人胚胎来源多潜能干细胞向脂肪和神经细胞分化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人胚胎肝组织来源的多潜能干细胞是从胎儿肝组织中分离的一类干细胞,与较之前报道的成体干细胞(如骨髓间充质干细胞)有很多相似的特性,具有多分化潜能并能够形成新的组织和器官,具有重要的医学治疗作用。
     本研究对人胚胎肝组织来源的多潜能干细胞进行分离和扩增,对其生物学特性进行了研究,探讨了人胚胎来源多潜能干细胞向脂肪细胞和神经细胞方向诱导分化的潜能。采用胶原酶消化法分离人胚胎肝组织来源多潜能干细胞,经过体外培养和扩增,对人胚胎肝组织来源多潜能干细胞的生长经时变化和表面标志CD105、CD166、CD73和HLA-DR进行检测。应用成脂诱导培养液(地塞米松、3-异丁基-1-甲基黄嘌呤、吲哚美辛、胰岛素)诱导其向脂肪细胞分化,使用化学诱导法诱导其向神经细胞方向分化,然后进行鉴定。结果表明,人胚胎肝组织来源多潜能干细胞的生物学特性与骨髓间充质干细胞类似,免疫荧光化学染色及RT-PCR结果说明人胚胎肝组织来源多潜能干细胞经诱导可分化成为脂肪细胞及神经细胞。本研究结果提示,人胚胎来源多潜能干细胞具有分化成脂细胞和神经细胞的潜能,有望应用于组织工程及细胞治疗的种子细胞。
Pluripotent stem cells, which are the descendants of totipotent cells, can differentiate into all cells derived from the three germ layers. Human embryonic pluripotent stem cells can differentiate into many cells of the body and construct tissues and organs. So they play an important role in medical treatment. The differentiation potential of embryonic pluripotent stem cells is larger than adult stem cells. There is less ethical restriction than human embryonic stem cells because they are derived from aborted fetus. However, in relation to BMSCs, studies on embryonic pluripotent stem cells are in the initial phase. The biological characteristics of embryonic pluripotent stem cells are comprehensive understanding. More researches are needed to confirm the results of the differentiation potential in vivo and vitro and induced to other germ layer cells.
     Based on this research background, isolation of the pluripotent stem cells derived from human fetal liver; to reveal its basic biological characteristics; identification to their adipogenic and neurogenic differentiation potential.
     1. Studies on the basic biological characteristics of human embryonic pluripotent stem cells
     Firstly to obtain the human fetal liver derived from aborted fetus(8w~18w), then digest with typeⅡcollagenase. 5×106cells/ml cells seed in culture dish. Cells were cultured at 37℃, with 5% CO2 and 95% air. The separated cells got attached after 3 days and the adherent cells were round with little protrusions; After 6 days the cells have cytoplasmic processes with spindle shape. Through subculture, the cells grew in parallel or as whirlpool, similar to the bone marrow-derived MSCs in morphology.
     Detection of cell growth by the time change and cumulative growth of multiple were tested. Human embryonic pluripotent stem cells of P3 were in static phase and proliferation was not obvious in the first 3 days. Then it was rapid growth period and reached the peak at the 7th day. It grew slowly and reached plateau phase. The amount of human embryonic pluripotent stem cells was amplified to 2125.25±146.93 times of the original amount when it was P7. The amount of each generation remained stable. The average double number is 2.99±0.21. The amount of P7 cells is 2.1×109. The amplification is up to 2000 times. This illustrated that human embryonic pluripotent stem cells remain good proliferation after long-term passage.
     The cell surface markers such as CD166, CD105, CD73 and HLA-DR were detected by flow cytometry. Our results demonstrated that the isolated and amplified cells showed positive expression for CD105, CD166, CD73, but did not express the HLA-DR, confirming that the separated cells were similar with mesenchymal stem cells.
