药剂胁迫下朱砂叶螨酯酶基因的表达特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Expression Characteristic of Esterase Genes Suffering the Stress of Pesticide in Tetranychus Cinnabarinus (Boisduval)
  • 作者:孙伟
  • 论文级别:硕士
  • 学科专业名称:农药学
  • 学位年度:2010
  • 导师:何林
  • 学科代码:090403
  • 学位授予单位:西南大学
  • 论文提交日期:2010-05-15
摘要
朱砂叶螨(Tetranychus cinnabarinus)是一种为害严重而义难以防治的重要农业害螨,在我国分布广泛,对包括棉花、多种蔬菜在内的许多植物都有危害。该螨世代周期短,繁殖力强,近亲交配率高,受药机会多,很容易产生抗药性。
     酯酶作为一种水解酶,能够水解羧酸酯键和磷酸酯键,代谢多种含有酯键的杀虫剂,是害虫产生抗性的主要因素之一
     本研究在前人已经克隆得到朱砂叶螨酯酶基因TCE1,TCE2的基础上,建立了适于定量检测朱砂叶螨mRNA表达的real-time PCR方法,并用该方法检测了酯酶基因TCE1和TCE2的mRNA分别在朱砂叶螨不同发育时期(卵、幼螨、若螨和成螨)、不同品系(阿维菌素、甲氰菊酯、氧化乐果抗性品系和敏感品系)以及药剂(阿维菌素、甲氰菊酯、氧化乐果)诱导前后的表达差异,从基因水平探讨了朱砂叶螨酯酶基因的表达变化与其抗药性形成之间的内在联系。此外,还成功构建了酯酶TCE1, TCE2基因的重组原核表达载体pET43a-TCE1, pET43a-TCE2,且在E.coli Transetta中成功进行了蛋白表达。本研究获得的主要成果如下:
     1.利用RT-PCR技术,从朱砂叶螨体内获得了七条候选内参基因的扩增片段,并提交到GenBank,取得相应的登录号分别为RPS18 (FJ608659):262bp,5.8SrRNA (FJ526334):470bp, GAPDH (FJ526335):293bp, RPL13a (FJ608662):242bp, TBP (FJ608661):365bp, SDHA (FJ608660):594bp,α-TUB (FJ526336):962bp。采用实时荧光定量PCR方法并使用geNorm和NormFinder两个软件共同筛选最适合朱砂叶螨的内参基因。内参基因筛选结果为:5.8s rRNA,α-TUB, RPS18, GAPDH, RPL13a,β-actin表达稳定度的平均值M在不同品系中依次为0.381,0.449,0.352,0.460,0.445,0.643,表达稳定度由高到低排序依次为RPS18> 5.8srRNA> RPL13a> 0.449>GAPDH>β-actin; M值在不同螨态中依次为0.762,0.555,0.537,0.855,0.574,0.768,表达稳定度由高到低排序依次为RPS18>α-TUB> RPL13a> 5.8srRNA>β-actin> GAPDH。再通过NormFinder软件计算各内参基因的稳定度值,最终确定了在不同品系朱砂叶螨中以5.8srRNA和RPS18两个看家基因作为内参基因最理想,在不同螨态中以RPS18,α-TUB两个看家基因作为内参基因最理想,并据此建立了基于SYBR Green I染料技术的适于朱砂叶螨mRNA表达定量检测的real-time PCR方法,即实时荧光定量PCR (qrtPCR)。
     2.采用建立的qrtPCR疗法检测了酯酶基因TCE1和TCE2的mRNA在朱砂叶螨敏感品系的卵、幼螨、若螨和成螨四个螨态的相对表达。检测结果表明朱砂叶螨TCE2基因的表达量在各螨态中均显著高于TCE1基因(幼螨除外),而两条酯酶基因(TCE1和TCE2) mRNA的表达量均在成螨体内最高。
     3.相对于敏感品系,TCE1基因在朱砂叶螨抗性品系(阿维菌素、甲氰菊酯和氧化乐果抗性品系)中的相对表达量为1.06-1.14倍,无显著性差异;TCE2基因的相对表达量为1.39-2.47倍,均显著高于在敏感品系中的表达。
     4.分别用亚致死剂量(LC30)的阿维菌素、氧化乐果和甲氰菊酯对朱砂叶螨敏感品系进行诱导,测定诱导前后酯酶基因TCE1和TCE2 mRNA的相对表达量,结果表明,经药剂处理后,酯酶基因TCE1的表达量在处理后4h显著下降,而后又上升,但其表达量在测定时间内(处理后0-20h)一直没有超过未施药的对照。酯酶基因TCE2的表达量随时间延长呈现先升高再降低的变化趋势,且与对照相比差异显著。TCE2基因的相对表达量在受到三种药剂诱导后的最高表达量分别是对照的1.64-,2.92-和2.24倍。以上研究表明朱砂叶螨酯酶基因TCE2扩增是其对杀螨剂产生抗性的重要原因之一。
     5.成功构建了酯酶TCE1,TCE2基因的重组原核表达载体pET43a-TCE1, pET43a-TCE2,转化入E.coli Transetta进行原核表达,分别经IPTG诱导,SDS-PAGE和Western Blot分析并检测融合蛋白,结果表明所构建的载体可以在宿主菌中稳定、正确的表达,为进一步研究这两条酯酶的性质和功能奠定了基础。
The carmine spider mite, Tetranychus cinnabarinus (Boisduval), one of the most important pests on cotton and most vegetables, is widely distributed in China. Because of high fecundity and short generation time, the mite can rapid formation of a certain number of stocks in a short period of time, develop resistance easily and thus it is difficult to prevent and control this mite.
     As a large class of enzymes that metabolize a variety of pesticides, esterases play important roles in priority hydrolysis of water-soluble short-chain esters of the ester. The research of esterase is very active in foreign and relative behindhand in domestic.
