine and aluminum technology alloy in hot-precision forging[J]. Journal of Materials Processing Technology,1997,66(1):39~48.
    [75]王连生,董仕深.塑性泥在模拟热钢塑性成形中的应用[J].金属成形工艺,1992,10(2): 63~66.
    [76]张士宏,M.Arentoft,尚彦凌.金属塑性加工的物理模拟[J].塑性工程学报,2000,7(1):45~49.
    [77]詹梅,刘郁丽,杨合.航空叶片的精锻工艺与模拟技术[J].重型机械,1999,1(6):1~8.
    [78]Shiyong Yang, Kikuo Nezu. Application of an inverse FE approach in the concurrent design of sheet stamping[J]. Journal of Materials Processing Technology,1998,79(1-3):86~93.
    [79]仲町英治.基于有限元分析及非线性规划的金属成形过程优化设计[J].中国机械工程,1997,8(4):21~26.
    [80]董湘怀,黄树槐.塑性加工技术的发展趋势[J].机械工程学报,2000,11(9):1074~1077.
    [81]翟福宝,林新波,张质良,等.有限元模拟在金属塑性成形中的应用[J].锻压机械,2000(3):18~20.
    [82]沙孝春.热轧带钢温度场模拟与组织性能预报的应用研究:[博士学位论文].沈阳:中国科学院金属研究所,2004.
    [83]李学通,杜凤山,王敏婷.板材轧制头部翘曲的非线性有限元研究[J].钢铁研究学报,2005,17(5):43~47.
    [84]肖宏,徐玉辰,闫艳红.考虑晶粒变形动态再结晶过程模拟的元胞自动机法[J].中国机械工程,2005,16(24):2247~2248.
    [85]李传瑞,王宝峰,李建超.薄板坯CSP线连轧过程变形的有限元模拟[J].包头钢铁学院学报,2003,22(4):334~337.
    [86]刘相华,李长生,喻海良.数值模拟理论及其在轧制中应用的回顾与展望[J].第八届东北三省塑性成形新技术学术会议,沈阳,2007,5.
    [87]朱涛.宽板轧制过程金属变形规律的有限元研究:[硕士学位论文].秦皇岛:燕山大学,2002.
    [88]刘立忠.厚板轧制的数值模拟及数学模型:[博士学位论文].沈阳:东北大学,2002.
    [89]崔振山,刘才,张华弟,等.H型钢热轧变形过程的计算机模拟[J].钢铁研究学报,2000,12(6):25~28.
    [90]C G Sun, S M Hwang. Prediction of Roll Thermal Profile in Hot Strip Rolling by the Finite Element Method[J].ISIJ International,2000,40(8):794~801.
    [91]S Serajzadeh, A Karimi Taheri, F Mucciardi. Prediction of temperature distribution in the hot rolling of slabs [J]. Modelling and Simulation in Materials Science and Engineering, 2002,10(1):179~194
    [92]Fletcher J D, Beynon J H. Heat transfer conditions in roll gap in hot strip rolling[J]. International conference on Modelling of Metal Rolling Processes, London ROYAUME-UNI,1996,23(1):52~91.
    [93]彭颖红.金属塑性成形仿真技术[M].上海:上海交通大学出版社,1999.
    [94]Mwembela A, Konopleva E B, McQueen H J, et al. Superplastic forging with dynamic recrystallization of Mg-Al-Zn alloys cast by thixo-molding[J]. Scripta Materialia.1997, 37(11):1789.
    [95]余琨,黎文献,王日初.Mg-Al-Zn(RE)镁合金轧制变形行为及强化机制[J].稀有金属材料与工程.2006,35(11):1748-1752.
    [96]Brooks C R. Heat treatment, structure and properties of nonferrous alloys[M]. ASM International Materials Park, OH,1982.
    [97]栾娜,李落星,李光耀,等.AZ80镁合金的高温热压缩变形行为[J].中国有色金属学报.2007,17(10):1678-1684.
    [98]Y. C. Lin, Ming-song Chen, Jue Zhong. Effect of temperature and strain rate on the compressive deformation behavior of 42CrMo steel[J]. Journal of Materials Processing Technology,2008,205(1-3):308-315.