     2. Studies on human embryonic pluripotent stem cells differentiating into adipocyte and neurons
     Take the P3 cells from logarithmic phase, digest them with separation medium, adjust the cell density to 1×105cells/ml, inoculate in 6-well plates, and culture them in 37℃with 5% CO2 and 95% air. When the cells adhered and grew to occupation of 80% of the bottom of the culture dish, add inducing medium to induce the differentiation.
     2.1 Adipogenic differentiation
     Adipogenic induced medium: dexamethasone+IBMX+indometacin+insulin
     Inducing human embryonic pluripotent stem cells with AM, cell morphology were short spindle, oval and round. There was lipid droplet in intracellular at the 5th day and a time-dependent increasing. It was proved to be adipose liquid by Oil Red O staining which is an established lipid dye. Induction of human embryonic pluripotent stem cells with AM resulted in expression of the adipose-specific transcription factor peroxisome-proliferating activated receptor PPAR-γby RT-PCR. It demonstrated that human embryonic pluripotent stem cells can differentiate into adipocyte.
     2.2 Neurogenic differentiation
     Neurogenic induced medium: 1mmol/Lβ-mercaptoethanol + 10% FBS, 24h later 10mmol/Lβ-mercaptoethanol
     Changing the induced medium to 10mmol/Lβ-mercaptoethanol, cell morphology changed significantly after 2h. The cytoplasm retracted to form a tight, spherical cell body around the nucleus. The cell body was multipolar and most cells were woven into mesh structure. But neurite was tiny and nucleus was indefinite. There was more vacuoles in the cytoplasm and cells detached from the dish bottom gradually with the time passing by. Most cells were dead within 10 hours. Immunocytochemistry showed positive staining of NSE. RT-PCR results also were confirmed by the induction of cell expression NSE.
     In a word, human embryonic pluripotent stem cells are similar with BMSCs in morphology, growing characteristics and cell surface marker. Human embryonic pluripotent stem cells can differentiate into adipocyte and neurons after inducing. Both immunocytochemistry and PT-PCR results support the conclusion. So human embryonic pluripotent stem cells can apply to tissue engineering and cell therapy.
引文
[1]Becker AJ, McCulloch EA, Till JE. Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells[J]. Nature, 1963, 197: 452-454.
    [2]Siminovitch L, McCulloch EA, Till JE. The distribution of colony-forming cells among spleen colonies[J]. J Cell Physiol, 1963, 62: 327-336.
    [3]Beckmann J, Scheitza S, Wernet P, et al. Asymmetric cell division within the human hematopoietic stem and progenitor cell compartment: identification of asymmetrically segregating proteins[J].Blood, 2007, 109 (12): 5494-5501.
    [4]Watt FM, Driskell RR. The therapeutic potential of stem cells[J]. Philos Trans R Soc Lond B Biol Sci, 2010, 365(1537): 155-163.
    [5]Mitalipov S, Wolf D.Totipotency, pluripotency and nuclear reprogramming[J]Adv Biochem Eng Biotechnol,2009, 114: 185-199.
    [6]Ulloa-Montoya F, Verfaillie CM, Hu WS. Culture systems for pluripotent stem cells[J]. J Biosci Bioeng, 2005, 100(1): 12-27.
    [7]Pierce GB Jr, Beals TF. The ultrastructure of primordial germinal cells of the fetal testes and of embryonal carcinoma cells of mice[J]. Cancer Res, 1964, 24: 1553-1567.
    [8]Evans M, Kaufman M. Establishment in culture of pluripotential cells from mouse embryos[J]. Nature, 1981, 292 (5819): 154–156.
    [9]Martin G. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells[J]. Proc Natl Acad Sci USA, 1981, 78 (12): 7634–7638.
    [10]Thomson J, Itskovitz-Eldor J, Shapiro S, et al. Embryonic stem cell lines derived from human blastocysts[J]. Science, 1998, 282 (5391): 1145–1147.