     This study was based on the esterase genes TCE1 and TCE2 that had been cloned from carmine spider mite, and a real-time PCR method based on SYBR Green I dye was developed. The mRNA expression differences of the two genes in different developmental period (egg, protonymph, nymphae and adults), different strains (abamectin-resistant, AbR; fenpropathrin-resistant, FeR; omethoate-resistant, OmR and susceptive strains, S) and these three pesticides induced from carmine spider mite were also detected using real-time PCR technology, respectively. TCE1 and TCE2 genes were inserted into pET-43.1a(+) of prokaryotic expression vector, and recombinant expression vector was obtained, named pET43a-TCE1 and pET43a-TCE2. The recombinant expression vector could express fusion proteins in E. coli. The key results were as follows.
     1. Seven candidate genes has been cloned from carmine spider mite using RT-PCR technology, and submitted them to the GenBank, GenBank number and length were RPS18 (FJ608659):262bp, 5.8SrRNA (FJ526334):470bp, GAPDH (FJ526335):293bp, RPL13a (FJ608662):242bp, TBP (FJ608661):365bp, SDHA (FJ608660):594bp, a-TUB (FJ526336):962bp, respectively. The qrtPCR primers were designed and the stability of gene expression was assessed using two different analysis programs, geNorm and NormFinder. In this study, the ranking of gene expression stability value (M) of 5.8s rRNA,α-TUB, RPS18, GAPDH, RPL13a and P-actin were 0.381,0.449,0.352, 0.460,0.445 and 0.643, and the ranking of gene expression stability were RPS18> 5.8srRNA> RPL13a> 0.449>GAPDH>P-actin in different strains, the ranking of gene expression stability value (M) of this six reference genes were 0.762,0.555,0.537,0.855,0.574 and 0.768, the ranking of gene expression stability were RPS18>a-TUB> RPL13a> 5.8srRNA>P-actin> GAPDH in different life stages. The geNorm program was subsequently used to calculate the optimal number of reference genes was two. To further validate our findings regarding the most optimal reference gene to normalize transcript expression data, we assessed our data set with NormFinder, Based on these data, the NormFinder program validated the findings with the geNorm algorithm, in which the most stable single gene was RPS18, and the best combination of the reference genes was RPS18 and 5.8SrRNA in different strains, RPS18 and a-TUB in different life stages of carmine spider mite, respectively.
     2. The mRNA expression levels of TCE1 and TCE2 genes were detected from egg, protonymph, nymph and adults of T. cinnabarinus through the method of qrtPCR technology with RPS18 and a-TUB as reference genes. The results showed that the mRNA expression level of TCE2 gene was higher than that of TCE1 gene, only by contrary in protonymph. The mRNA expression levels of two esterase genes in adults of T. cinnabarinus were significantly higher than those from other instars.
