放牧型羔羊肉生产优化杂交组合筛选和藏绵羊DRB1基因第2外显子多态性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了探讨放牧型羔羊肉生产的优化杂交组合,寻求高原生境下细毛羊种质资源的高效利用配套技术,以引进的特克塞尔、白萨福克、邦德和澳洲美利奴品种羊为父本,以甘肃高山细毛羊为母本开展杂交组合试验研究;并采用人工输精方法于每年11月集中配种,翌年4月产羔。分别在羔羊初生、断奶、6月龄和12月龄时观测其阶段体重,同时于断奶、6月龄和12月龄分别开展屠宰试验,分析其肉用性能。采用Logistic模型和Gompertz模型对各组合羔羊的早期生长进行拟合,研究其最适模型和体重增长参数。结果表明:特克塞尔与甘肃高山细毛羊杂交F1代(特甘细)的平均初生、断奶和6月龄的体重分别为5.53 kg、27.86 kg和31.24 kg,高于其他杂交组合(P<0.05);6月龄到12月龄各杂交组合羔羊生长速度较慢慢;各组合的T10-90值以特甘细最小;断奶时特甘细胴体重达14.25 kg,高于其他组合(P<0.01);6月龄时特甘细胴体重为14.55 kg,高于其他组合(P<0.01);6月龄时特甘细的胴体净肉率比其他组合高(P<0.05);羔羊断奶和6月龄时,骨肉比均为特甘细低于其他组合(P<0.05)。从不同阶段杂种羔羊生长速度和屠宰结果分析,特甘细组合是放牧条件下生产羔羊肉的最优杂交组合。
     为了分析藏绵羊DRB1基因的等位基因数和多态位点,研究各等位基因间的遗传和进化关系,进而为了解藏绵羊的物种进化和抗病育种提供依据,采用PCR-SSCP方法分析了600只藏绵羊DRB1基因第2外显子多态性,并对不同的等位基因进行克隆、测序,对藏绵羊等位基因数、核苷酸多态位点、变异类型、各等位基因间的遗传关系和进化意义进行分析。结果表明:藏绵羊DRB1基因第2外显子表现了31个等位基因。对其单倍型序列分析发现,70个核苷酸多态位点,占研究位点的29.5%。31个DRB1第2外显子的单倍型序列与GenBank序列对比分析,有15个DRB1的等位基因是首次发现。31个DRB1第2外显子的单倍型序列NJ系统发育树呈2支分化趋势,表明藏绵羊DRB1基因最初是由3个等位基因突变分化成三大类等位基因。藏绵羊DRB1基因第2外显子具有丰富的遗传多态性,群体中可能蕴藏着更多的抗性遗传资源。然而,这些检测到的DRB1第2外显子突变是否与功能变化相关还不清楚,需要做进一步研究。
To select optimal cross combination of grazing lamb production, and find a more beneficial way for using Gansu Alpine Merino germplasm resource in the plateau habitats, take introduced breeds (Texel, White Suffolk, Australian Merino and Bond) as rams, Gansu Alpine Merino as ewes to carry out cross experiment and pilot studies. With artificial insemination, the mating season was in November, and lambing in April next year. The growth rate of the crossing lambs (birth weight, weaning weight, 6-month-old weight, 12-month-old weight) were observed, and slaughter trials were conducted when the lambs were weaning, 6-month-old and 12-month-old. And Logistic model and Gompertz model were used to analyse the suitable model for crossing lambs and parameters of body-weight gains of crossing lambs. The results showed that, the average birth weight, weaning weight and 6-month-old weight of Texel F1 were 5.53 kg, 27.86 kg and 31.24 kg respectively, higher than other cross combination (P<0.05). The growth of crossing lambs became slow from 6-month-old to 12-month-old. And the T10-90 value of Texel was smallest among 4 groups. The carcass weight of Texel F1 was 14.25 kg, which was higher than other crossing group when the lambs weaning (P<0.01). When the lambs were 6-month-old, the carcass weight of Texel F1 was 14.55 kg , which was also higher than other crossing group respectively (P<0.01). The carcass meat percentage of Texel F1 were higher than other crossing group (P<0.05) when the lambs were 6-month-old. The ratio of meat to bone was lower than other crossing group (P<0.05) when the lambs weaning and 6-month-old. By comprehensive consideration of Growth and slaughter performance, the Texel crossing model was the ideal combination for grazing lamb production.