    [11]Adewumi O, Aflatoonian B, Ahrlund-Richter L, et al. Characterization of human embryonic stem cell lines by the International Stem Cell Initiative[J]. Nature Biotechnology, 2007, 25 (7): 803-816.
    [12]Xie T, Spradling AC. Decapentaplegic is essential for the maintenance and division of germline stem cells in the Drosophila ovary[J]. Cell, 1998, 94 (2): 251-260.
    [13]Song X, Zhu C, Doan C, et al. Germline stem cells anchored by adherens junctions in theDrosophila ovary niches[J]. Science, 2002, 296 (5574): 1855–1857.
    [14]Boyer LA, Lee TI, Cole MF, et al. Core transcriptional regulatory circuitry in human embryonic stem cells[J]. Cell, 2005, 122 (6): 947–956.
    [15]Chambers I, Colby D, Robertson M, et al. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells[J]. Cell, 2003, 113 (5): 643–655.
    [16]郭虹,刘杰文,杨少光,等.具有间充质干细胞特征的CD105+细胞在胎儿多种组织器官的分布[J].细胞生物学杂志, 2004, 26: 404-408.
    [17]Guillot PV, Gotherstrom C, Chan J, et al. Human first trimester fetal MSC express pluripotency markers and grow faster and have longer telomeres than adult MSC[J]. Stem Cells, 2007, 25: 646-654.
    [18]Kucia M, Reca R, Campbell FR,et al. A population of very small embryonic-like (VSEL) CXCR4(+)SSEA-1(+)Oct-4+ stem cells identified in adult bone marrow[J]. Leukemia, 2006, 20(5):857-869.
    [19]Clarke DL, Johansson CB, Wilbertz J, et al.Generalized potential of adult neural stem cells[J].Science, 2000, 288(5471): 1660-1663.
    [20]Krause DS, Theise ND, Collector MI, et al. Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell[J]. Cell, 2001, 105(3): 369-377.
    [21] Campagnoli C, Roberts IA, Kumar S, et al. Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow[J]. Blood, 2001, 98: 2396–2402.
    [22] In’t Anker PS, Noort WA, Scherjon SA, et al. Mesenchymal stem cells in human second-trimester bone marrow, liver, lung, and spleen exhibit a similar immunophenotype but a heterogeneous multilineage differentiation potential[J]. Haematologica, 2003, 88: 845–852.
    [23]Dabeva MD, PetkovPM, Sandhu J, et al. Proliferation and differentiation of fetal liver epithelial progenitor cells after transplantation into adult rat liver[J]. American Journal of Pathology, 2000, 156(6): 2017-2031.
    [24]Dan YY, Riehle KJ, Lazaro C, et al. Isolation of multipotent progenitor cells from human fetal liver capable of differentiating into liver and mesenchymal lineages[J]. Proc Natl Acad Sci USA, 2006, 103(26): 9912-9917.
    [25]黄柏英,余剑英,祝和成.人胚肝细胞分离培养研究[J].湘南学院报, 2005, 7(1): 10-14.
    [26]赵运转,魏来,韩梅,等.胎肝来源间充质干细胞的分离、培养与多向分化[J].中华肝脏病杂志,2004,12(12):711-713.
    [27]Liu YN, Zhang J, He QH, et al. Isolation and characterization of epithelial progenitor cells from human fetal liver[J]. Hepatol Res, 2008, 38(1): 103-113.
    [28]吴北燕,黄绍良,陈惠芹,等.胎肝造血期胎肝间充质干细胞的分离、培养及生物学特性[J].中山大学学报(医学科学版), 2006, 26(5): 498-501.
    [29]王跃春,张洹.人胎肝MSCs的分离、鉴定及其向脂肪和成骨细胞的分化[J].暨南大学学报(医学版), 2007, 28(2): 120-123.
    [30]王剑龙,周江南,赵自平,等.小鼠胎肝间充质干细胞的体外成骨诱导及符合陶瓷化骨的实验研究[J].中国修复重建外科杂志, 2005, 19(8): 648-651.