     3. The mRNA relative expression level of the TCE1 and TCE2 genes were also detected from T. cinnabarinus AbR, FeR, OmR and S. Compared with S, TCE1 gene mRNA expression of the three resistant strains were 1.06~1.07 fold, and 1.386~2.473, respectively for mRNA expression of the TCE2 gene. The results showed that the mRNA expression levels of TCE2 genes of the three resistant strains compared with that of S, and the difference was significant, but there was no obvious difference of the mRNA expression levels of TCE1 genes among the four strains.
     4. After induced by abamectin, fenpropathrin and omethoate, compared with susceptive strain that not induced with pesticide, the mRNA expression level of TCE1 gene from T. cinnabarinus decreased at 4h and then increased, but not preponderate over the control. The expression levels of TCE2 gene increased gradually at the beginning,12 to 16h reached the maximum after being treated with insecticides, then decreased. The highest expression level of TCE2 was 1.64-,2.92-and 2.24-fold of the control when treated with omethoate, abamectin and fenpropathrin, respectively, and the difference was significant, illustrate that TCE2 related to pesticide resistance closely.
     5. TCE1 and TCE2 genes were inserted into pET-43.1a(+) of prokaryotic expression vector, and recombinant expression vector was obtained, named pET43a-TCE1 and pET43a-TCE2. The recombinant expression vectors could express fusion proteins of recombinant TCE1 and TCE2 in E. coli Transetta. Specific strip appeared on gel in SDS-PAGE and on PVDF-Membran in Western blotting. It supported important theoretical and practical significance for further study.
引文
1. Alon M, Alon F, Nauen R, Morin S.2008. Organophosphates'resistance in the B-biotype of Bemisia tabaci (Hemiptera:Aleyrodidae) is associated with a point mutation in an ace 1-type acetylcholinesterase and overexpression of carboxylesterase. Insect Biochem Mol Biol,38: 940-949.2. Andersen CL, Jensen JL,(?)rntoft TF.2004. Normalization of real-time quantitative reverse transcription-PCR data:A model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Research 64: 5245-5250.3. Baxer G D, Barker S C.1998. Acetylcholinesterase cDNA of the cattle tick, Boophilus microplus:characterization and role in organophosphate resistance. Insect Biochemistry and Molecular Biology,28:581-589.4. Brinkhof B, Spee B, Rothuizen J, Penning LC.2006. Development and evaluation of canine reference genes for accurate quantification of gene expression. Analytical Biochemistry 356: 36-43.5. Bustin SA.2000. Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. Journal of Molecular Endocrinology.25:169-193.6. Cao CW, Zhang J, Gao XW, Liang P, Guo HL.2008. Overexpression of carboxylesterase gene associated with organophosphorous insecticide resistance in cotton aphids, Aphis gossypii (Glover). Pestic Biochem Physiol,90:175-180.7. Charpentier A, Fournier D.2001. Levels of total acetylcholinesterase in Drosophila melanogaster in relation to insecticide resistance. Pesticide Biochemistry and Physiology,70(2): 100-107.8. Chung TC, Sun CN.1983. Malathion and MIPC resistance in Nilaparvata lugens (Homoptera: Delphacidae). J Econ Ent,76:1-5.9. Coutinho-Abreu IV, Balbino VQ, Valenzuela JG, Sonodai IV, Ramalho-Ortigao JM.2007. Structural characterization of acetylcholinesterase 1 from the sand fly Lutzomyia longipalpis (Diptera:Psychodidae). JMed Entomol,44:639-650.10. Croft BA, Miller RW, Nelson R D, Westigard P H.1984. Inheritance of early-stage resistance to formetanate and cyhexatin in Tetranychus urticae Koch (Acarina:Tetranychidae). Journal of economic entomology,77(3):574-578.11. Cui F, Qu H, Cong J.2007. Do mosquitoes acquire organophosphate resistance by functional changes in carboxylesterases? Faseb Journal,21(13):3584-3591.