     To understand the evolution and provide the basis for sheep disease resistance, polymorphism of DRB1 exon 2 gene in Tibetan sheep was analyzed. The PCR-SSCP, cloning and sequencing were used to analyse DRB1 gene variation in 600 Tibetan sheep of China. The number of alleles/ Single nucleotide polymorphisms (SNPs) sites/ variation type/ the genetic relationship and evolutionary significance of the alleles had been analyzed. Total of 31 alleles were identified, in which 15 alleles has not been reported before. And there were 70 SNPs sites in DRB1 gene haplotypes, the proportion was 29.5% to the whole exon2 sequence. The phylogenetic tree results showed that the 31 haplotypes of Tibetan sheep DRB1 exon 2 could divide into two clusters. It is showed that Tibetan sheep DRB1 gene is differentiated into three major categories alleles from three mutant alleles at first. All of this indicated that DRB1 exon 2 is highly polymorphic in sheep from Tibet. However, whether these variations detected in the ovine exon2 of the DRB1 gene is functional or not is still unclear which need further research.
引文
[1]罗玉柱.山羊育种原理与实践[M].甘肃科学技术出版社,1997.
    [2] http://www.historyforkids.org.
    [3] http://www.sheep101.info.
    [4]常洪.动物遗传资源学[M].北京:科学出版社,2009:57-59.
    [5]傅润亭,樊航奇.肉羊生产大全[M].北京:中国农业出版社,2004,2:3-5.
    [6]赵有璋.羊生产学[M].北京:中国农业出版社,2002(第2版):3.
    [7]谢成侠.中国养牛羊史[M].北京:农业出版社.1985.
    [8]冯维祺.我国古代绵羊品种形成初考[J]:农业考古,1991,(3):338-345.
    [9]薄吾成.藏羊渊源初探[J],1987,(1):380-385.
    [10]楚晓,叶得明,陈秉谱.2005.中国羊毛生产现状与市场分析[J].甘肃农业大学学报,40(5):708–712.
    [11]贾兴国.2004.羊毛交易缓滞价格有高有低[J].中国牧业通讯,(17):17.
    [12] Hoffmana L C, Mullera M, Cloeteb S W P,et al. 2003. Comparison of six crossbred lamb types: sensory,physical and nutritional meat quality characteristics[J].Meat Science, 65:1265–1274.
    [13]王锐,何永涛,赵凤立.国内外肉羊生产的现状及发展趋向[J].浙江畜牧兽医,2005,(2):14-15.
    [14]乌达巴拉,邵凯,达来苏和,杭乃诚.国内外肉羊生产发展现状[J].养殖与饲料,2008,(2):84-86.
    [15]闵令江,孙玉江,潘庆杰等.我国肉羊业发展的机遇、趋势及对策[J].黑龙江畜牧兽医,2003,(8):1—2.
    [16]张立中,潘建伟.羊肉市场分析与内蒙古肉羊业发展战略[J].农业经济问题,2002(.增刊):17—21.
    [17]赵凤立,崔健,李洪伟,等.国内外羊羊生产趋势及肉羊生产现状及发展前景[J].辽宁畜牧兽医,2002,(3):32-33.
    [18]马月辉,付蓉.我国养羊业发展战略分析[J].黑龙江畜牧兽医,2003,(6):8-10.
    [19]中华人民共和国国家统计局.中国统计年鉴2008[M],2008.
    [20]贾志海,郭宝林.培育肉用新品种促进肉羊产业化[J].中国畜牧杂志,2003,39(5):5-6.