    [31]孙艳,张洹.小鼠胎肝间充质干细胞的纯化与分化多能性研究[J].中国病理生理杂志, 2007, 23(8): 1613-1617.
    [32]刘革修,张洹.β-ME和BHA体外诱导人胎肝CD34+细胞向神经组织细胞分化研究.中国应用生理学杂志, 2004, 20(3): 280-282.
    [33]刘平平,张洹.β-巯基乙醇与全反式维甲酸对小鼠胎肝间充质细胞神经胶质纤维酸性蛋白表达的影响[J].中国病理生理杂志, 2004, 20(11): 2053-2057.
    [34]孙艳,张洹.联合神经生长因子诱导小鼠胎肝间充质干细胞向神经外胚层分化[J].中国临床康复, 2006, 10(9): 18-20.
    [35]王跃春,张洹.人胎肝MSCs的分离培养及其类ESCs特性的研究[J].中国病理生理杂志,2009,25(2): 409-412.
    [36]余卫,张洹,何冬梅.体外诱导小鼠胎肝间充质干细胞向胰岛β样细胞分化的研究[J].第二军医大学学报, 2004, 25(8): 827-830.
    [37]姜铧,张洹,李东升,梁清乐. TAT-PDX1融合蛋白诱导人胎肝间充质干细胞向胰岛β细胞分化[J].中国组织工程研究与临床康复, 2009, 13(1): 48-52.
    [38]Suzuki A, Nakauchi H, Taniguchi H. In vitro production of functionally mature hepatocytes from prospectively isolated hepatic stem cells[J]. Cell Tranplant, 2003, 12(5): 469-473.
    [39]Lindvall O. Stem cells for cell therapy in Parkinson's disease. Pharmacol Res, 2003, 47 (4): 279–287.
    [40]Goldman S, Windrem M. Cell replacement therapy in neurological disease. Philos Trans R Soc Lond B Biol Sci, 2006, 361 (1473): 1463–1475.
    [41]Gahrton G, Bj?rkstrand B. Progress in haematopoietic stem cell transplantation for multiple myeloma. J Intern Med, 2000, 248 (3): 185–201.
    [42]Jaenisch R, Young R. The molecular circuitry of pluripotency and nuclear reprogramming[J]. Cell, 2008, 132: 567-582.
    [43]Rossant J. Stem cells and early lineage development[J]. Cell, 2008, 132, 527-531.
    [44]Prelle K, Zink N, Wolf E. Pluripotent stem cells—model of embryonic development, tool for gene targeting, and basis of cell therapy[J]. Anat Histol Embryol, 2002, 31(3): 169-186.
    [45]Friedenstein AJ, Gorskaja JF, Kulagina NN. Fibroblast precursors in normal and irradiated mouse hematopoietic organs[J]. Exp Hematol, 1976, 4(5): 267-274.
    [46]Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells[J]. Science, 1999, 284(5411): 143-147.
    [47]Shyu KG, Wang BW, Hung HF, et al. Mesenchymal stem cells are superior to angiogenic growth factor genes for mesenchymal progenitor cells in normal and osteoarthritic human articular cartilage[J]. Arthritis Rheum, 2004, 50(5): 1522-1532.
    [48]Rosen ED and MacDougald OA. Adipocyte differentiation from the inside out[J]. Nat Rev Mol Cell Biol, 2006, 7(12): 885-896.
    [49]Rosen ED, Walkey CJ, Puigserver P and Spiegelman BM. Transcriptional regulation of adipogenesis[J]. Genes Dev, 2000, 14, 1293–1307.
    [50]Tontonoz P, Hu E, Graves RA, et al. mPPAR gamma 2: tissue-specific regulator of an adipocyte enhancer[J]. Genes Dev, 1994, 8: 1224–1234.
    [51]Tontonoz P, Hu E and Spiegelman BM. Stimulation of adipogenesis in fibroblasts by PPAR gamma 2, a lipidactivated transcription factor[J]. Cell,1994, 79: 1147–1156.