    12. Dennehy T J, Granett J, Leigh T F, Colvin A.1987. Laboratory and field investigations of spider mite (Acari:Tetranychidae) resistance to the selective acaricide propargite. Journal of economic entomology,80(3):565-574.13. Dennehy T J, Granett J.1984. Spider mite resistance to dicofol in San joaquin valley cotton: inter-and intraspecific variability in susceptibility of three species (Acari:Tetranychidae). Journal of economic entomology,77(6):1380-1385.14. Devonshire AL, Moores GD.1982. A carboxylesterase with broad substrate specificity causes organophosphate,carbamate and pyrethroid resistance in peach-potato aphids Myzus persicae. Pestic Biochem Physiol,18:235-246.15. Devonshire AL, Sawicki RM.1979. Insecticide-resistant Myzus perwesicae as an example of evolution by gene duplication. Nature,280:140-141.16. Field LM, Devonshire AL, Forde BG.1988. Molecular evidence that insecticide resistance in peachpotato aphids (Myzus persicae Sulz) results from amplification of an esterase gene. Biochemical Journal,251:309-312.17. Gao JR, Kambhampati S, Zhu KY.2002. Molecular cloning and characterization of a greenbug (Schizaphis graminum) cDNA encoding acetylcholinesterase possibly evolved from a duplicate gene lineage. Insect Biochemistry and Molecular Biology,32:765-775.18. Georghiou G P, Saito T. Pest Resistance to pesticides, Planum press. New York.1983,71-98.19. Guillemaud T, Lenormand T, Bourguet D, Chevillon C, Pasteur N, Raymond M.1998. Evolution of resistance in Culex pipiens:allele replacement and changing environment. Evolution,52:443-45320. Hama H.1976. Modified and normal cholinesterases in the resistant strains of carbamate-resistant and susceptible green rice leafhoppers, Nephotettix cincticeps, Uhler (Hemiptera:Cicadellidae). Applied entomology and zoology,11:239-247.21. Heim DC, Kennedy GG, Gould FL.1992. Inheritance of fenvalerate and carbofuran resistance in Colorado Potato beetles Leptinotarsa decemlineata (Say) from North Carolina. Pestie.Sci,34: 303-311.22. Hemingway J, Hawkes N, Propanthadara L, Jayawardenal KQ Ranson H.1998. The role of gene splicing gene amplification and regulation in mosquito insecticide resistance. Philosophical Transactions of the Royal Society B,353:1695-1699.23. Hernandez R, He HQ, Andrew C, Chen G, Wayne, George JE, Wagner GG.1999. Cloning and sequencing of a putative acetylcholinesterase cDNA from Boophilus microplus (Acari: Ixodidae). Journal of Medical Entomology,36(6):764-770.24. Hughes PB, Raftos DA.1985. Genetics of an esterase associated with resisteance to organophosphorus insecticide in the sheep blowfly, Luculia cuprina (wiedenann) (Diptera: Calliphoridae). Bull Entomol Res,75:535-54425. Jiang XJ, Qu MJ, Denholm I, Fang JC, Jiang WH, Han ZJ.2009. Mutation in acetylcholinesterasel associated with triazophos resistance in rice stem borer, Chilo suppressalis (Lepidoptera:Pyralidae). Biochem Bioph Res Co,378:269-272.26. Karunaratne SHPP, Small GJ, Hemingway J.1999. Characterization of the elevated esterase-associated insecticide resistance mechanism in Nilaparvato lugens stal and other planthopper species.Int J Pest Manage,45:225-230.27. Keena MA, Garnett J.1987. Cyhexatin and propargite resistance in populations of spider mites (Acari:Tetranychide) from California almonds. Journal of Economic Entomology,77(3): 560-564.28. Kim JW, Hwang TG.1987. Studies on resistance to organophosphorus insecticides in the brown planthopper, Nilaparvato lugens Stal (Ⅱ):Difference of the biochemical characteristic. Korean Journal of Plant Protection,26 (3):165-170.29. Liu DW, Chen ST, Liu HP.2005.Choice of endogenous control for gene expression in nonsmall cell lung cancer. Eur Respir J,26 (6):1002~1008.30. Mori M, Hosokawa M, Ogawawara Y.1999. cDNA cloning, characterization and stable expression of novel human brain carboxylesterase. FEBS Letters,458(1):17-22.31. Mouches C, Pasteur N, Berge JB, Hyrien O, Raymond M, Saint Vincent BR, Silvestri M, Georghiou GP.1986. Amplification of an esterase gene is responsible for insecticide resistance in a California Culex mosquito. Science,233:778-780.32. Mutero A, Pralavorio M, Bride JM, Fournier D.1994. Resistance-associated point mutation in insecticide-insensitive acetylcholinesterase. Proc Natl Acad Sci USA,91:5922-5926.33. Newcomb RD, Campbell PM, Ollis DL, Cheah E, Russell RJ, Oakeshott JG.1997. A single amino acid substitution converts a carboxylesterase to an organophosphorus hydrolase and confers insecticide resistance on a blow fly. Proc Natl Acad Sci USA,94:7464-7468.34. Nolan T, Hands RE, Bustin SA.2006. Quantification of mRNA using real-time RT-PCR. Nature Protocols 1:1559-1582.35. Ozaki K, Kassai T.1992. Development of insecticide resistance by the brown planthopper, Nilaparvata lugens (Stal.) and resistance pattern of field poplations. Jap J Appl Ent Zool,26: 249-255.36. Park HM, Lee YD.1991. The absorption and metabolism of fenobucarb and carbofuran by susceptible and carbamate insecticide-selected strains of the brown planthopper(Nilaparvato lugens Stal). Korean J Appl Entom,30 (1):10-11.