    [21]张英杰.关于当前我国肉羊业存在问题的思考[J].《2008中国羊业进展》论文集.
    [22]孙少华.肉用肥羔生产中的亲本选择及其杂交[J].中国草食动物,2004,24(2):52-55.
    [23]陈润生.猪生产学[M].北京:中国农业出版社,1995:14.
    [24]张沅.家畜育种学[M].北京:中国农业出版社,2001:256.
    [25]张劳.动物遗传育种学[M].中央广播电视大学出版社,2003:362-364.
    [26]李勤勤.利用微卫星标记预测肉羊杂种优势的研究[D] .西北农林科技大学硕士论文,2006.
    [27]李婉涛.动物遗传育种学[M].中国农业大学出版社,2000:266.
    [28]毛杨毅,罗惠娣,梁茂文,等.不同肉羊品种杂交后代生长发育对比试验[J].中国草食动物,2002,22(4):29-31.
    [29]曾玉峰,阎萍,郭宪.波德代羊与小尾寒羊杂交一代育肥效果的研究[J].草食家畜,2007(1):55-57.
    [30]曹春梅,郭宝艾,岳春旺,等.冀西北高寒半干旱区商品肉羊杂交组合筛选试验[J].中国草食动物,2004,24(2):13-14.
    [31]张春香,张晨,雷晓玉,等.波尔山羊与黎城大青羊杂交后代产肉性能分析[J].中国草食动物,2007,27(1):25-27.
    [32]王德芹,王金文,张果平,等.不同杂交组合肉羊的屠宰性能及肉品质性状测定[J].山东农业科学,2005,(6):53-54.
    [33]刘芳.中国肉羊产业国际竞争力研究[D].中国农业科学研究院博士学位论文,2006.
    [34]王金玉.动物育种原理与方法[M].南京:东南大学出版社,1994.
    [35]施六林,江喜春,朱德建,等.波萨安杂交羊生长发育规律的研究[J].中国农学通报,2005,21(10):5~7.
    [36]盛志廉,吴常信.数量遗传学[M].北京:中国农业出版社,1995:114-115.
    [37]毛永江,杨章平,王杏龙,等.中国荷斯坦牛早期生长曲线拟合研究[J].中国畜牧杂志,2009,45(3):1-4.
    [38]陈长生,徐勇勇,夏结来,等.中国香港地区0~7岁儿童生长曲线的非参数模型构建[J].中华预防医学杂志,2000,34(1):47-49.
    [39]张浩,吴常信,强巴央宗,等.不同海拔环境中藏鸡生长曲线及杂种优势分析[J].中国农业大学学报,2007,12(2):40-44.
    [40]张浩,强巴央宗,王强,等.藏猪体重非线性生长曲线分析[J].家畜生态学报,2007,28(6):41-43.
    [41]朱志明,强巴央宗,朱猛进.藏鸡生长曲线拟合和分析的比较研究[J].中国农业科学:2005,39(10):2159-2162.
    [42]杨运清,缪尧源.物生长曲线拟合方法探讨[J].畜牧兽医学报,1992,23(3):219~224.
    [43] Laird A K.Postnatal growth of birds and mammals[J].Growth,1996,30: 248~ 249.
    [44]? ? Mignon-Grasteau S . Genetic Analysis of a Selection Experiment on the Growth Curve of Chickens[J].Poultry Science,2001,80:849~854.
    [45]杨海明,徐?琪,戴国俊.?禽类三种常用生长曲线浅析[J].?中国家禽.?2004,8(1):164~166.
    [46]朱志明,强巴央宗,朱猛进,纪素玲,唐晓惠,莫德林,刘榜.藏鸡生长曲线拟合和分析的比较研究[J].?中国农业科学,2005,39(10):2159‐2162.?
    [47]刘守仁,王新华,石国庆,等.Romilly Huills肉用细毛羊生长模型[J].新疆农业科学,2001,增刊:48~50.