    [52]Zhu Y, Qi C, Korenberg JR, et al. Structural organization of mouse peroxisome proliferator-activated receptor gamma(mPPAR gamma) gene: alternative promoter use anddifferent splicing yield two mPPAR gamma isoforms[J]. Proc Natl Acad Sci USA, 1995, 92(17): 7921–7925.
    [53]Mueller E, Drori S, Aiyer A, et al. Genetic analysis of adipogenesis through peroxisome proliferator-activated receptor gamma isoforms[J]. J Biol Chem, 2002, 277: 41925–41930.
    [54]Zhang J, Fu M, Cui T, et al. Selective disruption of PPARgamma 2 impairs the development of adipose tissue and insulin sensitivity[J]. Proc Natl Acad Sci USA, 2002, 101: 10703–10708.
    [55]He W, Barak Y, Hevener A, et al. Adipose-specific peroxisome proliferator-activated receptor gamma knockout causes insulin resistance in fat and liver but not in muscle[J]. Proc Natl Acad Sci USA, 2003, 100: 15712–15717.
    [56]Frühbeck G. Overview of adipose tissue and its role in obesity and metabolic disorders[J]. Methods Mol Biol, 2008, 456: 1-22.
    [57]Rhodes NP. Inflammatory signals in the development of tissue-engineered soft tissue[J]. Biomaterials, 2007, 28(34): 5131-5136.
    [58]Langstein HN, Robb GL. Reconstructive approaches in sofe tissue sarcoma[J]. Semin Surg Oncol, 1999, 17(1): 52-65.
    [59]Alhadlaq A, Tang M, Mao JJ. Engineered adipose tissue from human mesenchymal stem cells maintains predefined shape and dimension: implications in soft tissue augmentation and reconstruction[J]. Tissue Eng, 2005, 11(3-4): 556-566.
    [60]Woodbury D, Schwarz EJ, Prockop DJ, Black IB. Adult rat and human bone marrow stromal cells differentiate into neurons[J]. J Neurosci Res, 2000, 61(4): 364-370.
    [61]Lu P, Blesch A, Tuszynski MH. Induction of bone marrow stromal cells to neurons: differentiation, transdifferentiation, or artifact[J]. J Neurosci Res, 2004, 77(2): 174-191.
    [62]Neuhuber B, Gallo G, Howard L, Kostura L, Mackay A, Fischer I. Reevaluation of in vitro differentiation protocols for bone marrow stromal cells: disruption of actin cytoskeleton induces rapid morphological changes and mimics neuronal phenotype[J]. J Neurosci Res, 2004, 77(2): 192-204.
    [63]Bertani N, Malatesta P, Volpi G, Sonego P, Perris R. Neurogenic potential of humanmesenchymal stem cells revisited: analysis by immunostaining, time-lapse video and microarray[J]. J Cell Sci, 2005, 118(Pt 17): 3925-3936.
    [64]Croft AP, Przyborski SA. Formation of neurons by non-neural adult stem cells: potential mechanism implicates an artifact of growth in culture[J]. Stem Cells, 2006, 24(8): 1841-1851.
    [65]Lamoury FM, Croitoru-Lamoury J, Brew BJ. Undifferentiated mouse mesenchymal stem cells spontaneously express neural and stem cell markers Oct-4 and Rex-1[J]. Cytotherapy, 2006, 8(3): 228-242.
    [66]Deng J, Petersen BE, Steindler DA, et al. Mesenchymal stem cells spontaneously express neural proteins in culture and are neurogenic after transplantation[J]. Stem Cells, 2006, 24(4): 1054-1064.
    [67]Tondreau T, Lagneaux L, Dejeneffe M, et al. Bone marrow-derived mesenchymal tem cells already express specific neural proteins before any differentiation[J]. Differentiation, 2004, 72(7): 319-326.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700