    37. Peirson SN, Butler JN, Foster RG.2003. Experimental validation of novel and conventional approaches to quantitative real-time PCR data analysis. Nucleic Acids Research 31:e73.38. Peters IR, Peeters D, Helps CR, Day MJ.2007. Development and application of multiple internal reference (housekeeper) gene assays for accurate normalisation of canine gene expression studies. Veterinary Immunology and Immunopathology 117:55-66.39. Pinsker W, Sperlich D.1981. MDH-polymorphism in Drosophila subobscura Ⅱ. Non-random associations between alleles and chromosomal inversions in natural populations. Journal of Zoological Systematics and Evolutionary Research,20 (3), P:161-170.40. Raymond M, Callaghan A, Fort P, Pasteur N.1991. Worldwide migration of amplified in insecticide resistance genes in mosquitoes. Nature,350:151-153.41. Roush RT, Wolfenbarger DA, Econ J.1985. Inheritance of methomyl resistance in the Tobacco budworm (Lepidoptera:Noctuiidae). Entomol.42. Schuntner CA, Roulston WJ.1968. A resistance mechanism in organophosphorus resistant strains of sheep blowfly(Lucilia cuprina). Aust J Biol Sci,21:173-176.43. Selvey S, Thompson EW, Matthaei K.2001. Beta-actin---an unsuitable internal control for RT-PCR. Mol Cell Probes,15 (5):307~311.44. Smissaert HR.1964. Cholinesterase inhibition in spider mites susceptible and resistant to organophosphate. Science,143:129-131.45. Sturzenbaum SR, Kille P.2001. Control genes in quantitative molecular biological techniques: the variability of invariance. Comparative Biochemistry and Physiology B 130:281-289.46. Sun CN, Chen WL.1993. Carboxylesterase of susceptible and resistant brown planthopper. Resistance Pest Management,5(2):9-1047. Suzuki T, Higgins PJ, Crawford DR.2000. Control selection for RNA quantitation. Biotechniques,29 (2):332~33748. Temeyer KB, Davey RB, Chen AC.2004. Identification of a third Boophilus microplus (Acari: ixodidae) cDNA presumptively encoding an acetylcholinesterase. Journal of Medical Entomology,41(3):259-268.49. Thellin O, Zorzi W, Lakaye B, De Borman B, Coumans B, Hennen G, Grisar T, Igout A, Heinen E.1999. Housekeeping genes as internal standards:use and limits. Journal of Biotechnology 75:291-295.50. Tranter BC, Emden HF.1984. Esterase variation in the brown planthopper Nilaparvata lugens and its involvement in resistance to organophosphorus insecticides. British Crop Production Conference,2:521-526.51. Tsagkarakou A, Pasteur N, Cuany A, Chevillon C, Navajas M.2002. Mechanisms of resistance to organophosphates in Tetranychus urticae (Acari:Tetranychidae) from Greece. Insect Biochemistry and Molecular Biology,32:417-424.52. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F,2002. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology 3:research0034.1-research0034.11.53. Weill M, Lutfalla G, Mogensen K, Chandre F, Berthomieu A, Berticat C, Pasteur N, Philips A, Fort P, Raymond M.2003. Comparative genomics:insecticide resistance in mosquito vectors. Nature,423:136-137.54. Wong ML, Medrano JF.2005. Real-time PCR for mRNA quantitation. Biotechniques 39: 75-85.55. Xue CH, He L, Zhao ZM.2008. Cloning of β-actin Gene cDNA Fragment and Establishment of Real-time PCR for it from Tetranychus cinabarinus. Zhao ZM, editor. The role of plant protection science and technology in Urban and rural. pp.58-64. Chongqing, China.56. Yao HW, Jiang CY, Ye GY and Cheng JA.2002. Studies on cultivar-induced changes in insecticide susceptibility and its related enzyme activities of the white backed planthopper, Sogatella Furcifera (Horvath) (Homoptera:Delphacidae). Entomologia Sinica,9 (2):9-15.57. Zschunke F, Salmassi A, Kreipe H, Buck F, Parwaresch MR, Radzun HJ.1991. cDNA cloning and characterization of human monocyte/macrophage serine esterase-1. Blood,78(2):506-512.58.陈凤花,王琳,胡丽华.2005.实时荧光定量RT-PCR内参基因的选择.临床检验杂志,23(5):393-395.59.范志金,陈年春.1996.截形叶螨抗药性主导机制的研究.植物保护学报,23(2):175-180.60.冯宏祖.2009.朱砂叶螨适应阿维菌素、高温胁迫机制的研究.西南大学博士学位论文.61.高慧,孙建义,刘明启.2006.影响大肠杆菌中外源基因表达的因素.上海畜牧兽医通讯,5:64-65.62.高贵田,陈克平,姚勤,王林玲,陈慧卿.2006.家蚕羧酸酯酶基因克隆及差异表达.昆虫学报,49:930-937.63.郭凤英,赵志模.1999.朱砂叶螨对不同农药抗药性发展趋势的研究.蛛形学报,8(2):118-121.64.郭广君,吕素芳,王荣富.2006.外源基因表达系统的研究进展.科学技术与程,6(5):582-587.65.何林,赵志模,邓新平,王进军,刘怀,刘映红.2003.朱砂叶螨对3种杀螨剂的抗性选育及抗性治理研究.中国农业科学,36(4):403-408.66.何林,赵志模,邓新平,王进军,刘怀,吴仕源.2002.甲氰菊酯与阿维菌素单用、轮用、混用对朱砂叶螨抗性进化的影响.蛛型学报,11(1):54-57
    67.李育阳.2002.基因表达技术.北京:科学技术出版社.68.栗文凯,张志勇,胡建和.2008.实时荧光定量PCR应用技术综述.中国畜禽种业,10:71-72.69.乔传令,J Hemingway,李瑄.2003.有机磷抗性致倦库蚊种群中酯酶基因扩增的定量分析,昆虫学报,46(1):11-17.70.沈慧敏,张新虎,陈琳,陆宁海.2000.李始叶螨对14种杀虫杀螨剂的抗性研究.甘肃科学学报,12(4):29-3271.宋宏图.2007.野桑蚕羧酸酯酶基因的克隆及在大肠杆菌中的表达.苏州大学硕士毕业论文.72.孙柏欣,刘长远,陈彦,赵华,赵彤华,李柏宏.2008.基因表达系统研究进展.现代农业科技,2:205-209.73.唐培安.2009.3种书虱酯酶基因的克隆及其mRNA表达水平研究.西南大学博士毕业论文.74.唐振华,吴士雄.2000.昆虫抗药性的遗传与进化.上海科学技术出版社,190-192.75.唐振华.1993.昆虫抗药性中的酯酶基因扩增研究进展.昆虫知识,30(1):53-56.76.吴海花,杨美玲,郭亚平,马恩波.2006.中华稻蝗若虫不同龄期酯酶的特性.昆虫知识,43(3):336-339.77.吴孔明,刘芹轩.1994.朱砂叶螨对久效磷抗性的遗传分析.中国农业科学,27(3):50-55.78.吴孔明,刘芹轩.1994.朱砂叶螨抗氧化乐果品系选育及遗传分析.生态学报,14(4):392-396.79.吴孔明,秦夏卿.1990.朱砂叶螨抗药性研究.华北农学报,5(2):117-123.80.薛传华.2008.朱砂叶螨酯酶基因克隆及其mRNA表达研究.西南大学硕士学位论文.81.杨喆,李太华.2000.大肠杆菌中外源基因表达的研究进展.微生物学免疫学进展,28(2):69-72.82.周斌芬,唐振华,高菊芳.2008.昆虫代谢抗性的研究进展.农药,47(5):313-315.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700