    [48]方国天.天祝县天然草场类型及其经济评价[J].中国草地学报,1984,(3):12–15.
    [49]姚拓,龙瑞军.天祝高寒草地不同扰动生境土壤三大类微生物数量动态研究[J].草业学报,2006,15(2):93–99.
    [50]王生荣,郑华平,何冬云,等.天祝高寒草原草地植物黑粉病调查研究[J].草业学报,2008,17(1):48–51.
    [51]王存芳,张劳,李俊英,等.平原饲养的藏鸡体型外貌分析和生长模型拟合的研究[J].中国农业科学,2005,38(5):1065-1068.
    [52] Fitzhugh J H A.Analysis of growth curves and strategies for altering their shape[J].Animal Science,1976,42:1036–1050.
    [53]马存寿,冯生青,王援军,等.高寒地区无角陶赛特与青海半细毛羊杂交一代羔羊生长发育模型[J].家畜生态学报,2008,29(5):39-41.
    [54] Kupaia T,Baulainb U,Lengyela A.Growth modelling of different ram breeds using computer tomography[J].Small Ruminant Research,2009,87:1-8.
    [55]李文辉,韩爱萍,苏文娟,等.甘肃高山细毛羊杂交一代羔羊肉用性能评定[J].中国草食动物,2005,25(3):24–26.
    [56]王欣,胡江,方素栎,等.陶寒杂种羊生长发育模型分析[J].甘肃农业大学学报,2008,43(1):58-61.
    [57]曹忻,赵有璋.无角陶赛特羔羊和波德代羔羊的生长发育模型[J].甘肃农业大学学报,2006,41(2):15-19.
    [58]张浩,吴常信,李俊英,等.藏鸡和低地鸡种的生长曲线拟合与杂种优势分析[J].中国畜牧杂志,2005,41(5):34-37.
    [59] Malhadoa C H M,Carneiroa P L S, Affonsoa P R A M, et al.Growth curves in Dorper sheep crossed with the local Brazilian breeds, Morada Nova,Rabo Largo,and Santa Inês[J].Small Ruminant Research,2009,84:16-21.
    [60] Topal M,Ozdemir M,Aksakal V,et al.Determination of the best nonlinear function in order to estimate growth in Morkaraman and Awassi lambs[J].Small Ruminant Research,2004,55:229-232.
    [61]付军德.肉用绵羊杂家性能对比试验[J].河南畜牧兽医,2008,29(2):8–9.
    [62]窦建兵,郎辉.萨福克羊特克塞尔羊同多浪羊杂交效果[J].当代畜牧,2007,(4):37–38.
    [63]富俊才,张跃超,李富贵.不同杂交组合羔羊生产性能比较研究[J].中国畜牧杂志,2005,41(9):20–22.
    [64]雷桂林,孔敏庭,陈秀武.畜群结构与效益的研究[J].草业学报,2004,13(1):105–108.
    [65]牛叔文.甘肃畜牧业生产潜力及开发利用[J].生态学杂志,1995,14(3):40–53.
    [66]林佳乔,周道玮.优化草原生态脆弱期的家畜生产方式[J].草业学报,2005,14(3):16–22.
    [67]罗玉柱,赵有璋,汪玺,等.肉用品种羊杂交生产肥羔的效果研究[J].甘肃农业大学学报,1991,26(2):119–124.
    [68]颜忠诚,陈永林.动物的生境选择[J].生态学杂志,1998,17(2):43–49.
    [69]肖金玉,侯扶江,郭正刚,等.2002.高山草地绵羊放牧生态系统草畜营养供需动态[J].应用生态学报,13(8):967–970.
    [70]罗玉柱.青海高原放牧季节对羊毛性状的生态作用[J].草业学报,1997,6(2):74–80.
    [71]汪诗平,李永宏.放牧绵羊行为生态学研究III不同放牧季节对放牧绵羊牧食行为的影响[J].草业学报,1997,6(2):7–13.