    [99]Poirier J P.晶体的高温塑性变形[M].大连:大连理工大学出版社,1989.
    [100]胡赓祥,钱苗根.金属学[M].上海:上海科学技术出版社,1980.
    [101]Takuda H. Modelling on flow stress of Mg-Al-Zn alloys at elevated temperatures[J]. Journal of Materials Processing Technology,1998,80-81(1):513-516.
    [102]A Mwembela, E Konopleva, H J McQueen. Microstructural development in Mg alloy AZ31 during hot working[J]. Scripta Materialia,1997,37(11):1789-1795.
    [103]Polmear I J. Magnesium alloys and applications [J]. Materials science and technology, 1994,10(1):1-16.
    [104]A Galiyev, R Kaibyshev. Superplasticity in a magnesium alloy subjected to isothermal rolling[J]. Scripta Materialia,2004,51(2):89-93.
    [105]M M Myshlyaev, H J McQueen, A Mwembela, et al. Twinning, dynamic recovery and recrystallization in hot worked Mg-Al-Zn alloy[J]. Materials Science and Engineering A. 2002,337(1/2):121-133.
    [106]韩万林.双金属轧制力计算方法的研究[J].上海金属(有色分册),1983,4(1):23~28.
    [107]Yung-neng Cheng, Shyong Lee. Reduction of the concentrated residual stress on the edges of a sandwich plate[J]. Journal of Materials Technology,2002 123(3):371-376.
    [108]陈振华.变形镁合金[M].北京:化学工业出版社,2005.
    [109]Hiroyuki Watanabe, Toshiji Mukai, Masami Sugioka, et al. Elastic and damping properties from room temperature to 673 K in an AZ31 magnesium alloy[J]. Scripta Materialia,2004,51(4):291-295.
    [110]Wertheimer T B. Thermal mechanically coupled analysis in metal forming process[C]. Numerical Methods in Industrial Forming Processes, Swansea, Wales,1982:425~434.
    [111]王春燕,雷中平,武生志.机械构件有限元分析及前后置处理一体化研究[J].太原重型机械学院学报.1996,17(1):39~43.
    [112]尚进.60kg/m钢轨热轧过程的有限元模拟及工艺分析:[硕士学位论文].北京:北京科技大学,1990.
    [113]周世平.温度对轧制复合变形量的影响.中国有色金属学报,1998,8增刊(2):295~296.
    [114]冯桂起.热粗轧过程金属变形规律的有限元模拟研究:[硕士学位论文].秦皇岛:燕山大学,003.
    [115]Kazutake Komori, Katsuhiko Koumura. Simulation of deformation and temperature in multi-pass three-roll rolling[J]. Journal of Materials Processing Technology,2000,105(1/2): 240~31.
    [116]彭大暑.金属塑性加工原理[M].长沙:中南大学出版社,2004.
    [117]R.M. Wang, A. Eliezer, E. Gutman. Microstructures and dislocations in the stressed AZ91D magnesium alloys[J]. Materials Science and Engineering A,2002,344(8):279.
    [118]H Ormerod, W J McG Tegart. Resistance to deformation of super-pure aluminum at high temperatures and strain rates[J]. Journal Institute of Metals,1960-1961,89(1):94~96.
    [119]C M Sellars W J McG Tegart. Hot Workability [J]. International Metallurgical reviews, 1972,17(1):1-24
    [120]T B Vaughan. Substructural influence in the hot rolling of Al alloys[J]. Journal Institute of Metals,1969,79(1):68-773
    [121]张辉.铝合金多道次热轧显微组织演变的模拟研究:[博士学位论文].长沙:中南大学,2000.
    [122]H J McQueen. Pressure infiltration processing of reinforced aluminium[J]. Journal of Materials processing Technology,1993,37(1):3-36
    [123]C M Sellars, A M Irisarri E S Puchi. Microstructural control in aluminum alloys: deformation, recovery and recrystallization, (eds. E H Chia and H J McQueen, Warrendal PA,TMS,1985),p.179-196
    [124]H J McQueen, N Ryum. Hot working and subsequeunt static recrystallization of Al and Al-Mg-alloys[J]. Scandinavian Journal of Metallurgy,1985,14(1):183-194

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700