    [72]贾玉山,格根图,王俊杰,等.草原生态脆弱期绵羊饲养方式研究[J].草地学报.2002,10(2):106–111.
    [1] Tizard I R.Acquired immunity:antigen-presenting receptors.In:Veterinary immunology:an introduction.Elsevier,Philadelphia,PA,USA,2004:67-77.
    [2] Dukkipati V S R,Blair H T,Garrick D J,et al.‘Ovar-Mhc’- ovine major histocompatibility complex:structure and gene polymorphisms[J].Genetics and Molecular Research,2006,5 (4):581-608.
    [3] Axford R F E,Bishop S C,Nicholas F W,et al.Breeding for Disease Resistance in Farm Animals[M].CAB International,2000:73.
    [4] McDevitt H O,Benacerraf B.Genetic control of specfic immune responses[J].Advances rir ImmunoIogy,1968,11:31-74.
    [5]余志勇.多浪羊和中国美利奴(新疆军垦型)羊MHC-DRB1基因多态性与包虫病抗性的相关性研究[D].石河子大学硕士论文,2007.
    [6]金伯泉.细胞和分子免疫学[M].西安:世界图书出版公司,1998:213-258.
    [7]赵桐茂.HLA分型原理和应用[M] [J].上海:上海科学技术出版社,1984.
    [8] Millot P.Genetic Control of Lymphocyte Antigens in Sheep:The OLA Complex and Two Minor Loci[J].Immunogenetics,1979,9:509-534.
    [9] Lewin B.GenesⅧ[M].Pearson Prentice Hall Pearson Education,Inc,2004:778-779.
    [10]余智勇,彭林泽,申红等.绵羊MHC基因的研究现状[J].贵州畜牧兽医,2006,30(4):12-14.
    [11] Scott P C,Gogolin-Ewens K J,Adams T E,et al.Nucleotide sequence,polymorphism,and evolution of ovine MHC class II DQA genes[J].Immunogenetics,1991,34:69~79.
    [12] Wright H,Ballingall K T.Mapping and characterization of the DQ subregion of the ovine MHC [J].Anim.Genet.,1994,25:243~249.
    [13] Zhou H,Hickford J G H.Rapid communication:Three new allelic sequences at the ovine MHCclass II DQA1 locus[J].J.Anim.Sci.,2001,79:779~780.
    [14] Zhou H,Hickford J G H.Allelic polymorphism in the ovine DQA1 gene[J].Anim.Sci.,2004,82:8-16
    [15] Hickford J G H,Zhou H,Slow S,et al.Diversity of the ovine DQA2 gene[J].Anim.Sci.,2004,82:1553~1563.
    [16] Jugo B M,Vicario A.Single strand conformational polymorphism and sequence polymorphism of MHC-DRB in Latxa and Karrantzar sheep:implications for Caprinae phylogeny[J].Immunogenetics,2000,51:887~897.
    [17] Konnai S,Nagaoka Y,Takeshima S,et al.Sequences and diversity of 17 new Ovar-DRB1 alleles from three breeds of sheep[J].Eur J Immunogenet,2003,30(4):275~282.
    [18] Konnai S,Nagaoka Y,Takesima S,et al.Technical Note:DNA Typing for Ovine MHC DRB1 UsingPolymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP) [J].J. Dairy Sci.,2003,86:3362–3365.
    [19] Russell G C,Gallagher A,Craigmile S,et al.Characterization of cattle cDNA sequences from two DQA loci[J].Immunogenetics,1997,45:455~458.
    [20] Nagaoka Y,Kabeya H,Onuma M,et al.Ovine MHC class II DRB1 Alleles Associated with Resistance or Susceptibility to Development of Bovine Leuke mia Virus - induced Ovine Lymphomal[J].Cancer Research 1999,59,975~981.
    [21] Konnal S,Takeshlma S N,Tajlma S,et al.The influence of ovine MHC ClassⅡDRB1 Alleles on Immune Response in Bovine Leukemia Virus Infection[J].Microbiol Immunol,2003,47(3):223-232.
    [22] Sayers G.,Good B.,Hanrahan J.P.,et al.Major Histocompatibility Complex DRB1 gene:its role in nematode resistance in Suffolk and Texel sheep breeds[J].Parasitology,2005,131:403-409.
    [23]孙东晓,张沅,李宁.蒙古羊和哈萨克绵羊MHC - DRB3基因外显子2的多态性[J].遗传学报.Acta Genetica Sinica1August2003,30(8):761~765.
    [24]刘云芳,剡根强,王新峰.多浪羊MHC-DRB3基因PCR - RFLP多态性分析[J].遗传学报.HERED ITAS (Beijing)2004,26(1):59~62.
    [25]贾斌,申红,余智勇,等.多浪羊和中国美利奴羊MHC-DRB1基因多态性与包虫病的遗传易感性[J].中国人兽共患病学报,2007,23(10):1004~1008,1012.
    [26]刘秀,胡江,罗玉柱.藏绵羊基因OLA-DQA2第2外显子多态性分析[J].中国农业科学,2009,42(8):2930-2936.
    [27]赵有璋.现代中国养羊[M].北京:金盾出版社,2005.
    [28] Lynn M H H,Stephen N W,Michelle R M,et al. Ovine progressive pneumonia provirus levels associate with breed and Ovar-DRB1[J].Immunogenetics,2008,(208) 60:749–758.
    [29] Sambrook J, Fritsch E F M T.Molecular Cloning.Second edition [M]. New York:Cold Spring Habor Laboratory,1999.
    [30] Ammer H,Schwaiger F W,Kammerbauer C,et al.Exonic polymorphism vs intronic simple repeat hypervariability in MHC- DRB genes[J].Immunogenetics,1992,35:332-340.
    [31] Bassam B J,Caetano-anolles G,Gresshoff P M.Fast and sensitive silver staining of DNA in polyacrylamide gels[J].Anal Biochem. 1991, 196(1):80-83.
    [32] Herring A J,Inglis N F,Ojeh C K,et al. Rapid diagnosis of rotavirus infection by direct detection of viral nucleic acid in silver-stained polyacrylamide gels.[J]. J Clin Microbiol. 1982, 16(3):473-477.
    [33] Ballingall K T,Luyai A,Mckeever D J.Analysis of genetic diversity at the DQA loci in African cattle: evidence for a BoLA-DQA3 locus [J].Immunogenetics,1997,46(3):237-244.
    [34] Thompson J D,Gibson T J,Plewniak F,et al.The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools[J]. Nucleic Acids Res,1997,25:4876-4882.
    [35] Rozas J,Sánchez-DelBarrio J C,Messeguer X,et al.DnaSP,DNA polymorphism analyses by the coalescent and other methods[J].Bioinformatics,2003,19:2496-2497.
    [36] Kumar S,Tamura K,Nei M.MEGA3:Integrated software for molecular evolutionary genetics analysis and sequence alignment[J].Bioinformatics,2004,5:150-163.
    [37]赵兴波,储明星,李宁.绵羊线粒体DNA控制区5′端序列PCR-SSCP与序列分析[J].遗传学报, 2001,23(01):4-8.
    [38] TKáaIKOVáL,Bhide M R,Mikula I.Asymmetric PCR-SSCP:a Useful Tool for Detection of OLA-DRB1 (MHC Class II) Gene Polymorphism in Slovak Improved Valachian Sheep[J].ACTA VET.BRNO 2005,74:275-278.
    [39] Jugo B M,Vicario A.Single-stand conformational polymorphism and sequence polymorphism of Mhc-DRB in Latxa and Karrantzar sheep: implication for Caprinae phylogeny[J]. Immunogenetics,2000,51:887-897.
    [40] Ballingall K T,Fardoe K,McKeever D J.Genomic organisation and allelic diversity within coding and non-coding regions of the Ovar-DRB1 locus[J].Immunogenetics,2008,60:95—103.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700